
Logical Methods in Computer Science
Vol. 14(4:20)2018, pp. 1–21
https://lmcs.episciences.org/

Submitted Jan. 31, 2017
Published Dec. 07, 2018

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER

AUTOMATA

ANTONIA LECHNER 1, RICHARD MAYR 2, JOËL OUAKNINE 3, AMAURY POULY 3,
AND JAMES WORRELL 4

1 Computer Science Department, Université Libre de Bruxelles, Belgium
e-mail address: antonia.lechner@ulb.ac.be

2 School of Informatics, LFCS, University of Edinburgh, UK
URL: http://homepages.inf.ed.ac.uk/rmayr/

3 Max Planck Institute for Software Systems, Saarbrücken, Germany
e-mail address: joel@mpi-sws.org

e-mail address: pamaury@mpi-sws.org

4 Department of Computer Science, University of Oxford, UK
e-mail address: james.worrell@cs.ox.ac.uk

Abstract. Freeze LTL is a temporal logic with registers that is suitable for specifying
properties of data words. In this paper we study the model checking problem for Freeze
LTL on one-counter automata. This problem is known to be undecidable in general and
PSPACE-complete for the special case of deterministic one-counter automata. Several years
ago, Demri and Sangnier investigated the model checking problem for the flat fragment
of Freeze LTL on several classes of counter automata and posed the decidability of model
checking flat Freeze LTL on one-counter automata as an open problem. In this paper we
resolve this problem positively, utilising a known reduction to a reachability problem on
one-counter automata with parameterised equality and disequality tests. Our main technical
contribution is to show decidability of the latter problem by translation to Presburger
arithmetic.

1. Introduction

Runs of infinite-state machines, such as counter automata, can naturally be seen as data
words, that is, sequences in which each position is labelled by a letter from a finite alphabet
and a datum from an infinite domain. Freeze LTL is an extension of Linear Temporal Logic
with registers and a binding mechanism, which has been introduced to specify properties of
data words [3, 4, 8, 12]. The registers allow to compare data at different positions along the
same computation.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Automata over
infinite objects.

Key words and phrases: One-counter automata, disequality tests, reachability, Freeze LTL, Presburger
arithmetic.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(4:20)2018
c© A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

An example of a freeze LTL formula is

F(v ∧ ↓r XF(v ∧ ↑r)) . (1.1)

Evaluated on a run of a one-counter automaton, this formula is true if and only if there are
at least two different positions in the run which both have control state v and the same
counter value. Intuitively the operator ↓r binds the current counter value to register r, while
the operator ↑r tests whether the current counter value is equal to the content of register r.

This paper concerns the model checking problem for Freeze LTL on one-counter automata.
It is known that this problem is undecidable in general and PSPACE-complete if one restricts
to deterministic one-counter automata [5]. Rather than restricting the class of one-counter
automata, one can seek to identify decidable syntactic fragments of Freeze LTL. This
approach was pursued in [6], which studied the flat fragment of Freeze LTL. The flatness
condition places restrictions on the occurrence of the binding construct ↓r in relation to the
until operator (see Section 2.2 for details). For example, in a flat formula in negation normal
form the binding operator ↓r can occur within the scope of F but not G. (Thus formula
(1.1) is flat.) The flatness restriction for Freeze LTL has a similar flavour to the respective
flatness restrictions for constraint LTL [2] and for Metric Temporal Logic [1].

Demri and Sangnier [6] considered the decidability of model checking flat Freeze LTL
across a range of different counter-machine models. For one-counter automata they showed
decidability of model checking for a certain fragment of flat Freeze LTL and they left open
the problem of model checking flat Freeze LTL in general.

The approach taken in [6] was to reduce the model checking problem for fragments of
Freeze LTL on counter automata to reachability problems in counter automata augmented
with certain kinds of parameterised tests. Specifically they reduce the model checking
problem for flat Freeze LTL on one-counter automata to the problem of deciding reachability
of Buchi objectives on one-counter automata extended with parameterised equality and
disequality tests. The latter problem considers one-counter automata whose transitions may
be guarded by equality or disequality tests that compare the counter value to integer-valued
parameters, and it asks whether there exist parameter values such that there is an infinite
computation that visits an accepting location infinitely many times. The parameterised tests
are used to handle register binding in freeze LTL. The main technical contribution of this
paper is to show decidability of the latter reachability problem by reduction to the decision
problem for Presburger arithmetic. We thereby show that the model checking problem for
flat Freeze LTL on one-counter automata is decidable.

A related work is [9], which considers one-counter automata with parameterised updates
and equality tests. It is shown in [9] that reachability in this model is inter-reducible with
the satisfiability problem for quantifier-free Presburger arithmetic with divisibility, and
therefore decidable. In contrast to [9], in the present paper the counter automata do not
have parameterised updates but they do have parameterised disequality tests. The results
in this paper do not appear to be straightforwardly reducible to those of [9] nor vice versa.
Both reachability problems can be seen as special cases of a long-standing open problem
identified by Ibarra et al. [10], which asks to decide reachability on a class of automata with
a single integer-valued counter, sign tests, and parameterised updates.

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 3

2. Preliminaries

2.1. One-Counter Automata with Equality and Disequality Tests. We consider
automata with a single counter that ranges over the nonnegative integers, equipped with
both equality and disequality tests on counter values. Formally, a one-counter automaton
(1-CA) is a tuple C = (V,E, λ, τ), where V is a finite set of states, E ⊆ V × V is a
finite set of edges between states, λ : E → Op labels each edge with an element from
Op = {add(a) : a ∈ Z} ∪ {eq(a) : a ∈ N}, and τ : V → 2N maps each state v to a finite set
τ(v) of invalid counter values at state v. Intuitively the operation add(a) adds a to the
counter and eq(a) tests the counter for equality with a. The association of invalid counter
values with each state can be seen as a type of disequality test. This last feature is not
present in classical presentations of 1-CA, but we include it here to facilitate our treatment
of Freeze LTL.

For any edge e = (v, v′), define start(e) = v and end(e) = v′; moreover write weight(e) =
a if λ(e) = add(a) and weight(e) = 0 if λ(e) = eq(a). A path γ is a finite word on the
alphabet E: γ = e1 . . . en such that end(ei) = start(ei+1) for all 1 6 i < n. The length of
γ, denoted |γ|, is n. The state sequence of γ is start(e1), end(e1), end(e2), . . . , end(en).
The start of γ, denoted start(γ), is start(e1). The end of γ, denoted end(γ), is end(en). A
path is simple if it contains no repeated states. The weight of γ, denoted by weight(γ), is∑n

i=1 weight(ei). A subpath γ′ of γ is any factor of γ: γ′ = eiei+1 . . . ej . If γ and γ′ are two
paths such that end(γ) = start(γ′), γγ′ is the concatenation of both paths.

A cycle ω is a path such that start(ω) = end(ω). A cycle is simple if it has no repeated
states except for the starting point, which appears twice. A cycle is positive if it has positive
weight, negative if it has negative weight and zero-weight if it has weight zero. We denote
by ωk = ωω . . . ω︸ ︷︷ ︸

k times

the sequence of k iterations of the cycle ω.

A configuration of a 1-CA C = (V,E, λ, τ) is a pair (v, c) with v ∈ V and c ∈ Z.
Intuitively, (v, c) corresponds to the situation where the 1-CA is in state v with counter value
c. Configurations (v, c) with c > 0 and c 6∈ τ(v) are called valid, otherwise they are said to be
invalid. The edge relation E induces an unlabelled transition relation between configurations:
for any two configurations (v, c) and (v′, c′), there is a transition (v, c) −→ (v′, c′) if and only
if there is an edge e ∈ E such that start(e) = v, end(e) = v′, and weight(e) = c′− c. We will

sometimes write (v, c)
e−→ (v′, c′) for such a transition. The transition is valid if both (v, c)

and (v′, c′) are valid configurations and c = a if λ(e) = eq(a). Otherwise such a transition is
invalid.

