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Introduction 
 
The study of control in computer vision 
is necessitated by the simple observation 
that few if any significant vision systems 
are implemented as one-step mappings. 
Instead, most systems are multi-stage 
processes that map images onto high-
level interpretations, either in the form 
of labels, 3D models, or both. The steps 
involved change from system to system.  
Common examples include selective 
attention, stereo and motion analysis, 
feature extraction (edges, corners, lines, 
Gabor responses), segmentation, image 
registration, camera resection (pose 
determination), appearance matching, 
geometric matching, graph matching, 
and constraint matching.   The control 
problem is to put these steps together, 
either concurrently, sequentially or 
recurrently, to create an effective and 
efficient vision system. 
 
What makes control in computer vision 
more than a scheduling and information 
fusion problem is the multiple vision 
systems (MVS) hypothesis. MVS is 
based on theories of human vision that 
suggest it is not a single, monolithic 
system, but is instead composed of 
multiple, anatomically distinct pathways. 
It hypothesizes that artificial vision 
systems should be built the same way; as 
a collection of interacting subsystems, 

each serving a unique visual task and 
interpreting images with its own 
mechanisms.  
 
From a control perspective, MVS 
implies that there is not one control 
problem in computer vision, but many. 
Every subsystem selects basic visual 
processes and integrates them to achieve 
a specific goal. For example, geometric 
techniques might be used to recognize 
rigid objects such as buildings, while 
appearance-based techniques are used to 
draw subtle distinctions among human 
faces, and color and motion are 
exploited to recognize natural objects 
such as trees or rivers.    
 
The theory and practice of how these 
control problems are solved is the one 
common thread among recognition 
tasks. Although each visual task is 
solved uniquely, the principles for 
finding optimal (or at least good) control 
policies are common to all of them.  
 
This talk quickly summarizes the 
multiple vision system hypothesis in 
humans. It then reviews twenty years of 
research in the control of computer 
vision, with an admitted bias toward the 
author’s own work. It argues that there 
has been a progression from model-free 
approaches to probabilistic models in 
low dimensional spaces, toward current 



research in high-dimensional 
probabilistic control models. 
 

Cognitive Models 
 
The multiple vision systems hypothesis 
has deep roots in the psychology and 
cybernetics literatures. Since complex 
computer vision systems did not appear 
until the 1970’s, however, we will leave 
older references for another forum.  
 
In the 1970’s and early 80’s, many 
computer vision researchers were 
influenced by Arbib’s schema theory [3, 
4].  Schema theory had three major 
components. First, it emphasized that the 
role of perception is to enable action 
through the action-perception cycle.  
Second, it hypothesized an underlying 
set of core visual abilities.  Third and 
most importantly, it hypothesized that 
these core abilities were combined into 
special-purpose visual schemas, each of 
which enabled a particular (physical or 
cognitive) action. 
 
In the 1980’s, scheme theory as a whole 
lost popularity, although most of its 
components were bolstered. For 
example, Ungeleider and Mishkin 
provided the first anatomical evidence 
for distinct pathways with their 
description of the ventral (“what” ) and 
dorsal (“where”) pathways [25]. Ullman 
further developed the idea of core visual 
abilities in his visual routines [24]. 
Finally, in the late 1980’s, the purposive 
and animate vision paradigms reinforced 
the ideas behind the action-perception 
cycle [1, 5]. 
 
In the 1990’s, Milner and Goodale 
collected and organized evidence 
supporting the thesis that primate vision 

is composed of multiple special-purpose 
pathways [17]. Their argument has 
subsequently been supported by brain 
imaging studies, showing different loci 
of activation for different tasks [19, 20]. 
Just as important, Milner and Goodale 
show that the evidence from behavioral 
and lesion studies suggests that 
pathways are differentiated to serve 
(physical or cognitive) actions.  
 

