
Algorithmica
DOI 10.1007/s00453-009-9332-1

Common Intervals of Multiple Permutations

Steffen Heber · Richard Mayr · Jens Stoye

Received: 24 January 2009 / Accepted: 11 June 2009
© Springer Science+Business Media, LLC 2009

Abstract Given k permutations of n elements, a k-tuple of intervals of these permu-
tations consisting of the same set of elements is called a common interval. We present
an algorithm that finds in a family of k permutations of n elements all z common in-
tervals in optimal O(kn + z) time and O(n) additional space. Additionally, we show
how to adapt this algorithm to multichromosomal and circular permutations.

This extends a result by Uno and Yagiura (Algorithmica 26:290–309, 2000) who
present an algorithm to find all z common intervals of k = 2 (regular) permutations
in optimal O(n+ z) time and O(n) space. To achieve our result, we introduce the set
of irreducible intervals, a generating subset of the set of all common intervals of k

permutations.

Keywords Common intervals of permutations · Multichromosomal permutations ·
Circular permutations

1 Introduction

Let Π = (π1, . . . , πk) be a family of k permutations of N := {1,2, . . . , n}. For x ∈ N ,
we denote the x-th element of πi by πi(x). Without loss of generality we suppose

S. Heber (�)
Department of Computer Science, North Carolina State University, 1519 Partners II (Centennial
Campus), Raleigh, NC 27695, USA
e-mail: sheber@ncsu.edu

R. Mayr
School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

J. Stoye
Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany

mailto:sheber@ncsu.edu

Algorithmica

that π1 = idn, the identity permutation of n elements. For x, y ∈ N , x ≤ y, we define
[x, y] := {x, x + 1, . . . , y} and call π([x, y]) := {π(i) | i ∈ [x, y]} an interval of π .
A subset c ⊆ N of cardinality |c| ≥ 2 is called a common interval of Π if and only if
there exist 1 ≤ lj < uj ≤ n for all 1 ≤ j ≤ k such that

c = idn([l1, u1]) = π2([l2, u2]) = · · · = πk([lk, uk]).
This definition excludes common intervals consisting of a single element, while the
set N will always be a common interval. The set of all common intervals of Π is
denoted by CΠ .

A common interval c is represented either by specifying its elements or by the
shorter notation πj ([lj , uj]) for j ∈ {1, . . . , k}. For π1 = idn this notation further
simplifies to [l1, u1]. We call πj (lj) the left end of c in πj , and πj (uj) the right end
of c in πj .

Example 1 Let n = 9 and Π = (π1,π2,π3) with π1 = id9, π2 = (9,8,4,5,6,7,

1,2,3), and π3 = (1,2,3,8,7,4,5,6,9). Set c := [4,7]. Since 4 = π1(4) = π2(3) =
π3(6), 5 = π1(5) = π2(4) = π3(7), 6 = π1(6) = π2(5) = π3(8), and 7 = π1(7) =
π2(6) = π3(5), we have

c = π1([4,7]) = π2([3,6]) = π3([5,8]).
Hence, c is a common interval. It has left end 4 and right end 7 in π1 = id9. Note that
the order of the elements of c, as well as its left and right end change in permutation
π3. The set of common intervals CΠ is given by

CΠ = {[1,2], [1,3], [1,8], [1,9], [2,3], [4,5], [4,6], [4,7], [4,8], [4,9], [5,6]}.

Common intervals have applications in different fields. In a bioinformatical con-
text, common intervals are used to detect possible functional associations between
genes. It is assumed that neighboring genes occurring together in different genomes
tend to encode functionally interacting proteins [3–5]. Other applications use com-
mon intervals to compute the reversal distance between genomes [6], and to define a
similarity measure for gene order permutations [7].

In the context of combinatorial optimization, genetic algorithms using subtour
exchange crossover based on common intervals have been proposed for sequencing
problems such as the traveling salesman problem or the single machine scheduling
problem [8–10]. In recent work, Bergeron et al. [11] developed an alternative way
to compute common intervals based on generating families of intervals, and applied
their approach to the classical graph problem of modular decomposition. Heber and
Savage [12] generalized the concept of common intervals to labeled trees.

A related problem is the consecutive arrangement problem, defined as follows
[13–15]: Given a finite set X and a collection S of subsets of X, find all permuta-
tions of X where the members of each subset S ∈ S occur consecutively. Finding all
common intervals of a set of permutations reverses this problem.

Uno and Yagiura [16] presented three algorithms for finding all common intervals
of k = 2 permutations π1 and π2 of N : two simple O(n2)-time algorithms and one

Algorithmica

more complicated algorithm with optimal O(n + z) running time where z ≤ (
n
2

)
is

the number of common intervals of π1 and π2.
The main result of this paper is a non-trivial generalization of Uno and Yagiura’s

algorithm to k ≥ 2 permutations, yielding an optimal O(kn + z)-time and O(n)-
space algorithm where z is the number of common intervals of the k permutations.
Our approach relies on restricting the set of all common intervals CΠ to a smaller
subset of irreducible intervals IΠ , from which CΠ can be reconstructed. While the
number of common intervals can be as large as

(
n
2

)
, we show that 1 ≤ |IΠ | ≤ n − 1.

Furthermore, if we assume that any permutation is selected as one of the k input
permutations with probability 1/n!, then the expected number of common intervals
is O(1).

Our algorithm to compute all common intervals consists of two steps. First we
compute IΠ in optimal O(kn) time, i.e., in time proportional to the input size. Then,
we reconstruct CΠ from IΠ in O(z) time, i.e., in time proportional to the output size.
Both steps use O(n) additional space. A simple modification of this procedure allows
us also to handle multichromosomal and circular permutations.