A computation π is a (finite or infinite) sequence of transitions:

π = (v1, c1) −→ (v2, c2) −→ (v3, c3) −→ · · ·

We write |π| for the length of π. If (v1, c1)
e1−−→ (v2, c2)

e2−−→ · · · en−1−−−→ (vn, cn) is a finite

computation, we will also write it as (v1, c1)
γ−−→∗ (vn, cn), where γ = e1e2 . . . en−1, or simply

(v1, c1) −→∗ (vn, cn). A computation π is valid if all transitions in the sequence are valid,
otherwise it is invalid. If π is invalid, an obstruction is a configuration (vi, ci) such that either
(vi, ci) is invalid or (vi, ci) is not the final configuration in π and (vi, ci) −→ (vi+1, ci+1) is
an invalid transition.

Given a path γ and a counter value c ∈ Z, the path computation γ(c) is the (finite)
computation starting at (start(γ), c) and following the sequence of transitions that correspond
to the edges in γ.

4 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

A one-counter automaton with parameterised tests is a tuple (V,E,X, λ, τ), where V ,
E and λ are defined as before for 1-CA, X is a set of nonnegative integer parameters,
Op = {add(a) : a ∈ Z} ∪ {eq(a), eq(x) : a ∈ N, x ∈ X} includes parameterised equality tests
(but not parameterised updates), and τ : V → 2N∪X includes parameterised disequality tests.
Note that τ(v) is still required to be finite for each v ∈ V .

For a given 1-CA C = (V,E, λ, τ), an initial configuration (v, c) and a target configu-
ration (v′, c′), the reachability problem asks if there is a valid computation from (v, c) to
(v′, c′). When C has sets F1, . . . , Fn ⊆ V of final states and an initial configuration (v, c),
the generalised repeated control-state reachability problem asks if there is a valid infinite
computation from (v, c) which visits at least one state in each Fi infinitely often.

For a 1-CA C = (V,E,X, λ, τ) with parameterised tests, initial configuration (v, c),
and target configuration (v′, c′), the reachability problem asks if there exist values for the
parameters such that there is a computation from (v, c) to (v′, c′). Similarly, in the case where
C has sets F1, . . . , Fn ⊆ V of final states and an initial configuration (v, c), the generalised
repeated control-state reachability problem asks if there exist values for the parameters such
that substituting these values satisfies the generalised repeated control-state reachability
condition above.

Note that in our model of 1-CA, equality tests are defined on transitions (via the function
λ) while disequality tests are defined on states (via the function τ). While this asymmetry
may seem unnatural, it is technically convenient for the subsequent proofs. By contrast
in the model of 1-CA in [6] both equality and disequality tests are defined on transitions.
This model also allows multiple edges between states, which is excluded in our formalism.
Nevertheless, from the point of view of reachability and repeated reachability the model
of 1-CA that we use and that of [6] are easily seen to be equivalent (so that an algorithm
for one type of 1-CA will work for the other type with only a polynomial overhead). For
example, compare the 1-CA in Figure 1 (in figures, we write +a for add(a) and = a? for
eq(a)) and the 1-CA in Figure 2, which has disequality tests defined on transitions rather
than states, as well as multiple edges between u5 and u6. Then the computation

(v1, 0) −→ (v2, 10) −→ (v2, 8) −→ (v3, 5) −→ (v5, 1) −→ (v6, 1)

for the 1-CA in Figure 1 corresponds to the computation

(u1, 0) −→ (u2, 10) −→ (u3, 10) −→ (u4, 10) −→ (u2, 8)

−→ (u3, 8) −→ (u4, 8) −→ (u5, 5) −→ (u6, 1) −→ (u7, 1)

for the 1-CA in Figure 2.

2.2. Model Checking Freeze LTL on One-Counter Automata. Freeze LTL [5] is an
extension of Linear Temporal Logic that can be used to specify properties of data words. A
data word is a (finite or infinite) sequence of symbols, each of which consists of a letter from
a finite alphabet and another letter, often referred to as a datum, from an infinite alphabet.
Freeze LTL is one of a variety of formalisms that arise by augmenting a temporal or modal
logic with variable binding. Given a finite alphabet Σ and set of registers R, the formulas of
Freeze LTL are given by the following grammar

ϕ ::= a | ↑r | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ↓r ϕ ,
where a ∈ Σ and r ∈ R. In addition to the standard LTL connectives, Freeze LTL contains
an atomic freeze formula ↑r and a freeze operator ↓r. We write LTL↓ for the set of formulas

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 5

v1 v2

τ(v2) = {2, 3}

v3

v4

v5

v6
+10

−2

−3

−3

−4

= 1?

= 1?

Figure 1: A simple 1-CA including a disequality test on the state v2 and equality tests on
the transitions (v4, v6) and (v5, v6).

u1 u2

u3 u4

u5 u6 u7
+10

6= 2?

6= 3?

−2
−3

−3

−4

= 1?

Figure 2: An automaton with disequality tests on transitions rather than states and with
multiple edges which is equivalent to the one in Figure 1.

of Freeze LTL. A sentence is a formula in which each occurrence of a subformula ↑r is in the
scope of an operator ↓r (for the same register r).

In general, formulas of LTL↓ are interpreted over data words which have Σ as their finite
alphabet and an arbitrary infinite alphabet. In this paper we are interested in a particular
kind of data word—namely those arising from valid computations of 1-CA. We directly
define the semantics of LTL↓ over such computations, assuming that the alphabet Σ is the
set of states of the 1-CA and that the infinite alphabet for data words is N. In this context
↓r can be seen as a binding construct that stores in register r the counter value at the
current position in a computation, while ↑r tests whether the counter value at the current
position is equal to the content of register r. Formally, define a register valuation to be a
partial function f : R→ N and consider a valid infinite computation

π = (v1, c1) −→ (v2, c2) −→ (v3, c3) −→ · · ·

6 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

of a 1-CA C. We define a satisfaction relation π, i �f ϕ specifying when an LTL↓ formula ϕ
is satisfied at position i in π under valuation f :

π, i �f a
def⇐⇒ vi = a

π, i �f ↑r
def⇐⇒ ci = f(r)

π, i �f ¬ϕ
def⇐⇒ π, i 6�f ϕ

π, i �f ϕ1 ∨ ϕ2
def⇐⇒ π, i �f ϕ1 or π, i �f ϕ2

π, i �f Xϕ
def⇐⇒ π, i+ 1 �f ϕ

π, i �f ϕ1 U ϕ2
def⇐⇒ π, j �f ϕ2 for some j > i and π, k �f ϕ1 for all i 6 k < j

π, i �f ↓r ϕ
def⇐⇒ π, i �f [r 7→ci] ϕ

where f [r 7→ c] is the function that maps r to c and is otherwise equal to f . Note that the
clauses for the Boolean and LTL connectives are defined in the same way as for standard
LTL.

An occurrence of a subformula in an LTL↓ formula is said to be positive if it lies within
the scope of an even number of negations, otherwise it is negative. The flat fragment of
LTL↓ is the set of LTL↓ formulas such that in every positive occurrence of a subformula
ϕ1 U ϕ2 the binding operator ↓r does not appear in ϕ1, and in every negative occurrence of
such a subformula, ↓r does not appear in ϕ2 for any register r.