Control in Computer Vision 
 
Schema theory and its subsequent 
refinements form the background for 
models of control in computer vision.  In 
the 1970’s and 80’s, vision researchers 
followed the lead of their colleagues in 
AI and built expert systems for computer 
vision.  Some of these were rule-based 
systems [16, 21]; others were blackboard 
systems [2, 18] or semantic networks 
[12, 13].  These systems shared a 
methodology in  which designers 
encoded common sense knowledge 
about objects and their relations in a 
form that could be used to control the 
vision process.  My own work on the 
Schema System (named after Arbib’s 
theory) clearly fits this description [10]. 
 
Although not referenced much today, 
these systems had some positive points. 
They were flexible enough to make use 
of many kinds of contextual and 
relational information, and to integrate it 
with other information sources (e.g. 
color, shape, texture, and a priori 
knowledge). This made them broadly 
applicable.  At a time when the available 
visual routines were still very weak, 
knowledge-directed systems as a class 
were able to interpret many types of 
images, including aerial images, outdoor 
ground level images, and indoor office 



scenes1. Furthermore, because they acted 
according to rules from a knowledge 
base, there actions on any given image 
could be easily explained to even a non-
technical user. 
 
At the same time, knowledge-directed 
systems had serious flaws that 
eventually halted their development 
(although see [7]).  The most 
fundamental is that they were ad-hoc. 
Probably as a result, knowledge-directed 
systems were brittle. Systems that were 
developed using a particular set of 
images would often fail on sets of 
similar (but not identical) images.  They 
were also expensive to build, because of 
the time and effort required to construct 
the knowledge bases, and difficult to 
port from one domain to another. For a 
more detailed discussion of these and 
related failings, see [11].  
 
In retrospect, knowledge-directed vision 
systems generally applied fine-grained 
but model-free approaches to visual 
control. By fine grained, I mean that 
they used a large number of relatively 
simple visual routines.  In some cases, 
visual routines were simple enough to be 
embedded in if-then rules.  More often, 
they were embedded in knowledge 
sources (to use the blackboard 
terminology), but these knowledge 
sources were rarely complex. Edge 
detection and image segmentation 
routines were among the most 
sophisticated knowledge sources. 
 
Control was model-free in the sense that 
the control process itself was not 
formally modeled (although it was often 
monitored and informally reasoned 
about).  For example, the Schema 
System included hand-crafted 
                                                 
1 No single system had this breadth, however. 

procedures that exploited what we knew 
about the domain. They also accessed 
the current state of the interpretation, for 
example to resolve conflicts. The control 
process itself, however, was not modeled 
as a Markov process or a Bayesian 
evidential process or by any other formal 
mechanism.  
 
Another limitation, not considered at the 
time, was that these systems reasoned in 
low-dimensional spaces. They made 
their control decisions based on a small 
number of features computed over 
images or other intermediate 
representations (e.g. edge images or 
image regions).  At the time, however, it 
was implicitly assumed that the goal of 
visual processing was to reduce complex 
images to comparatively simple features 
and labels, so this limitation was rarely if 
ever noted. 
 
After these early efforts, most 
researchers shied away from building 
systems that interpreted images in 
unconstrained or loosely constrained 
domains. Instead, most research focused 
on narrower topics, such as improving 
specific visual routines or recognizing 
objects in very narrow domains. 
(Obviously, there were exceptions.) 
Research in control and computer vision 
became less popular. 
 
Nonetheless, in the 1990’s, a second 
generation of visual control systems 
emerged. These were generally better 
motivated if less ambitious than their 
predecessors.  In particular, these 
systems explicitly modeled the control 
process itself, typically as either a Bayes 
net or Markov model, and used domain 
independent learning mechanisms to 
infer control strategies.  
 