The rest of this paper is organized as follows: In Section 2, we give an outline of
Uno and Yagiura’s approach for two permutations. Then, in Section 3, we further in-
vestigate the structure of common intervals and define irreducible intervals. Section 4
shows how to construct the set of all common intervals of k ≥ 2 permutations, pro-
vided that the irreducible intervals are given, and Section 5 describes our algorithm
for computing the irreducible intervals. Sections 6, 7, and 8 generalize this approach
to multichromosomal permutations, circular permutations, and arbitrary mixtures of
both types. In the Appendix, we investigate the expected number of common intervals
of random permutations and show some computational running time experiments.

This paper is an extended version of two conference papers, [1] and [2].

2 Finding All Common Intervals of Two Permutations

In order to keep this paper self-contained, we briefly recall the algorithm RC (short
for Reduce Candidate) of Uno and Yagiura [16], that finds all z common intervals
of k = 2 permutations π1 = idn and π2 of N = {1,2, . . . , n} in O(n + z) time and
O(n) space. For the correctness and analysis of the algorithm we refer to [16]. Like in
Uno and Yagiura’s original algorithm RC we supply our algorithm, here and in later
sections of this paper, with π1 = idn and π−1

2 . (As usual, π−1
2 denotes the inverse of

permutation π2, i.e. π−1
2 (i) = j means that i ∈ N is located in the j -th position of

π2.) This ‘coordinate change’ does not alter the set of common intervals, but allows
us to compute all intervals directly with respect to the index set of π1(= idn).

An easy test if an interval [x, y], 1 ≤ x < y ≤ n, is a common interval of Π =
(π1,π2) is based on the following functions:

l(x, y) := minπ−1
2 ([x, y]),

u(x, y) := maxπ−1
2 ([x, y]),

f (x, y) := u(x, y) − l(x, y) − (y − x).

Algorithmica

Since f (x, y) counts the number of elements in π2([l(x, y), u(x, y)]) \ [x, y], an in-
terval [x, y] is a common interval of Π if and only if f (x, y) = 0. A simple algorithm
to find CΠ is to test for each pair of indices (x, y) with 1 ≤ x < y ≤ n if f (x, y) = 0,
yielding a naive O(n3) time or, using running minima and maxima, a slightly more
involved O(n2)-time algorithm.

The main idea of Algorithm RC is to save the time for testing f (x, y) = 0 for
some pairs (x, y) by eliminating wasteful candidates for y.

Definition 1 For a fixed x, a right interval end y > x is called wasteful if it satisfies
f (x′, y) > 0 for all x′ ≤ x.

In Algorithm RC (Algorithm 1), the common intervals are found with the help
of a data structure Y , which uses a doubly-linked list ylist to store right interval end
candidates y for each given left interval end x. The list items are sorted in increasing
order of their values. Additionally, two doubly-linked lists llist and ulist implement
the functions l and u. They are used to compute f (x, y) = u(x, y)− l(x, y)− (y −x)

efficiently, and to update ylist. For any fixed x, the interval [x + 1, n] is partitioned
into subintervals [y0 = x + 1, y1 − 1], [y1, y2 − 1], . . . , [yr−1, yr − 1 = n] where
u(x, y′) = u(x, y′′) if and only if both y′ and y′′ are in the same subinterval. The
ulist reflects this partition. Each list item stores the corresponding subinterval and the
value u(x, y) for the y which the subinterval includes. The llist is defined similarly.

To be able to compute the values of l(x, y) and u(x, y) quickly, each item yi of
ylist has a pointer to the corresponding item of llist and ulist that includes yi . Con-
versely, it will sometimes be necessary to access from an interval [y, y′] in llist or ulist
the element of ylist that corresponds to its end, denoted end([y, y′]) := y′. Therefore,
any such interval [y, y′] has an interval end pointer that links to the element y′ of
ylist.

Pseudocode of algorithm RC is given in Algorithm 1. We use the list operations
L.head for the first element of list L, L.succ(e) for the successor and L.pred(e) for
the predecessor of element e in L.

Algorithm 1 (Reduce Candidate, RC)
Input: A family Π = (π1 = idn,π2) of two permutations of N = {1, . . . , n}.
Output: The set of all common intervals CΠ .

1: compute π−1
2

2: initialize Y , ulist, and llist using Π ′ = (π1 = idn,π
−1
2)

3: for x = n − 1 down to 1 do
4: y ← ylist.head
5: update ulist and llist using Π ′ // (see Algorithm 2)
6: update Y using Π ′ // (see Algorithm 3)
7: while (y ← ylist.succ(y)) defined and f (x, y) = 0 do
8: output [x, y]
9: end while

10: end for

Algorithmica

In the first step of Algorithm 1, we compute π−1
2 in order to use Π ′ = (π1 =

idn,π
−1
2) instead of Π for all following initialization and update steps. We initialize

ylist with the right interval end candidate n. The lists llist and ulist are both initialized
with the interval [n,n], and its values u(n − 1, n) and l(n − 1, n), respectively. We
also add the corresponding pointers from ylist to llist and ulist and back.

Subsequently, a counter x (corresponding to the currently investigated left interval
end) runs from n−1 down to 1. In each iteration, we update the lists ulist, llist (line 5),
ylist (line 6), and we compute all common intervals with left end x (lines 7–9). Below,
we show the algorithms involved for the case where π−1

2 (x) > π−1
2 (x +1). The other

case where π−1
2 (x) < π−1

2 (x + 1) is treated in a symmetric way: ulist is exchanged
with llist, function u is exchanged with function l and the inequalities (except for the
ones in Algorithm 3, line 4) are reversed.