The negation of many natural LTL↓ specifications can be expressed by flat formulas.
For example, consider the response property G(↓r (req → F(serve ∧ ↑r))), expressing that
every request is followed by a serve with the same associated ticket. (Here F and G are the
“future” and “globally” modalities, defined by Fϕ := true U ϕ and Gϕ := ¬F¬ϕ.) The
negation of this formula is equivalent to F(↓r (req ∧ G(¬serve ∨ ¬↑r))). The latter is easily
seen to be flat after rewriting to the core LTL↓ language with only the U temporal operator.

The main subject of this paper is the decidability of the following model checking
problem: given a 1-CA C, a valid configuration (v, c) of C, and a flat sentence ϕ ∈ LTL↓,
does there exist a valid infinite computation π of C, starting at (v, c), such that π, 1 �∅ ϕ?
Note that, following [6], we have given an existential formulation of the model checking
problem. The model checking problem, as formulated above, is equivalent to asking whether
¬ϕ holds along all valid infinite computations starting at (v, c).

The model checking problem for flat LTL↓ on 1-CA was reduced to a repeated reachability
problem for 1-CA with parameterised tests in [6, Theorem 15]. The idea of the reduction is,
given a 1-CA C and a flat LTL↓ sentence ϕ in negation normal form, to construct a 1-CA
with parameterised tests which is the product of C and ϕ. This product automaton includes
a parameter xr for each register r that is mentioned in a subformula of ϕ of type ↓r ϕ′. This
is where the restriction to the flat fragment of LTL↓ is crucial, since it allows us to assume
that the value stored in a register is never overwritten along any computation of C, so that it
can be represented by precisely one parameter. An occurrence of the binding operator ↓r in
ϕ is represented in the product automaton by an equality test eq(xr). A positive occurrence
of a formula of the type ↑r is likewise represented by an equality test eq(xr), while a negative
occurrence of such a subformula is represented by a disequality test τ(vr) = {xr}.

Rather than recapitulating the constructions and reasoning underlying [6, Theorem 15],
we give below an extended example that demonstrates the main ideas behind that result
and helps motivate the subsequent development in this paper.

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 7

v1 v2 v3
+0 +0

+1

Figure 3: *
C1

v1 v2 v3
+1 +0

+0

Figure 4: *
C2

v1 v2 v3
+1 +1

+0

Figure 5: *
C3

v1 v2 v3
+1 +1

+1

Figure 6: *
C4

Figure 7: The automata considered in Example 2.1

Example 2.1. Consider the flat LTL↓ formula

ϕ ≡ true U (↓r X(↑r ∧X ↑r))
and the four counter automata represented in Figure 7. We will assume that for every
1-CA in this example the initial counter value is c. We describe in detail a 1-CA with

parameterised tests, denoted C(ϕ)1 , that arises as the product of C1 and ϕ. We moreover
explain how this definition changes if we replace C1 with one of the remaining three 1-CA.

To construct C(ϕ)1 , the first step is to introduce a concrete representation of the syntax
tree of ϕ, which we denote by Tϕ (see Figure 8). This representation is convenient for
distinguishing different occurrences of the same subformula within ϕ. Each node of Tϕ is
labelled with its address (a word from {0, 1}∗) together with an operator or atomic formula,
corresponding to an occurrence of a subformula in ϕ. The address of the root node is ε. If a
node has address w then its leftmost child (if it has a child) has address w0 and its second
child (if it has two children) has address w1. The operator label of every node is assigned in
the obvious way, taking the outermost connective of the corresponding subformula.

Next we introduce the notion of atoms of ϕ which are certain sets of (occurrences of)
subformulas of ϕ. Formally an atom A is any subset of {0, 1}∗ that satisfies the following
conditions:1

(1) If w ∈ A and the node in Tϕ with address w has label ∧, then w0, w1 ∈ A.
(2) If w ∈ A and the node in Tϕ with address w has label U, then w0 ∈ A or w1 ∈ A.
(3) If w ∈ A and the node in Tϕ with address w has label ↓r, then w0 ∈ A.

The above conditions correspond to the intuition that an atom represents a set of subformulas
of ϕ that hold at a certain position in a data word. We moreover define a transition relation
between atoms by specifying that for atoms A,A′ we have A −→ A′ if the following conditions
hold:

(1) If w ∈ A and the node in Tϕ with address w has label X then w0 ∈ A′.
(2) If w ∈ A and the node in Tϕ with address w has label U then either w1 ∈ A or w0 ∈ A

and w ∈ A′.
1 In general there is also a condition for negation, but this is not relevant for the current simple example.

8 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

ε :U

0 : true 1 :↓r

10 : X

100 : ∧

1000 :↑r 1001 : X

10010 :↑r

Figure 8: The formula tree Tϕ

(3) No atom A′′ strictly included in A′ satisfies the preceding two conditions (with A′′ in
place of A′).

For the formula ϕ at hand, {ε, 0} is an atom and the set of atoms reachable from this
one under the transition relation is {{ε, 0}, {ε, 1, 10}, {100, 1000, 1001}, {10010}, ∅}, with the
transition relation being given by:

{ε, 0} −→ {ε, 0}
{ε, 0} −→ {ε, 1, 10}

{ε, 1, 10} −→ {100, 1000, 1001}
{100, 1000, 1001} −→ {10010}

{10010} −→ ∅

Roughly speaking, the automaton C(ϕ)1 arises as the product of C1 and the transition
relation on atoms of ϕ. This automaton is shown in Figure 9. It has an initial state v0 and
auxiliary states vaux1 , . . . , vaux6 . All other states are of the form 〈v,A〉 where v is a state of C1
and A is an atom of ϕ. From the initial state v0 there is a nondeterministic choice between
the two atoms having ε as an element. The choice of {ε, 1, 10} means that ↓r X(↑r ∧X ↑r)
(the right side of ϕ) holds in the initial state v1 of C1, and the choice of {ε, 0} means that this
subformula will hold at some point in the future, i.e., in v2 or v3. For any two consecutive
edges

〈vi, A〉 −→ vauxk −→ 〈vj , A′〉

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 9

v0

〈v1, {ε, 1, 10}〉 vaux1 〈v2, {100, 1000, 1001}〉 vaux2 〈v3, {10010}〉

〈v1, {ε, 0}〉 〈v2, {ε, 1, 10}〉 vaux3 〈v3, {100, 1000, 1001}〉

〈v2, {ε, 0}〉 〈v3, {ε, 0}〉

〈v3, {ε, 1, 10}〉 vaux4

vaux5

vaux6

〈v3, ∅〉

+0

+0

= x? +0 = x? +0

+0

+0

= x? +1

+0

+0

+1

+1

= x?

+1

= x?

+1

= x?

+1

+1

Figure 9: The product automaton C(ϕ)1 of C1 and ϕ.

in the product automaton C(ϕ)1 , the label on the second edge is equal to the label on the
edge (vi, vj) in automaton C1, and the label on the first edge is a test on the counter value.
There is one set of final states, F = {〈v3, ∅〉}.2

Let us first follow the path from 〈v1, {ε, 1, 10}〉. The transition to the auxiliary state
vaux1 tests whether the current counter value, that is c, is equal to the parameter x. This

equality test corresponds to node 1 in Tϕ. Next, C(ϕ)1 simulates a transition from v1 to v2 in
C1. The transitions to auxiliary states vaux2 and vaux6 include further tests for equality with
x, which correspond to nodes 1000 and 10010 in Tϕ, respectively. Clearly if we set x = c,
there is a valid computation starting from (v0, c) over this path which ends up visiting the
final state 〈v3, ∅〉 infinitely many times.

The paths starting at 〈v1, {ε, 0}〉 all correspond to cases where ↓r X(↑r ∧X ↑r) does not
hold in v1, but only at a later time in v2 or v3. It is easy to see that there is no value for x
that allows reachability of the final state along any of these paths.