Bayesian networks model image 
interpretation as an evidential process, in 
which visual routines gather observable 
measurements about a scene. A Bayesian 
net combines these measurements to 
infer probabilities for various (non-
observable) interpretations of a scene. 
Control is implemented as a greedy 
algorithm that selects the visual routine 
with the highest utility at every time 
step, where utility is a trade-off between 
cost and the expected change in 
hypothesis probabilities. For a good 
example of a Bayes net system, see 
Rimey and Brown [23]. 
 
Bayes nets alleviate many of the 
problems with earlier knowledge-based 
systems. They are well grounded in 
probability theory.  They should be 
robust to minor changes in imaging 
conditions (although this has not been 
well tested). The algorithms that infer 
control decisions can be easily ported 
across domains. On the down side, they 
are still expensive to build because the 
network must be carefully constructed 
from domain knowledge, and geometric 
and temporal information can be 
difficult to encode.   
 
I took the other approach and modeled 
vision as a Markov process [9] (so did 
others; see [22]). In this view, image 
interpretation is not unlike an automatic 
programming problem. At any given 
moment, there is a state of the existing 
interpretation.  The goal is to select the 
visual routine with the greatest expected 
future reward (as before, trading off 
certainty and cost).  Control is again a 
greedy process, where this time the 
choice is based on the expected long-
term reward. 
 

Markov models have many of the same 
advantages and disadvantages as Bayes 
nets. Both are well grounded in 
probability theory. Both should be robust 
to minor changes in imaging conditions 
(an untested hypothesis). Both should be 
portable.  To my knowledge, ADORE2 is 
still the only knowledge-based visual 
control system to be ported across 
domains, and it is based on Markov 
models (see [8]). Markov models have 
the advantage that they are easier and 
therefore cheaper to build, because they 
do not rely on a hand-crafted 
dependency network. On the other hand, 
they require a training set of labeled 
images to learn the expected future 
reward functions. 
 

Future Direction: High-
dimensional Control Systems 
 
Although better than their predecessors, 
second generation control systems like 
Bayes nets and Markov models are still 
limited. They have not yet created 
systems capable of recognizing a wide 
variety of objects in unconstrained or 
loosely constrained domains.  Instead, 
they have created systems that robustly 
interpret scenes from limited domains, 
such as images of table settings [23] or 
aerial views of industrial buildings [9] or 
tightly controlled office scenes [8].  We 
have to do better. 
 
I believe that part of the problem is the 
dimensionality of the control decision 
space.  Bayes nets and Markov models 
do a good job of selecting actions based 
on the information they are given.  The 
problem is, we don’ t give them enough 
information. 

                                                 
2 ADORE: Adaptive Object Recognition 



 
Let me motivate this claim with an 
example. ADORE is an object 
recognition system with a Markov-based 
control system.  As mentioned earlier, it 
has been used to identify industrial 
buildings in aerial images and objects in 
office scenes. At run-time, its control 
decisions are based on what it knows 
about the current state of the 
interpretation, as well as what it has 
previously learned about the visual 
routines and the domain. The state of the 
current interpretation is represented by 
one of several types of visual data; for 
example, intensity images,  probability 
images, image regions, active contours, 
or sets of line segments [9]. The run-
time control decisions, however, are not 
actually based on the current state of the 
interpretation.  They are based instead 
on a small set of features that describe 
the current data, rather than the data 
itself. 
 
In theory, this makes ADORE a partially 
observable Markov decision process 
(POMDP). In practice, it means that 
ADORE depends heavily on the quality 
of its features. For example, we have run 
informal tests where ADORE is given no 
features at all.  Unable to distinguish one 
image from another, it learns the best 
static control policy, i.e. the policy with 
the highest average reward over the 
training set, which it applies to all 
images.  This is theoretically correct, but 
not very useful. Alternatively, when we 
run ADORE with the best features we 
know of for a domain, it outperforms all 
static control policies. 
 