The update of ulist and llist (Algorithm 2) is performed as follows. First, we
prepend [x, x] at the head of llist. Then, we find y∗ which is maximum among y

satisfying u(x + 1, y) < u(x, y) by traversing ulist and comparing the value of the
ulist items with π−1

2 (x). Subsequently, we delete all items from ulist which include
some y satisfying u(x + 1, y) < u(x + 1, y∗). Finally, the ulist item which includes
y∗ is changed to [x, y∗], and its value is set to u(x, y∗).

Algorithm 2 (Update of ulist and llist in line 5 of Algorithm 1)
1: prepend [x, x] at the head of llist
2: y∗ ← max{y | u(x + 1, y) < u(x, y)}
3: while y ∈ ulist.head and u(x + 1, y) < u(x + 1, y∗) do
4: delete ulist.head
5: end while
6: ulist.head ← [x, y∗]
7: ulist.head.value ← u(x, y∗)

Afterwards, the data structure Y is updated (Algorithm 3). Using the above com-
puted y∗, we first remove wasteful ylist items in lines 1–6. This is called TRIM-
MING_YLIST in [16]. Removing a wasteful ylist item just means adjusting the list
pointers. The list item is not deleted, because the list item might still be the tar-
get of llist and ulist pointers. Then, in line 7, a list item containing the value x is
prepended at the head of ylist. Note that after the update of ulist.head in Algorithm 2,
lines 6–7, the references of ylist elements that originally pointed to this item need not
be changed since the object they refer to is still the same, one of the key points in the
complexity analysis of the algorithm (see [16]).

Uno and Yagiura show that in each iteration step x, the function f (x, y) is
monotonically increasing for the elements y remaining in ylist. Based on this result,
in lines 7–9 of Algorithm 1, all common intervals with left end x are efficiently found
by evaluating f (x, y), letting the right end y run left-to-right through ylist, until an
index y is encountered with f (x, y) > 0.

Algorithmica

Algorithm 3 (Update of data structure Y in line 3 of Algorithm 1)
1: while y ← ylist.head and u(x + 1, y) < u(x + 1, y∗) do
2: remove y from ylist
3: end while
4: while yi, yi+1 are adjacent items of ylist with yi ≤ y∗ < yi+1, and f (x, yi) >

f (x, yi+1) do
5: remove yi from ylist
6: end while
7: prepend x at the head of ylist

Example 1 (continued) To illustrate Algorithm 1 we apply it to Π = (π1,π2), where
π1 = id9 and π2 = (9,8,4,5,6,7,1,2,3) as above. We show the evolution of data
structure Y during iterations x = 3 and x = 2.

We have π−1
2 = (7,8,9,3,4,5,6,2,1). At iteration x = 3, the algorithm has al-

ready processed x = 8,7, . . . ,4, and it has reported the common intervals [8,9] in
iteration x = 8, [6,7] in iteration x = 6, [5,6] and [5,7] in iteration x = 5, and [4,5],
[4,6], [4,7], [4,8], and [4,9] in iteration x = 4. So far, no wasteful ylist element has
been removed. The data structure Y after iteration x = 4 is shown in Fig. 1(a). The
ylist is shown in the center, with ulist above and llist below.

In the update for x = 3, we have the case π−1
2 (x) > π−1

2 (x + 1). Thus the interval
[3,3] with value 9 is prepended to llist. We get that y∗ = 9 is the maximal y where
u(x, y) > u(x + 1, y). Therefore, all the intervals in ulist are deleted and replaced by
the interval [3,9] with value 9. In Algorithm 3 the values y = 4, y = 5 and y = 6 are
detected as wasteful and removed from ylist. Since f (3,7) = 2, no common intervals
are reported in this phase. (We also have f (3,8) = 2 and f (3,9) = 2, but these
are not even checked, since the function f is known to be nondecreasing for the
remaining elements of ylist.) Finally, x = 3 is prepended to ylist. The resulting data
structure is shown in Fig. 1(b).

In the update for x = 2 we have the case π−1
2 (x) < π−1

2 (x + 1). Thus the interval
[2,2] with value 8 is prepended at the head of ulist. We get that y∗ = 3 is the maximal
y where l(x, y) < l(x + 1, y). Therefore the interval [3,3] at the head of llist is
deleted and replaced by the interval [2,3] with value 8. In the update for x = 2,
Algorithm 3 does not remove any items from ylist. We get f (2,3) = 0. The elements
4, 5 and 6 have already been removed from ylist in step x = 3. For the next element 7
in ylist we obtain f (2,7) = 9 − 3 − (7 − 2) = 1. Since function f is nondecreasing,
we have f (2, y) > 0 for the remaining elements y of ylist. So we report the common
interval [2,3]. Finally, x = 2 is prepended to ylist. The resulting data structure after
this phase is shown in Fig. 1(c).

3 Irreducible Intervals

In this section we define the set of irreducible intervals, prove some of their structural
properties, and show how they can be used to reconstruct all common intervals. We
start by characterizing the structure of the set of common intervals.

Algorithmica

Fig. 1 Sketches of the data structure Y after processing (a) x = 4, (b) x = 3, and (c) x = 2 for permuta-
tions π1 = id9 and π−1

2 = (7,8,9,3,4,5,6,2,1). The ylist is shown in the center, with ulist above and
llist below. During the update in (b), the ylist items 4, 5, and 6 are removed. The unconnected elements in
front of the head of ylist (e.g., 1, 2, 3 in (a)) are not part of the data structure. They are depicted only to
illustrate the complete permutation π−1

2

Lemma 1 Let Π be a family of permutations. For c1, c2 ∈ CΠ we have

(a) |c1 ∩ c2| ≥ 2 ⇔ c1 ∩ c2 ∈ CΠ,

(b) c1 ∩ c2 �= ∅ ⇒ c1 ∪ c2 ∈ CΠ.