Recall the 1-CA C2, C3 and C4 from Figure 7. In the 1-CA C(ϕ)2 , which is constructed

in the same way as C(ϕ)1 but with transition labels from C2 rather than C1, there is a valid
computation starting in (v0, c) over the path that goes through vaux3 and vaux5 and ends up
visiting 〈v3, ∅〉 infinitely many times. This means that the right side of ϕ becomes true in

C2 after one step. Similarly, in C(ϕ)3 , there is a valid computation over any path that goes
through vaux4 and vaux5 to 〈v3, ∅〉, which means that the right side of ϕ becomes true in C3
after two or more steps. Finally, in C(ϕ)4 , the state 〈v3, ∅〉 can never be reached, since there
is no computation from (v1, c) in C4 that satisfies ϕ.

If ϕ featured any negated atomic formulas of the form ↓r′ ϕ′, auxiliary states with
disequality tests would be needed in the product automaton. For a general description of
how to construct the product automaton and a proof, see [6].

Note that the definition of 1-CA with parameterised tests in [6] includes parameterised
equality and disequality tests (as in the present paper) together with parameterised inequality
tests, i.e., testing whether the counter value is less than or greater than the value of a

2In general, there is a set of final states for each U operator in the formula.

10 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

parameter. However, it is clear from the details of the reduction that only equality and
disequality tests are needed, and thus we do not consider inequality tests in this paper.

2.3. Presburger Arithmetic. Presburger arithmetic is the first-order logic over the struc-
ture 〈Z,+, <, 0, 1〉, where + and < are the standard addition and ordering on integers.
Presburger arithmetic is known to be decidable [13]. Using shorthand notation, we can
assume that the atomic formulas of Presburger arithmetic are equalities or inequalities
between linear polynomials with integer coefficients.

3. Normal Form for Paths

In this section, we show that any valid finite computation of a 1-CA C = (V,E, λ, τ) can
be rewritten to a normal form whose shape only depends on the automaton and such that
the initial and final configuration of the computation are preserved. Informally, any such
computation can be described as a sequence of “take this transition” and “take this cycle
k times”. We show that the maximum length of a description of this kind is independent
of the original computation. Such a description is similar in spirit to the semilinear path
schemes described in [11].

We give a brief overview of the technical development below. The first step (Lemma 3.1)
is to bound the number of equality tests along a minimum-length computation between
two configurations of a 1-CA. Thereafter we focus on computations that are free of equality
tests. To obtain a succinct representation of such computations we define a rewriting system
that reorders computations by gathering together in the same place executions of the same
simple cycle; we moreover introduce a compressed representation of iterated simple cycles,
leading to the notion of folded paths. Lemmas 3.2 and 3.3 show that the rewriting rules
are sound (i.e., preserve validity of computations) and terminating. We then concentrate
on bounding the length of folded paths which cannot be further rewritten. To this end we
identify a set of “critical” configurations that block application of the rewriting rules, and
we bound the number of such configurations (Lemma 3.5). This leads to an upper bound
on the length of a folded path that cannot be rewritten (Lemmas 3.6 and 3.7). Finally
the whole analysis, including equality tests, is summarised in Theorem 3.8 which gives the
required upper bound on the length of folded paths.

In the rest of this section we consider a fixed 1-CA C = (V,E, λ, τ). First we show that,
without loss of generality, any computation in C can be broken down into a small number
of segments that do not contain any transitions with equality tests. The idea is that any
segment between two identical equality tests can be omitted.

Lemma 3.1 (Equality-test isolation). Let π be a valid finite computation from (v, c) to
(v′, c′). Then there exists a path γ such that γ(c) is a valid computation from (v, c) to (v′, c′)
and γ is of the form γ = γ0e1γ1e2 · · · enγn, where ei is an edge with an equality test, γi is a
path without equality tests and n 6 |E|.
Proof. Let π′ be the shortest valid computation from (v, c) to (v′, c′). We can decompose it
as

π′ = (v, c)
γ0−→ (v1, c1)

e1−→ (v′1, c1)
γ1−→ (v2, c2) · · · (v′n, cn)

γn−→ (v′, c′)

where for every i, γi is a path without any equality tests and ei = (vi, eq(ci), v
′
i) ∈ E is an

equality test. Then clearly π′ = γ(c) where

γ = γ0e1γ1e2 · · · enγn.

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 11

Assume for a contradiction that n > |E|. Then by the pigeonhole principle, there exists i < j

such that ei = ej . But since π′ is a valid computation, the two transitions (vi, ci)
eq(ci)−−−→ (v′i, ci)

and (vj , cj)
eq(ci)−−−→ (v′j , cj) are the same and (vi, ci) = (vj , cj). Thus we can delete part of

the computation and define

γ′ = γ0e1γ1 · · · eiγjej+1 · · · enγn.
Then γ′(c) is a valid computation from (v, c) to (v′, c′) and is shorter than π′, which is a
contradiction.

We need to introduce some terminology to formalise our notion of normal form. Write
SC for the set of all equality-free simple cycles in C. We moreover denote by SC+ ⊆ SC the
set of equality-free simple cycles that have positive weight and likewise by SC− ⊆ SC the
set of cycles with negative weight.

The cycle alphabet, denoted C, consists of symbols of the form ωk where ω ∈ SC and
k ∈ N. Note that this alphabet is infinite. Also note that ωk is a single symbol, underlined
to distinguish it from the cycle ωk, which consists of |ω|k symbols from E. For convenience,
we use ω as shorthand for ω1. We naturally define the start and end of symbol ωk by the
start of ω: start(ωk) = end(ωk) = start(ω).

A folded path χ is a word over the alphabet E ∪ C: χ = s1 · · · sn such that end(si) =
start(si+1) for every i < n. We also define the natural unfolding folded paths via a
monoid homomorphism unfold : (E ∪ C)∗ → E∗ such that unfold(e) = e for e ∈ E and
unfold(ωk) = ωk for ωk ∈ C. The weight of a folded path is the weight of its unfolding.

For the rest of this section we fix an initial counter value c ∈ N and we only consider
computations starting at c that do not feature equality tests. We refer to a folded path χ as
being valid if unfold(χ)(c) is a valid computation.

Define the following nondeterministic rewriting system on folded paths. Each rule of the
system has a name, a pattern to match against, a condition that must be satisfied for the
rule to apply, and the result of the rule. We denote by χ; χ′ the fact that χ rewrites to χ′.

Rule Pattern Result Condition
fold ψωφ ψωφ ω is a simple cycle of nonzero weight.

simplify ψρφ ψφ Nonempty ρ, weight(unfold(ρ)) = 0 and end(ψ) =
start(φ).

gather+ ψωkρω`φ ψωk+1ρω`−1φ Result is valid, ω is a positive simple cycle and
` > 0.

gather- ψωkρω`φ ψωk−1ρω`+1φ Result is valid, ω is a negative simple cycle and
k > 0.

Lemma 3.2 (Soundness). If χ is a valid folded path that rewrites to χ′, then χ′ is also
valid. Furthermore, χ and χ′ start and end at the same state and weight(unfold(χ)) =
weight(unfold(χ′)).

Proof. This is easily checked for each rule:

• fold: Clearly unfold(χ) = unfold(χ′).
• simplify: First note that the result is well-formed because of the condition on start and

end. The unfolding of the first part (ψ) of the path is unchanged, so it remains valid
and with the same starting state. Since the second part of the path (ρ) has weight 0, the
counter value is the same at the beginning and end of ρ, so the unfolding of the third part

12 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

(φ) stays the same, and thus valid with the same end state. The weight of the unfolded
path remains unchanged as the removed part ρ has weight 0.
• gather±: The condition ensures the result is valid. The start and end state clearly do

not change, and neither does the weight, since unfold(χ′) contains the same edges as
unfold(χ), only in a different order.