Unfortunately, this suggests that we are 
once again applying informal control 
policies under the guise of a theoretically 
sound system.  Feature quality 

determines the quality of the image 
interpretation, but the features are 
selected heuristically. The same would 
be true of a Bayes net, where both the 
network structure and the observable 
features are heuristic. 
 
Despite being a Markov-based system, 
ADORE’s control policy allows 
backtracking. We can estimate how 
often it is correct in a control decision by 
seeing how often and where it 
backtracks. What we observe tells us 
something interesting about our features. 
When ADORE backtracks it is almost 
always the first control decision that is 
undone.  This is because it is harder to 
represent an image by a small set of 
heuristic features than a higher level 
construct such as an active contour.  It is 
easier to construct meaningful features 
for more abstract and focused 
hypotheses. 
 
In order to build robust yet general 
systems, we will need to build systems 
that can make control decisions based on 
better information. Logically there are 
two approaches.  We can either (1) 
automatically learn a small number of 
highly descriptive features from training 
data, or (2) learn to make control 
decisions in higher dimensional spaces. 
The logical extreme of option 2 is to 
abolish the role of features altogether, 
and make control decisions based 
directly on the data.  Unfortunately, in 
the case of images this is a very high 
dimensional space, and training 
instances are usually limited. An 
intermediate position is to build systems 
that use projection techniques such as 
principle component analysis (PCA [15]) 
or independent component analysis (ICA 
[14]) to reduce the dimensionality of the 



data, while also learning to make control 
decisions in higher dimensional spaces. 
 
Bulitko et. al are in the early stages of 
trying to build a system (called MR 
ADORE3) that does exactly that [6]. It 
uses no user-defined features. Instead, 
PCA compresses the data, and then 
nearest neighbor techniques and neural 
networks are used to learn expected 
future reward functions from the training 
set over this compressed space. 
 
MR ADORE is still in the early stages of 
development, but already it can learn 
control strategies that outperform all 
possible static control policies, given a 
domain and a set of visual routines. We 
are initially applying it to the problem of 
recognizing trees in aerial images of 
forests, but nothing about MR ADORE 
is domain specific. The goal is to build a 
system that makes better control 
decisions because it has better 
information, while still operating within 
a Markov model framework. 
 

Conclusion 
 
Vision is not one problem, but many.  
According to cognitive theories, what 
should bind the many special-purpose 
vision systems together are a common 
set of visual routines, and a common 
mechanism for inferring task-specific 
control policies. The first generation of 
control systems for computer vision 
exploited common libraries of visual 
routines, but used heuristic methods to 
control them.  The second generation of 
control systems combined visual 
routines into task-specific systems using 
general purpose and well understood 

                                                 
3 MR ADORE: Multi-Resolution ADORE 

mechanisms (Bayes nets and Markov 
models).  
 
Second generation control technology 
has been successful at building effective 
and efficient recognition systems in very 
limited domains. I believe that part of 
this success, however, has come from 
heuristically selected features. In order 
to build more broadly applicable 
systems, we need to avoid relying on 
heuristically selected, domain specific 
features. 
 
Our approach is to borrow a page from 
appearance-based matching methods, 
and use projection methods to compress 
and characterize the data, and high-
dimensional function approximation 
techniques to learn expected reward 
functions. Other approaches would be to 
avoid data compression altogether, or to 
automatically learn domain-specific 
image features. 
 
Time limitations have forced me to focus 
on one aspect of visual control in this 
talk, namely the progression from 
model-free approaches to low-
dimensional control models to higher 
dimensional control models. Two other 
aspects of visual control deserve to be 
mentioned, however. 
 
1. Biological models suggest that visual 

systems should be divided more by 
task than by domain or object. Most 
of us divide our system by domains 
for convenience, however, because 
we have access to images from 
multiple domains.  More research 
needs to be done on a truly task-
oriented division of labor.  

 
2. The ideal size (complexity) of visual 

routines is still unclear.  Smaller 



visual routines provide better 
opportunities for control, but may 
waste resources.  
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