Proof For (a) we note that no element of (c1 ∪ c2) \ (c1 ∩ c2) can lie between two
elements of c1 ∩ c2 in any permutation, thus c1 ∩ c2 is a common interval. For (b) we

Algorithmica

Fig. 2 The common interval
graph of permutations Π from
Example 1

remark that if c1 = πi([l1
i , u1

i]) and c2 = πi([l2
i , u2

i]) for i = 1, . . . , k, then c1 ∪ c2 =
πi([min(l1

i , l2
i),max(u1

i , u
2
i)]) for i = 1, . . . , k. �

Definition 2 Two common intervals c1, c2 ∈ CΠ have a non-trivial overlap if c1 ∩
c2 �= ∅, and neither includes the other.

Lemma 2 Let Π be a family of permutations. For c1, c2 ∈ CΠ with non-trivial over-
lap we have

|c1 \ c2| ≥ 2 ⇒ c1 \ c2 ∈ CΠ.

Proof Since c1 and c2 overlap non-trivially, no two elements of c1 \ c2 can lie on
opposite sides of c1 ∩ c2, otherwise c2 would not be a common interval. �

Given a family of permutations Π we define the common interval graph of Π to
be the graph GΠ = (CΠ,EΠ), whose vertex set is the set of common intervals of Π

and whose edge set is defined by

EΠ = {(c, d) | c, d ∈ CΠ,c �= d, c ∩ d �= ∅}.
For a set V ⊆ CΠ , GΠ [V] is the subgraph of GΠ induced by V . Given a set

V ⊆ CΠ such that GΠ [V] is connected, we denote as τ(V) = {i | i ∈ v, v ∈ V } the
support of V , which is the union of all intervals of V , and we say that V generates
τ(V). By Lemma 1(b), we conclude that τ(V) ∈ CΠ .

Example 1 (continued) The common interval graph of the permutations Π from the
Introduction is given in Fig. 2. For example, the common interval [1,3] is generated
by V = {[1,2], [2,3]}.

Definition 3 A common interval c is called reducible if there is a set of common
intervals V ⊆ CΠ such that V generates c and each d ∈ V is a proper subset of c. If
there is no such V , c is called irreducible.

Algorithmica

This definition partitions the set of common intervals CΠ into the set of re-
ducible intervals and the set of irreducible intervals, denoted IΠ . Clearly, 1 ≤ |IΠ | ≤
|CΠ | ≤ (

n
2

)
.

The following definition and theorem and the subsequent corollary are the basis
for the correctness and the complexity analysis of our algorithm in Section 5.

Definition 4 We define a total order on the set of intervals as follows. For intervals
c1 = [x1, y1], c2 = [x2, y2] let

c1 < c2 ⇔ x1 > x2, or x1 = x2, and y1 < y2. (1)

Given a family Π = (π1, . . . , πk) of permutations of N = {1,2, . . . , n} with π1 = idn

let Πi := (π1, . . . , πi) for 1 ≤ i ≤ k.
For a subset M ⊆ N with |M| ≥ 2, we denote by ϕΠi

(M) the smallest (w.r.t. the
order on intervals defined above) common interval of Πi which contains M . As an
abbreviation, for j = 1, . . . , n − 1, we write ϕΠi

(j) for ϕΠi
([j, j + 1]).

Theorem 1 Given a family Π = (π1, . . . , πk) of permutations of N = {1,2, . . . , n}
with π1 = idn we get the following.

(a) For a subset M ⊆ N with |M| ≥ 2 and 1 ≤ i ≤ k, we have
(a.i) ϕΠi

(M) is well defined and unique.
(a.ii) ϕΠi

(M) is the uniquely smallest, w.r.t. cardinality, common interval of Πi

which contains M .
(a.iii) If c ∈ CΠi

with M ⊆ c, then ϕΠi
(M) ⊆ c.

(b) For 1 ≤ i ≤ k and 1 ≤ j ≤ n − 1 we have that ϕΠi
(j) is irreducible.

(c) For 1 ≤ i ≤ k we have IΠi
= {ϕΠi

(j) | j = 1, . . . , n − 1}.
(d) For 1 < i ≤ k and 1 ≤ j ≤ n − 1 we have ϕΠi

(ϕΠi−1(j)) = ϕΠi
(j).

Proof For (a.i) we first remark that [1, n] is a common interval and M ⊆ [1, n], hence
ϕΠi

(M) is well defined. The order on the set of intervals, from Definition 4, (1), is a
total order, and thus ϕΠi

(M) is unique.
To see (a.ii), note that if there existed a common interval c of Πi which contains M

and has a smaller cardinality than ϕΠi
(M), then, by Lemma 1(a), c ∩ ϕΠi

(M) would
also be a common interval of Πi which contains M and c ∩ ϕΠi

(M) < ϕΠi
(M), a

contradiction. Thus ϕΠi
(M) is minimal w.r.t. both the order on intervals and the car-

dinality. Uniqueness follows from the fact that the above argument can be applied to
any common interval c of Πi containing M , yielding eventually the unique minimum
ϕΠi

(M).
The correctness of (a.iii) follows from (a.ii) and again Lemma 1(a). Since

ϕΠi
(M) is minimal w.r.t. cardinality we have ϕΠi

(M) = ∩d∈CΠi
,M⊆dd , therefore

ϕΠi
(M) ⊆ c.