Lemma 3.3 (Termination). There are no infinite chains of rewriting.

Proof. First we give an informal explanation. The first thing to notice is that the length
of a folded path (over alphabet E ∪ C) never increases after a rewriting operation. The
second thing is that the length of a folded path over E (i.e., ignoring symbols from C) never
increases either. Since rule simplify strictly decreases the length, it can only be applied
finitely many times. Similarly, rule fold strictly decreases the length over E because it
replaces a symbol from E by one from C. Rules gather± are more difficult to analyse
because they only reorder the path by replacing symbols from C. But notice that a symbol
ω, where ω is a positive cycle, can only move left, and similarly a negative cycle can only
move right. Intuitively, this process must be finite because once a positive (negative) cycle
reaches the leftmost (rightmost) position, it cannot move anymore.

Formally, we will define a valuation over folded paths and show that it decreases after
each application of a rule. First, for any folded path χ and any given simple cycle ω, define
the ω-projection pω(χ) of χ to be the subword consisting only of symbols of the form ωk:

pω(eχ) = pω(χ) if e ∈ E pω(ωkχ) = ωkpω(χ) pω(θkχ) = pω(χ) if θ 6= ω.

For any folded path χ, define:

LχM = (|χ|, |χ|E , σ(χ)), where σ(χ) =
∑
ω∈SC

σω(pω(χ)) ,

|χ| is the word length of χ (over alphabet E ∪C), |χ|E is the word length of χ only counting
symbols in E, and σω(pω(χ)) is defined as follows:

σω

(
ωk1ωk2 · · ·ωkn

)
=

∑n

i=1 iki if weight(ω) > 0

0 if weight(ω) = 0∑n
i=1(n+ 1− i)ki) if weight(ω) < 0.

We will now show that LχM decreases in lexicographic order each time a rule is applied.
In the case of rule fold, if |ω| ≥ 2 then clearly |χ| decreases because we replace several
symbols with just one. If |ω| = 1 then |χ| stays constant but |χ|E decreases by one because
we replace one symbol from E by one symbol from C. Similarly, rule simplify decreases
|χ| because we remove a nonzero-length subpath. Since rules gather+ and gather- are
symmetric, we only consider gather+. Note that the rule does not change |χ| or |χ|E because
it only replaces symbols from C with different symbols from C, so we are only concerned
with σ(χ).

Assume the rule rewrites ψωkρω`φ into ψωk+1ρω`−1φ. First note that if θ 6= ω is a
simple cycle, then the θ-projection is the same before and after the rule because the rule
does not replace any symbols of the form θk, so σθ does not change. The case of σω is
slightly more involved and we need to introduce some notations:

pω(ψ) = ωu1 · · ·ωun , pω(ρ) = ωun+2 · · ·ωum , pω(φ) = ωum+2 · · ·ωuq

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 13

and

un+1 = k, um+1 = `, u′n+1 = k + 1, u′m+1 = `− 1, u′i = ui if i 6= n+ 1,m+ 1.

Then we can observe that:

σω

(
pω

(
ψωkρω`φ

))
= σω (ωu1 · · ·ωuq) =

q∑
i=1

iui, (3.1)

σω

(
pω

(
ψωk+1ρω`−1φ

))
= σω

(
ωu
′
1 · · ·ωu′q

)
=

q∑
i=1

iu′i. (3.2)

Thus:

(3.1)− (3.2) =

q∑
i=1

i(ui − u′i)

= (n+ 1)(un+1 − u′n+1) + (m+ 1)(um+1 − u′m+1)

= −(n+ 1) + (m+ 1)

> 0 because m > n.

Thus σω(χ) decreases after the rule is applied and thus σ(χ) also decreases.

Lemma 3.4 (Size of cycle-free subpaths). If ψρφ is a folded path such that ρ ∈ E∗ and no
rewriting rule applies, then |ρ| < |V |.

Proof. Assume the contrary: if ρ only consists of edges and has length > |V |, then some
state is repeated in the state sequence of ρ. Thus ρ contains a cycle and thus a simple cycle.
So rule fold applies if the cycle has nonzero weight, or rule simplify applies if it has weight
zero.

The next lemma analyses situations in which the pattern of one of the rules gather+

and gather- matches a factor of a folded word, but application of the rule leads to an
invalid computation. The idea is to identify a set of so-called critical configurations which
can potentially prevent application of one of these two rules and then to bound the number
of such critical configurations. As we observe below, both rules are sound with respect to
the requirement that counter values be nonnegative and can only cause a computation to
become invalid through the presence of disequalilty tests.

Given a state v of C, we define a set B+(v) of critical values for positive cycles and a
set B−(v) of critical values for negative cycles. These sets represent valid configurations
(v, c) from which some simple cycle cannot be executed due to a disequality test. Formally,
for S ⊆ Z and x ∈ Z, write S − x to denote {y − x | y ∈ S}; then we define B+(v) to be
the union of the sets τ(end(γ))− weight(γ) for γ a non-empty prefix of some positive cycle
starting at v. Likewise we define B−(v) to be the union of the sets τ(end(γ))− weight(γ)
for γ a non-empty prefix of some negative cycle starting at v.

Lemma 3.5 (Obstructions in irreducible paths with cycles). Let ω be a positive (resp.
negative) cycle and assume that rule gather+ (resp. gather-) does not apply to ψωkρω`φ
(which we assume is valid and k, ` > 0) for this particular pattern. Then there exists a
(potentially empty) prefix µ of ρ such that unfold(ψωkµ)(c) has the form (v, c) −→∗ (v′, c′)
where c′ is critical for v′ for positive (resp. negative) cycles, i.e. c′ ∈ B+(v′) (resp. c′ ∈

14 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

B−(v′)). Furthermore B+(v′) and B−(v′) only depend on the automaton and

|B+(v′)| 6 | SC+ |
∑
u∈V
|τ(u)| and |B−(v′)| 6 | SC− |

∑
u∈V
|τ(u)|.

Proof. We first show the result for positive cycles. Let π = unfold(ψωkρω`φ)(c) and
π′ = unfold(ψωk+1ρω`−1φ)(c). To make things slightly easier to understand, note that:

π = [unfold(ψ)ωk unfold(ρ)ωω`−1 unfold(φ)](c)

π′ = [unfold(ψ)ωkω unfold(ρ)ω`−1 unfold(φ)](c).

Since unfold(ρ)ω and ω unfold(ρ) have the same weight, it is clear that the first (unfold(ψ)ωk)
and last (ω`−1 unfold(φ)) parts of the computation are the same in π and π′, i.e., they have
the same counter values. Consequently, if they are valid in π, the same parts are also valid
in π′. Since by the hypothesis gather+ does not apply, π′ is invalid. So there must be an
obstruction (u, d) in the middle part (ω unfold(ρ)) of π′. There are two possibilities.

The first case is when the obstruction (u, d) is in the unfold(ρ) part of π′. Note that
d = c∗ + weight(ω), where (u, c∗) is the corresponding configuration in the unfold(ρ) part of
π. Since ω is a positive cycle, d > c∗ cannot be negative (since (u, c∗) occurs in π, which is
valid). Since we assumed that all computations are free of equality tests, the obstruction
must be because of a disequality, i.e., it must be that d = c∗ + weight(ω) ∈ τ(u). Thus
c∗ ∈ τ(u) − weight(ω) and c∗ is critical for u. Then there exists a prefix µ of ρ such that
unfold(ψωkµ)(c) = (v, c) −→∗ (u, c∗) and this shows the result.