For (b) we can use (a.ii) to show that ϕΠi
(j) is well defined, unique, and has

minimal cardinality of all common intervals of Πi which contain [j, j + 1]. Now,
assume that ϕΠi

(j) is reducible, i.e. there is a subset V ⊆ CΠi
that generates ϕΠi

(j),
and each d ∈ V is a proper subset of ϕΠi

(j). Due to the minimality of ϕΠi
(j), no

d ∈ V contains j and j + 1 simultaneously. Define VL := {d ∈ V | d ⊆ [1, j]}, and

Algorithmica

VR := {d ∈ V | d ⊆ [j + 1, n]}. Since each d ∈ V is an interval in π1 = idn, we have
V = VL ∪̇VR. On the other hand, we have j, j +1 ∈ ϕΠi

(j), hence there are intervals
d ′, d ′′ ∈ V with j ∈ d ′ and j +1 ∈ d ′′, ensuring VL,VR �= ∅. Since dl ∩dr = ∅ for any
dl ∈ VL, dr ∈ VR, the subgraph GΠi

[V] is not connected, and we get a contradiction
to our assumption that V generates c.

For (c) we show that each c ∈ CΠi
is either an element of {ϕΠi

(j) | j = 1, . . . , n−
1} and therefore irreducible, or that it is generated by a subset V ⊆ {ϕΠi

(j) | j =
1, . . . , n−1}, where each d ∈ V is a proper subset of c. In this case, c is reducible. As-
sume c = [x, y] ∈ CΠi

, and set V := {ϕΠi
(j) | j = x, . . . , y−1}. For j = x, . . . , y−1

we have c,ϕΠi
(j) ∈ CΠi

, and j, j + 1 ∈ c ∩ ϕΠi
(j). Using Lemma 1(a) and the

minimality of ϕΠi
(j) we conclude ϕΠi

(j) ⊆ c, hence
⋃

j=x,...,y−1 ϕΠi
(j) = c. If

there is a ϕΠi
(j∗) ∈ V with ϕΠi

(j∗) = c, then we know from (b) that c is irre-
ducible. Otherwise, we conclude that each interval ϕΠi

(j) is a proper subset of c,
and ϕΠi

(j) ∩ ϕΠi
(j + 1) �= ∅ for j = x, . . . , y − 2. Thus GΠi

[V] is connected, V

generates c, and c is reducible.
For (d) we now show that ϕΠi

(ϕΠi−1(j)) = ϕΠi
(j). By (a.ii), ϕΠi

(j) is the unique
smallest (w.r.t. cardinality) common interval containing j, j + 1 in CΠi

. Since CΠi
⊆

CΠi−1 , we have ϕΠi
(j) ∈ CΠi−1 . Now we use (a.ii) and (a.iii), instantiated with i − 1

for i, M = {j, j + 1}, and c = ϕΠi
(j). This yields ϕΠi−1(j) ⊆ ϕΠi

(j). Then we use
(a.iii) again with the different instantiation i for i, M = ϕΠi−1(j), c = ϕΠi

(j). (The
preconditions are satisfied, since c ∈ CΠi

and M ⊆ c as shown above.) This yields
ϕΠi

(ϕΠi−1(j)) ⊆ ϕΠi
(j). Since ϕΠi

(j) is the unique smallest common interval in
CΠi

that contains j, j +1 (see above), we get ϕΠi
(ϕΠi−1(j)) = ϕΠi

(j) as claimed. �

Corollary 1 Given a family Π = (π1, . . . , πk) of permutations of N = {1,2, . . . , n}
we have 1 ≤ |IΠ | ≤ n − 1.

Example 2 The limits given in Corollary 1 are actually achieved. For Π = (idn) we
have CΠ = {[i, j] | 1 ≤ i < j ≤ n} and IΠ = {[i, i + 1] | 1 ≤ i < n}. For n = 2t and
Π = (idn, (1, t + 1,2, t + 2, . . . , t,2t)) we have CΠ = IΠ = {[1, n]}.

Lemma 3 For any irreducible interval c ∈ IΠ there are at most two irreducible in-
tervals that have a non-trivial overlap with c. We call them the neighbors of c. If c

has two neighbors a, b ∈ IΠ , a �= b, then c contains exactly one left and one right
end of them, and a ∩ b = ∅.

Proof Let c = [l, r] be an irreducible interval that has a non-trivial overlap with the
irreducible intervals a = [la, ra] and b = [lb, rb]. Without restriction we can assume
that la ≤ lb (otherwise exchange a and b). We now do an analysis of all cases of how
the intervals a, b and c could overlap, and prove that only the case described in the
lemma above is possible.

Case 1. First, suppose that c contains the left ends of both a and b. We investigate
the possible interval end configurations (see Fig. 3; note that the non-trivial overlap
of a and b with c implies l < la, lb ≤ r < ra, rb).

(i) Assume l < la = lb ≤ r < ra < rb . By Lemma 2, we conclude that d := b \ c

is a common interval. In contradiction to being irreducible, b is generated by

Algorithmica

Fig. 3 Visualization of the different interval configurations

the common intervals a and d . The case l < la = lb ≤ r < rb < ra is treated
analogously.

(ii) Assume l < la < lb ≤ r . By Lemma 2 and Lemma 1(a) we conclude that d :=
c \ b and e := a ∩ c are common intervals. In contradiction to being irreducible,
c is generated by the common intervals d and e.

Case 2. The case where c contains the right ends of the intervals a and b is treated in
a way that is symmetric with Case 1, with right and left ends exchanged.

Case 3. The remaining scenario is that c contains the right end of a and the left end of
b (the reverse case is impossible, since we assumed la ≤ lb). It remains to consider
whether a can overlap with b. If a ∩ b �= ∅, this yields a contradiction (by applying
Case 1 to a), because a overlaps non-trivially with c and b, and a contains the left
ends of both of these intervals.

We conclude that there cannot exist more than two intervals which have a non-trivial
overlap with c, otherwise c would contain at least two left or two right interval ends,
a contradiction to Cases 1 and 2. If there are two intervals a, b having a non-trivial
overlap with c, the interval c contains exactly one left and one right end of a and b,
and a ∩ b = ∅ (Case 3). �

A sequence p = (c1, . . . , c�(p)) of irreducible intervals c1, . . . , c�(p) ∈ IΠ is a
chain of length �(p) if every two successive intervals cj , cj+1, j = 1, . . . �(p) − 1
have a non-trivial overlap. For 1 ≤ i ≤ j ≤ �(p), we call p[i, j] := (ci, . . . , cj) a
subchain of p of length j − i + 1. A chain that cannot be extended to its left or right
is a maximal chain.

Algorithmica

For the following lemma, remember from Section 3 that for a set V ⊆ CΠ , τ(V) =
{i | i ∈ v, v ∈ V } denotes the support of V .

Lemma 4 Let Π be a family of permutations, CΠ its set of common intervals, and
IΠ the corresponding set of irreducible intervals.

(a) IΠ can be partitioned into a uniquely defined set of maximal chains P .
(b) Given p1,p2 ∈ P with p1 �= p2, then either τ(p1) and τ(p2) are disjoint, or one

chain is completely contained in exactly one element or in the intersection of two
consecutive elements of the other chain.

(c) There is a bijection between the set of common intervals CΠ and the set of sub-
chains of maximal chains in P . Each irreducible interval corresponds to a sub-
chain of length one, and each reducible interval is generated by a subchain of
length two or more.

Proof To see (a), observe that Lemma 3 implies that for any irreducible interval c

there is at most one irreducible interval a to the left and one irreducible interval b to
the right that overlap c non-trivially. This guarantees that each irreducible interval is
part of a uniquely defined maximal chain.

To see (b) we note that τ(p1) and τ(p2) are either disjoint or have a non-empty
intersection. In the latter case, we conclude the existence of intervals c1 ∈ p1, c2 ∈ p2
with c1 �= c2 and c1 ∩ c2 �= ∅. By Lemma 3 and the maximality of p1 and p2, no
interval of p1 can overlap non-trivially with an interval of p2, and we conclude that
c1 and c2 are nested. W.l.o.g. assume c1 is a proper subset of c2. Now consider a
neighbor c∗ of c1 in p1. Since c1 and c∗ have non-trivial overlap, we conclude that
c∗ ∩ c2 �= ∅. Using again the fact that no interval of p1 can overlap non-trivially with
an interval of p2, we conclude that either c∗ ⊂ c2, or c2 ⊂ c∗. Since c1 and c∗ are
neighbors, and c1 ⊂ c2, we cannot have c2 ⊂ c∗. Hence, c∗ is a proper subset of c2.
Iterating this argument we conclude that every interval of p1 is a proper subset of
c2, and that τ(p1) is contained in c2. Now assume τ(p1) is also contained in another
interval c3 �= c2 of p2. Since c2 and c3 are both intervals of the same chain p2, and
both contain τ(p1), they have a non-trivial overlap. By Lemma 3, c3 is a neighbor
of c2. Also by Lemma 3 we know that there are at most two neighbors of c2, and
that these neighbors do not intersect. Therefore there cannot be a third interval in
p2 which contains τ(p1). This yields the existence of one single, or two intersecting
irreducible intervals of p2 that include τ(p1) completely, while all other elements of
p2 are disjoint from τ(p1).

For (c), we remark that the irreducible intervals of any subchain of a chain in P

correspond to a connected subgraph of GΠ , therefore they generate a common in-
terval. To see that each common interval c = [x, y] ∈ CΠ can be generated in this
way, we use the fact that IΠ = {ϕΠ(j) | j = 1, . . . , n − 1} from Theorem 1. Set
V := {ϕΠ(j) | j = x, . . . , y − 1}. We know that G[V] is connected, and τ(V) = c.
Set V ′ := V \ {v ∈ V | ∃v′ ∈ V,v ⊂ v′}. By construction, G[V ′] remains connected,
and τ(V ′) = c. If |V ′| = 1 then c is irreducible by Theorem 1(b). Otherwise, c is re-
ducible, and we use Lemma 3 to show that V ′ corresponds to the chain of irreducible
intervals generating c. To see that the above chain representation is unique, we as-
sume that c is generated by two different subchains p1[i1, j1], and p2[i2, j2]. Since

Algorithmica

different subchains of the same maximal chain generate different common intervals
we conclude that p1 �= p2, and obtain a contradiction from (b). �

For a common interval c ∈ CΠ , we count the number of irreducible intervals that
properly contain c and call this number the nesting level of c.

Lemma 5 Let Π be a family of permutations, c ∈ CΠ a common interval, and p =
(c1, . . . , c�(p)) a chain of irreducible intervals generating c. The nesting levels of c

and all the ci for i = 1, . . . , �(p) are equal.

Proof Let d be the nesting level of c and di the nesting level of ci for i = 1, . . . , �(p).
Since ci ⊆ c we have di ≥ d for i = 1, . . . , �(p). Now assume that di > d for some
i ∈ {1, . . . , �(p)}. Then the chain must consist of at least two elements, i.e. �(p) > 1,
and there must exist an irreducible interval c∗ �⊃ c with ci ⊂ c∗. The latter implies
that at least one interval cj ∈ {c1, . . . , c�(p)} \ {ci} has a non-trivial overlap with c∗.
We distinguish the following cases:

1. j < i. Then cj overlaps non-trivially with cj+1 and c∗, and contains the left ends
of these intervals.

2. j > i. Then cj overlaps non-trivially with cj−1 and c∗, and contains the right ends
of these intervals.

In both cases, we obtain a contradiction to Lemma 3, showing that such a c∗ cannot
exist and hence ci has the same nesting level as c. �

Example 1 (continued) For Π = (π1,π2,π3) as in Section 1, the irreducible intervals
are

IΠ = {[1,2], [1,8], [2,3], [4,5], [4,7], [4,8], [4,9], [5,6]}.
The maximal chains are ([1,8], [4,9]), ([1,2], [2,3]), ([4,8]), ([4,7]), and ([4,5],
[5,6]). The reducible intervals are generated as follows:

[1,3] = [1,2] ∪ [2,3],
[1,9] = [1,8] ∪ [4,9],
[4,6] = [4,5] ∪ [5,6].