The second case is when (u, d) is in the ω part of the middle part (ω unfold(ρ)) of π′.
Again, it is impossible that the counter value d be negative. Indeed, remember that ω is a
positive cycle and k > 0, thus

π′ = [unfold(ψ)ωk+1 unfold(ρ)ω`−1 unfold(φ)](c)

= [unfold(ψ)ωk−1ωω unfold(ρ)ω`−1 unfold(φ)](c)

= (v, c)
unfold(ψ)ωk−1

−−−−−−−−−→∗ (v1, c1)
ω−→∗ (v1, c2)

ω−→∗ (v1, c3)
unfold(ρ)ω`−1 unfold(φ)−−−−−−−−−−−−−−→∗ (v′′, c′′).

We already argued that (v, c) −→∗ (v1, c2) is valid, so in particular (v1, c1)
ω−−→∗ (v1, c2) is

valid. Note that the obstruction is in the second iteration of ω: (v1, c2)
ω−−→∗ (v1, c3). Since

ω is a positive cycle, c2 > c1. Note that initially the cycle ω was feasible (with the counter
not going negative) starting with a lower counter value (c1) so the counter cannot possibly
become negative on the second iteration starting with a higher counter value (c2). Thus,
again, the obstruction happens because of a disequality. That is, we can write ω = γγ′ such
that:

π′ = (v, c)
unfold(ψ)ωk

−−−−−−−→∗ (v1, c2)
γ−−→∗ (u, d)

γ′−−→∗ (v1, c3)
unfold(ρ)ω`−1 unfold(φ)−−−−−−−−−−−−−−→∗ (v′′, c′′)

and the obstruction happens because d ∈ τ(u). Note however that d = c2 + weight(γ) and
thus c2 ∈ τ(u)−weight(γ). In this case, c2 is critical for v1. Choose µ to be the empty word,
so that unfold(ψωkµ)(c) = (v, c) −→∗ (v1, c2) to show the result.

Observe that the definition of critical values only depends on the automaton itself.
Furthermore, the size of B+(v) can easily be bounded. Indeed, there are |SC+ | positive
simple cycles, for each such cycle its non-empty prefixes all end in different states, and a

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 15

prefix ending in a state u contributes |τ(u)| elements to B+(v). It follows that |B+(v)| ≤
|SC+ |

∑
u∈V |τ(u)|.

The proof is exactly the same in the negative case except for one detail. This time we
move negative cycles to the right so that the middle part of π′ (unfold(ρ)ω) can only get
higher counter values than the middle part of π (ω unfold(ρ)), as in the positive case.

The following lemma is a step towards bounding the length of a folded path to which
no rewriting rule applies. We use this lemma to obtain such a bound in Lemma 3.7.

Lemma 3.6 (Length of irreducible paths). Let χ be a folded path such that no rewriting
rule applies on χ. Let Y = SC+ or Y = SC−. Then for every ω ∈ Y , the number of symbols
in χ of the form ω· (the exponent does not matter) is bounded by

|V ||Y |
(

1 +
∑
v∈V
|τ(v)|

)
.

Proof. Without loss of generality, we show the result for X = SC+. First note that if ωk

appears in χ and no rule applies, then k > 0, otherwise we could apply simplify to remove
ω0. We can thus decompose the path as:

χ = φ0ω
k1φ1ω

k2φ2 · · ·φn−1ωknφn
where ki > 0 and φi does not contain any ω· symbol. Since no rule applies, by Lemma 3.5,
there exist prefixes µ1, µ2, . . . , µn−1 of φ1, φ2, . . . , φn−1 respectively, such that for each i:

(v, c)
φ0ωk1φ1···φi−1ω

kiµi−−−−−−−−−−−−−→∗ (vi, ci) where ci ∈ B+(vi).

Assume for a contradiction that there is a repeated configuration among the (vi, ci). Then
there exists i < j such that vi = vj and ci = cj . Let φi = µiρ and φj = µjρ

′, and observe
that:

(v, c)
φ0ωk1φ1···φi−1ω

kiµi−−−−−−−−−−−−−→∗ (vi, ci)
ρωki+1φi+1···φj−1ω

kjµj−−−−−−−−−−−−−−−→∗ (vi, ci)
ρ′ωkj+1φj+1···φn−1ωknφn−−−−−−−−−−−−−−−−→∗ (v′, c′).

Thus the subpath ρωki+1φi+1 · · ·φj−1ωkjµj has weight 0 and rule simplify must apply:

χ ; φ0ω
k1φ1 · · ·φi−1ωkiµiρ′ωkj+1φj+1 · · ·φn−1ωknφn

which is a contradiction because we assumed that no rule can apply to χ.
Consequently, for any i 6= j, we have (vi, ci) 6= (vj , cj). But remember that ci ∈ B+(vi),

thus (vi, ci) ∈ A where:

A =
⋃
v∈V
{v} ×B+(v).

This shows that n− 1 6 |A|. Indeed, by the pigeonhole principle, some pair (vi, ci) would
be repeated if n− 1 > |A|. We can easily bound the size of A using the bound on B+(v)
from Lemma 3.5:

|A| 6
∑
v∈V
|B+(v)| 6 |V ||SC+ |

∑
v∈V
|τ(v)|.

Finally we have

n 6 |V ||SC+ |
∑
v∈V
|τ(v)|+ 1 6 |V ||SC+ |

(
1 +

∑
v∈V
|τ(v)|

)
because |V | > 1 and | SC+ | > 1 unless there are no positive cycles, in which case n = 0
anyway.

16 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

Lemma 3.7 (Length of equality-free computations). Let π be a valid finite computation
(without equality tests) from (v, c) to (v′, c′). Then there exists a folded path χ such that
unfold(χ)(c) is a valid computation from (v, c) to (v′, c′), the length of unfold(χ)(c) is at
most that of π and the word length of χ is bounded by:

|V |+ |V |2| SC |2
(

1 +
∑
v∈V
|τ(v)|

)
Proof. Let χ0 be the path defined by π: it is a word over alphabet E and is thus a (trivial)
folded path. By definition unfold(χ0(c)) = π is a valid computation from (v, c) to (v′, c′)
and the length of unfold(χ0(c)) is equal to that of π. Let χ be any rewriting of χ0 such that
no rule applies on χ: it exists because there are no infinite rewriting chains by Lemma 3.3.
By Lemma 3.2, unfold(χ(c)) is still a valid computation from (v, c) to (v′, c′). Let ω be
a simple cycle: note that it is either positive or negative, because rule simplify removes
zero-weight cycles. Then by Lemma 3.6, the number of symbols of the form ω· appearing in
χ is bounded by3:

|V ||SC |
(

1 +
∑
v∈V
|τ(v)|

)
(3.3)

and thus the total number of symbols in χ of the form ω· for any ω is bounded by:

|V ||SC |2
(

1 +
∑
v∈V
|τ(v)|

)
. (3.4)

Furthermore, inbetween symbols of the form ω·, there can be subpaths consisting of symbols
in E only, so χ is of the form

χ = φ0ω
k1
1 φ1ω

k2
2 · · ·ω

kn
n φn

where φi ∈ E∗ and ωi ∈ SC for all i. By the reasoning above, n 6 (3.4). Furthermore, by
Lemma 3.4, φi < |V | for all i. It follows that the total length of χ is bounded by

(n+ 1)(|V | − 1) + n 6 |V |+ n|V |

6 |V |+ |V |2| SC |2
(

1 +
∑
v∈V
|τ(v)|

)
.

Finally the length of unfold(χ(c)) at most that of π because the rewriting system does not
increase the length of the path and the length of unfold(χ0(c)) is equal to that of π.

The main result of this section shows that any valid computation has an equivalent
valid computation given by a folded path whose length only depends on the automaton.