A sketch of the structure of maximal chains of irreducible intervals and their nesting
levels is shown in Fig. 4.

4 Finding All Common Intervals of k Permutations

In Algorithm 4 we describe an O(n+|CΠ |) time algorithm to reconstruct the set CΠ

of common intervals of a family of permutations Π from its set IΠ of irreducible
intervals. In this section we assume that set IΠ of irreducible intervals is already
given. We will show in Section 5 how to construct IΠ in O(kn) time.

Algorithmica

Fig. 4 Visualization of the irreducible intervals in IΠ and their nesting levels

Algorithm 4 (Reconstruct CΠ from IΠ)
Input: A set of irreducible intervals IΠ .
Output: The corresponding set of all common intervals CΠ .

1: partition IΠ into maximal chains p1,p2, . . .

2: for each pm = (c1, . . . , c�(pm)) do
3: output τ(pm[i, j]) for all 1 ≤ i ≤ j ≤ �(pm)

4: end for

First, Algorithm 4 partitions IΠ into maximal chains (line 1). This is done in two
steps, each of which takes only O(n) time (and space).

Step 1: We create a sorted linked list which contains every irreducible interval in IΠ

exactly twice. The sorting criterion is as follows. For k = 1,2, . . . , n the list first
contains all irreducible intervals with left end k, in decreasing order of their length.
Then it contains all irreducible intervals with right end k, in increasing order of
their length. Then this is repeated for the next higher k. (In the special cases of
k = 1 and k = n there are no irreducible intervals with right end k, and left end k,
respectively.) It follows that every irreducible interval [k1, k2] appears exactly twice
in this list; first due to its left end when k reaches k1 and later due to its right end
when k reaches k2.

Step 2: We traverse this list, using a pushdown stack of intervals, and create all max-
imal chains from it (see below).

For Step 1, we sort the irreducible intervals in O(n) time according to the order
defined above. This is achieved as follows. We first sort all intervals by their length
using bucket sort. Since there are at most n−1 irreducible intervals, and each interval
length is in the range [2, n], this can be done in O(n) worst-case time using n − 1
buckets. Then, we initialize for each possible interval border k = 1,2, . . . , n a linked
list. In order of decreasing interval length, we insert all interval end points into their
corresponding list. Subsequently, we insert all interval startpoints, now in order of
increasing interval length, into the lists. Every entry in the list is marked with infor-
mation whether it represents a start point or an end point. Finally, we concatenate all
linked lists in increasing order of k = 1,2, . . . , n. Since there are at most n lists, and

Algorithmica

at most n − 1 intervals, the whole procedure can be performed in O(n) worst-case
time.

For Step 2, we traverse the resulting list of interval ends from left to right. When-
ever we encounter a start point, we push the corresponding interval on a stack. When-
ever we encounter an end point, we remove the corresponding interval from the stack.
(Note that such an interval is not necessarily at the top of the stack as discussed be-
low.) Using Lemma 4 and the fact that we process the sorted interval end points from
left to right, we argue that at the time an interval c is removed, the stack only con-
tains intervals which either include c completely, or overlap with its right end. By
Lemma 3, there is at most one interval (c’s right neighbor) which overlaps only with
the right end of c. Since all intervals which include c have been pushed on the stack
before c, the height of c in the stack corresponds to its nesting level. Interval c is
either at the top of the stack, corresponding to a chain end, or it is directly below the
top, and the top of the stack is c’s right neighbor. This ensures that we never remove
an element deep in the stack, hence this data structure can be realized by a normal
stack. With each removal we report nesting level and chain structure. Since removing
the top or the second highest element of a stack can be performed in constant time,
IΠ is partitioned into maximal chains in overall O(n) time. Since there are at most
n − 1 intervals, the stack height and memory used are bounded by O(n).

By Lemma 4(c), the common intervals of Π correspond to exactly the subchains
of the maximal chains of irreducible intervals in IΠ . Thus, we create CΠ by gen-
erating all subchains of the maximal chains (lines 2–4 of Algorithm 4). Due to the
bijection between subchains and common intervals, this takes O(|CΠ |) time. Alto-
gether, Algorithm 4 takes O(n + |CΠ |) time in total.

Example 1 (continued) In our running example Π = (π1,π2,π3) with π1 = id9,
π2 = (9,8,4,5,6,7,1,2,3), and π3 = (1,2,3,8,7,4,5,6,9), the irreducible inter-
vals are:

[5,6], [4,5], [4,7], [4,8], [4,9], [2,3], [1,2], [1,8].
Now we partition them into maximal chains, using the construction above.

First we apply Step 1 and create the list which contains every irreducible interval
twice, in the desired order. The left-end entries are printed in bold face and the right-
end entries in normal face. Thus, in this list, every intervals first appears in bold face
and later in normal face.

[1,8], [1,2], [2,3], [1,2], [2,3], [4,9], [4,8], [4,7], [4,5], [5,6],
[4,5], [5,6], [4,7], [4,8], [1,8], [4,9].