Theorem 3.8 (Length of computations). Let π be a valid finite computation from (v, c) to
(v′, c′). Then there exists a folded path χ such that χ(c) is a valid computation from (v, c) to
(v′, c′), the length of unfold(χ(c)) is at most that of π and the word length of χ is bounded
by:

|E|

(
1 + |V |+ |V |2| SC |2

(
1 +

∑
v∈V
|τ(v)|

))
.

3Since obviously max(| SC+ |, | SC− |) 6 | SC |.

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 17

Proof. Apply Lemma 3.1 to isolate the equality tests (at most |E| of them) and apply
Lemma 3.7 to each equality-free subcomputation. We can improve the bound slightly by
noticing that there can only be up to |E| equality-free subcomputations (and not |E|+ 1).
Indeed, if there are |E| different equality tests in the path, there are no further edges available
for equality-free computations, and the word length is at most |E|.

4. Reachability with Parameterised Tests

In this section we will show that both the reachability problem and the generalised repeated
control-state reachability problem for 1-CA with parameterised tests are decidable, via a
symbolic encoding of folded paths, making use of the normal form from the previous section.
The result of this encoding is a formula of Presburger arithmetic.

Recall that C = {ωk : ω ∈ SC, k ∈ N}. Let C ′ = {ω· : ω ∈ SC}. We define a path shape
to be a word over the alphabet E ∪ C ′: ξ = t1 . . . tn such that end(ti) = start(ti+1), where
start(ω·) = end(ω·) = start(ω). Given a path shape ξ = γ0ω

·
1γ1 . . . ω

·
nγn with γi ∈ E∗, we

write ξ(k1, . . . , kn) for the folded path γ0ω
k1
1 γ1 . . . ω

kn
n γn. The advantage of working with

path shapes rather than folded paths is that the former are words over a finite alphabet.

Lemma 4.1 (Encoding computations). Given a 1-CA C = (V,E,X, λ, τ) with parameterised
tests and configurations (v, c) and (v′, c′), and given a path shape ξ = t1t2 . . . tn ∈ (E ∪
C ′)∗, there exists a Presburger arithmetic formula ϕ

(ξ),(v,c),(v′,c′)
comp (k,x), with free variables x

corresponding to the parameters X and k corresponding to exponents to be substituted in ξ,
which evaluates to true if and only if unfold(ξ(k))(c) is a valid computation from (v, c) to
(v′, c′).

Proof. Assume first that ξ does not include any equality tests. We define a formula

ϕ
(t)
valid,noeq(k,x, y) which, given an equality-free symbol t ∈ E∪C ′ and an integer y, evaluates

to true if and only if unfold(t(k))(y) is a valid computation. There are two cases:

• t ∈ E. Then ϕ
(t)
valid,noeq(x, y) ≡ y > 0 ∧ y + weight(t) > 0 ∧ y /∈ τ(start(t)).

• t ∈ C ′, i.e., t(k) = ωk for some simple cycle ω = e1e2 . . . e` and k ∈ k. Then

ϕ
(t)
valid,noeq(k,x, y) ≡ ∀k′ (0 6 k′ < k)⇒

∧̀
i=1

y + k′weight(ω) +
i−1∑
j=1

weight(ej) > 0∧

y + k′weight(ω) +
i−1∑
j=1

weight(ej) /∈ τ(start(ei))

 ∧ y + kweight(ω) > 0.

Note that for each edge e ∈ E, weight(e) is a constant, given by the automaton, and

weight(ω) is a shorthand for
∑`

i=1 weight(ei), which is also a constant. So the only type
of multiplication in the formula is by a constant. A formula of the form a /∈ τ(u) is a
shorthand for

∧
b∈τ(u) a 6= b, which is clearly a Presburger arithmetic formula. Since C has

parameterised tests, in general some of these disequalities include variables from x. We can
now define a formula with the required property in the case where ξ does not include any

18 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

equality tests:

ϕ(ξ),(v,c),(v′,c′)
comp,noeq (k,x) ≡

(
n−1∧
i=1

end(ti) = start(ti+1)

)
∧ start(t1) = v ∧ end(tn) = v′∧

n∑
i=1

weight(ti(k)) = c′ − c ∧
n∧
i=1

ϕ
(ti)
valid,noeq(k,x, c+

i−1∑
j=1

weight(tj(k))),

where we use the shorthand weight(s) for s ∈ E ∪ C: if s ∈ E then weight(s) is a constant
as above, and if s ∈ C then it is of the form ωk and weight(s) = k

∑
e∈ω weight(e). Again,

the only multiplications are by constants, so the resulting formula is a formula of Presburger
arithmetic.

Finally, in the case where ξ includes equality tests, we split unfold(ξ) at the ti which
are equality tests, and construct a formula ϕcomp,noeq as above for each equality-free part of

ξ. ϕ
(ξ),(v,c),(v′,c′)
comp (k,x) is the conjunction of these formulas.

Remark 4.2 (Removing the universal quantification). For simplicity, we have used a

universal quantifier in ϕ
(t)
valid,noeq(k,x, y) to express that k iterations of a cycle yield a valid

computation. In fact it is possible to rewrite ϕ
(t)
valid,noeq(k,x, y) as a purely existential

formula, with a polynomial blowup. Let ω = e1 · · · e` be a cycle and suppose we want to
check that ωk(y) is a valid computation. Let u = start(ei) be a state on the cycle. First we
need to express that the counter value at u is never negative along ωk(y). Since the counter
value at u is monotone during the k iterations of the cycle (it increases if ω is positive and
decreases if ω is negative), we only need check that it is nonnegative at the first and last
iteration:

y +
i−1∑
j=1

weight(ej) > 0 ∧ y + (k − 1) weight(ω) +
i−1∑
j=1

weight(ej) > 0.

Next, for each b ∈ τ(u), we need to check that the cycle avoids b in u. Without loss
of generality, assume that ω is positive. Then the counter value at u increases after each
iteration. We can now perform a case analysis on the three ways to satisfy a disequality test
during the k iterations of ω:

• The value at the first iteration is already bigger than b:

y +

i−1∑
j=1

weight(ej) > b.

• The value at the last iteration is less than b:

y + (k − 1) weight(ω) +
i−1∑
j=1

weight(ej) < b.

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 19

• There is an iteration k′, with 0 6 k′ < k − 1, at which the counter value is less than b,
but where at the next iteration k′ + 1 the counter value is bigger than b:

∃k′ (0 6 k′ < k − 1) ∧ y + k′weight(ω) +
i−1∑
j=1

weight(ej) < b

∧ y + (k′ + 1) weight(ω) +
i−1∑
j=1

weight(ej) > b.

Finally, we can use a conjunction over all states in ω to get a formula which is equivalent

to ϕ
(t)
valid,noeq(k,x, y) but has no universal quantifiers.

Lemma 4.3 (Encoding reachability). Let C = (V,E,X, λ, τ) be a 1-CA with parameterised
tests, and let (v, c) and (v′, c′) be given configurations of C. Then there exists a Presburger

arithmetic formula ϕ
(v,c),(v′,c′)
reach (x) which evaluates to true if and only if there is a valid

computation from (v, c) to (v′, c′) in C, as well as a formula ϕ
(v,c),(v′,c′)
reach+

which is true if and

only if there is such a computation of length at least 1.

Proof. Note that the bounds on the length of computations in 1-CA from the previous
section do not depend on the values occurring in equality or disequality tests. That is, if

there is a valid computation (v, c)
π−−→∗ (v′, c′) for any given values of the parameters, then

there is a folded path χ of word length at most p(C) such that (v, c)
unfold(χ(c))−−−−−−−→∗ (v′, c′) is a

valid computation, where p is the polynomial function given in Theorem 3.8. Equivalently,
there is a path shape ξ of word length at most p(C) and there exist values k such that

(v, c)
unfold(ξ(k)(c))−−−−−−−−−→∗ (v′, c′) is a valid computation.

Since path shapes are words over a finite alphabet, we can express this property as a
finite disjunction

ϕ
(v,c),(v′,c′)
reach (x) ≡ ∃k

∨
|ξ|6p(C)

ϕ(ξ),(v,c),(v′,c′)
comp (k,x).

For ϕreach+ , we simply change the disjunction to be over all ξ such that 1 6 |ξ| 6
p(C).

Lemma 4.4 (Encoding repeated control-state reachability). Let C = (V,E,X, λ, τ) be a
1-CA with parameterised tests, let F ⊆ V be a set of final states, and let (v, c) be the initial

configuration of C. Then there exists a Presburger arithmetic formula ϕ
(v,c),(F)
rep-reach(x) which

evaluates to true if and only if there is a valid infinite computation π which starts in (v, c)
and visits at least one state in F infinitely often.

Proof. Suppose there is an infinite computation which starts in (v, c) and visits a state u ∈ F
infinitely often. Equivalently, there is a counter value d ∈ N such that (v, c) −→∗ (u, d) is
a valid (finite) computation, and there is a cycle ω with start(ω) = u such that ωk(d) is a
valid computation for all k ∈ N. There are two possible cases:

• weight(ω) = 0, so ωk(d) is valid for all k if and only if ω(d) is valid.
• weight(ω) > 0, so it might be possible to start from (u, d) and follow the edges of ω a finite

number of times before an obstruction occurs. However, if ω can be taken an arbitrary
number of times, then the counter value will tend towards infinity, so we are free to choose

20 A. LECHNER, R. MAYR, J. OUAKNINE, A. POULY, AND J. WORRELL

ω to be an equality-free simple cycle, and d to be high enough to guarantee that if ω can
be taken once without obstructions, it can be taken infinitely many times.

The resulting formula is then

ϕ
(v,c),(F)
rep-reach(x) ≡∃d

∨
u∈F

ϕ(v,c),(u,d)
reach (x) ∧

(
ϕ
(u,d),(u,d)
reach+

(x)∨

(d > M(x) ∧ ∃d′
∨

ω∈SC+

ϕ(ω·),(u,d),(u,d′)
comp,noeq (1,x))

)
where M(x) = max

(⋃
v∈V τ(v)

)
−
∑
{weight(e) : e ∈ E,weight(e) < 0}. The sum over

negative edge weights ensures that the counter always stays above max
(⋃

v∈V τ(v)
)

along
the computation ω(d), since each edge is taken at most once in ω. Since ω is a positive cycle,
this implies that the counter always stays above all bad values along ω(dk) for each k ∈ N,
so no obstructions can occur.

Theorem 4.5 (Decidability of reachability problems). Both the reachability problem and
the generalised repeated control-state reachability problem are decidable for 1-CA with param-
eterised tests.

Proof. Given a 1-CA C = (V,E,X, λ, τ) with parameterised tests and configurations (v, c)
and (v′, c′), to check if there exist values for the parameters X such that there is a valid com-

putation from (v, c) to (v′, c′), we use Lemma 4.3 to construct the formula ∃xϕ(v,c),(v′,c′)
reach (x).

To solve the generalised repeated control-state reachability problem for a 1-CA C =
(V,E,X, λ, τ) with sets of final states F1, . . . , Fn ⊆ V and initial configuration (v, c), note
that this problem can easily be reduced to the simpler case where n = 1, using a translation
similar to the standard translation from generalised Büchi automata to Büchi automata. In

the case where n = 1, we can use Lemma 4.4 to construct the formula ∃xϕ(v,c),(F1)
rep-reach(x).

Corollary 4.6 (Decidability of model checking flat Freeze LTL). The existential model
checking problem for flat Freeze LTL on 1-CA is decidable.

5. Conclusion

The main result of this paper is that the model checking problem for the flat fragment
of Freeze LTL on one-counter automata is decidable. We have concentrated on showing
decidability rather than achieving optimal complexity. For example, we have reduced the
model checking problem to the decision problem for the class of sentences of Presburger
arithmetic with quantifier prefix ∃∗∀∗. We explained in Remark 4.2 that in fact the reduction
can be refined to yield a (polynomially larger) purely existential sentence.

Another important determinant of the complexity of our procedure is the dependence
of the symbolic encoding of computations (via path shapes) in Section 4 on the number of
simple cycles in the underlying control graph of the one-counter automaton. The number
of such cycles may be exponential in the number of states. It remains to be seen whether
it is possible to give a more compact symbolic representation, e.g., in terms of the Parikh
image of paths. As it stands, our procedure for model checking flat Freeze LTL formulas
on classical one-counter automata works as follows. From the flat Freeze LTL formula and

MODEL CHECKING FLAT FREEZE LTL ON ONE-COUNTER AUTOMATA 21

the automaton, we build a one-counter automaton with parameterised tests (of exponential
size). We then guess the normal form of the path shapes (of exponential size in the size
the automaton). We finally check the resulting existential Presburger formula. Since the
Presburger formula has size double exponential in the size of the input, we get a naive upper
bound of 2NEXPTIME for our algorithm. Improving this bound is a subject of ongoing
work.

Another interesting complexity question concerns configuration reachability in one-
counter automata with non-parameterised equality and disequality tests. For automata
with only equality tests and with counter updates in binary, reachability is known to be
NP-complete [9]. If inequality tests are allowed then reachability is PSPACE-complete [7].
Now automata with equality and disequality tests are intermediate in expressiveness between
these two models and the complexity of reachability in this case is open as far as we know.

References

[1] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and complexity in real-time model
checking. In Proceedings of ICALP, volume 5126 of LNCS, pages 124–135. Springer, 2008.

[2] H. Comon and V. Cortier. Flatness is not a weakness. In Proceedings of CSL, volume 1862 of LNCS.
Springer, 2000.

[3] S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. ACM Trans. Comput.
Log., 10(3):16:1–16:30, 2009.

[4] S. Demri, R. Lazic, and D. Nowak. On the freeze quantifier in constraint LTL: Decidability and complexity.
Inf. Comput., 205(1):2–24, 2007.

[5] S. Demri, R. Lazic, and A. Sangnier. Model checking memoryful linear-time logics over one-counter
automata. Theor. Comput. Sci., 411(22-24):2298–2316, 2010.

[6] S. Demri and A. Sangnier. When model-checking freeze LTL over counter machines becomes decidable.
In Proceedings of FOSSACS, volume 6014 of LNCS, pages 176–190, 2010.

[7] John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-complete.
Inf. Comput., 243:26–36, 2015.

[8] T. French. Quantified propositional temporal logic with repeating states. In Proceedings of TIME-ICTL,
pages 155–165. IEEE Computer Society, 2003.

[9] C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and parametric one-counter
automata. In Proceedings of CONCUR, volume 5710 of LNCS, pages 369–383. Springer, 2009.

[10] O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-way counter
machines and applications. In Proceedings of ICALP, volume 700 of LNCS. Springer, 1993.

[11] J. Leroux and G. Sutre. Flat counter automata almost everywhere! volume 3707 of Lecture Notes in
Computer Science. Springer, 2005.

[12] A. Lisitsa and I. Potapov. Temporal logic with predicate lambda-abstraction. In Proceedings of TIME,
pages 147–155. IEEE Computer Society, 2005.

[13] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem
die Addition als einzige Operation hervortritt. In Comptes Rendus du I congrs de Mathmaticiens des
Pays Slaves. Warsaw, pages 92–101, 1929.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. One-Counter Automata with Equality and Disequality Tests
	2.2. Model Checking Freeze LTL on One-Counter Automata
	2.3. Presburger Arithmetic

	3. Normal Form for Paths
	4. Reachability with Parameterised Tests
	5. Conclusion
	References