Then we apply Step 2 to this list. We push the first three left-end entries of the list
onto the stack, which then has the form [1,8], [1,2], [2,3] (bottom-to-top). Then
we encounter the right-end entry [1,2], which is at the second stack position from
the top. This indicates that the current stack-top element [2,3] is the right neighbor
of [1,2]. We then remove the element [1,2] from the stack and obtain the new stack
[1,8], [2,3]. We report the beginning of a chain [1,2], [2,3] at nesting level 1 (the
current height of the stack without [2,3], i.e., only interval [1,8] includes this chain).
The next element in the list is the right-hand entry [2,3], which is also the current

Algorithmica

head of the stack. This indicates that this chain ends here. So we remove [2,3] from
the stack and report the chain [1,2], [2,3]. By processing the rest of the list in the
same way, we obtain the chains [4,5], [5,6] (at level 4), [4,7] (at level 3), [4,8] (at
level 2) and [1,8], [4,9] at level 0, as shown in Fig. 4.

5 Finding All Irreducible Intervals of k Permutations

In this section we present an algorithm that finds all irreducible intervals of a family
Π = (π1,π2, . . . , πk) of k ≥ 1 permutations of N = {1, . . . , n} in O(kn) time.

For 1 ≤ i ≤ k, set Πi := (π1, . . . , πi). Starting with IΠ1 = {ϕΠ1(j) = [j, j + 1] |
1 ≤ j < n}, we successively compute IΠi

= {ϕΠi
(c) | c ∈ IΠi−1} for i = 2, . . . , k,

using Theorem 1(b.ii) and 1(c). In the following we will show that IΠi
= {ϕΠi

(c) | c ∈
IΠi−1} can be computed in O(n) time and space, yielding the O(kn)-time complexity
to compute IΠ (= IΠk

). We use an extended version of Algorithm RC (Algorithm 5)
where we build the data structure Y for π1 and πi , complemented by a data structure
S that is derived from IΠi−1 .

First we give some auxiliary definitions and lemmas (Section 5.1), and describe
the data structure S (Section 5.2). Then we describe the algorithm (Section 5.3), prove
its correctness (Section 5.4) and establish its complexity (Section 5.5).

5.1 Auxiliary Definitions and Lemmas

In order to describe the algorithm and its data structures, and to reason about its
correctness, we need some auxiliary results which are presented in this section.

Remember from Definition 1 that for an index x ∈ N , a right interval end y > x is
called wasteful with respect to two permutations π1 = id and π2 and x if it satisfies
f (x′, y) > 0 for all x′ ≤ x, otherwise it is called non-wasteful. We will extend this
latter notion now to common intervals.

Definition 5 Given a fixed x ∈ N , we call a common interval of CΠi−1 non-wasteful
if its right border is non-wasteful with respect to {π1,πi} and x. For a ⊆ N with
|a| ≥ 2, denote by SC(a, x) the set of non-wasteful (with respect to {π1,πi}, and
x) common intervals of CΠi−1 which include a, and have a left end smaller than or
equal to x. We define the non-wasteful hull c(a, x) of a as c(a, x) = ⋂

c∈SC(a,x) c. In
particular, for a = ϕΠi−1(j), j ∈ {1, . . . , n− 1}, we simplify the notation to SC(j, x),
and c(j, x).

We note that if the right interval end of a is smaller than x this definition does not
necessarily imply x ∈ c(a, x).

Lemma 6 The interval c(a, x) is well defined, unique, non-wasteful, and contains a.

(a) For any non-wasteful common interval b = [x′, y] ∈ CΠi−1 with x′ ≤ x we have
c(a, x) ⊆ b ⇔ a ⊆ b.

(b) For a, b ⊆ N with |a| ≥ 2 and a ⊆ b we have c(a, x) ⊆ c(b, x).

Algorithmica

(c) Let ϕΠi
(j) = [xi,j , yi,j]. We have

(c.i) c(j, x) ⊆ ϕΠi
(j) for x ≥ xi,j .

(c.ii) c(j, xi,j) = ϕΠi
(j).

Proof To show that c(a, x) is well defined and unique we note that SC(a, x) is not
empty, for example [1, n] ∈ SC(a, x). Since the intersection of any two non-wasteful
intervals of SC(a, x) with left end smaller than or equal to x is a non-wasteful com-
mon interval which includes a and has a left interval end smaller than or equal
to x, the interval c(a, x) = ⋂

c∈SC(a,x) c is the uniquely defined smallest non-wasteful
common interval of CΠi−1 with a ⊆ c(a, x), and a left interval end smaller than or
equal to x.

To show (a) we note that by definition of c(a, x) we have a ⊆ c(a, x). If c(a, x) ⊆
b this implies a ⊆ b. To show the reverse, assume a ⊆ b. We have b ∈ SC(a, x),
and since c(a, x) = ⋂

c∈SC(a,x) c we get c(a, x) ⊆ b. For (b) we note that a ⊆ b

implies SC(b, x) ⊆ SC(a, x), hence
⋂

c∈SC(a,x) c ⊆ ⋂
c∈SC(b,x) c. To show (c.i) we

argue that by definition we have ϕΠi
(j) ∈ CΠi−1 and ϕΠi

(j) ∈ CΠi
. For x ≥ xi,j

the interval ϕΠi
(j) is non-wasteful (with respect to {π1,πi}, and x) and we have

ϕΠi
(j) ∈ SC(j, x), thus c(j, x) ⊆ ϕΠi

(j).
To show (c.ii) we assume c(j, xi,j) = [x′, y′]. Using c(j, xi,j) ⊆ ϕΠi

(j) from (c.i)
we get x′ ≥ xi,j , and y′ ≤ yi,j . By definition, we have c(j, xi,j) = ⋂

c∈SC(j,xi,j)

and each c ∈ SC(j, xi,j) has a left border x ≤ xi,j . Since
⋂

c∈SC(j,xi,j) �= ∅ and

[xi,j , yi,j] ∈ SC(j, xi,j) we conclude xi,j ∈ c(j, x). This proves x′ = xi,j . Now as-
sume y′ < yi,j . Since, by construction, y′ is non-wasteful (with respect to {π1,πi},
and xi,j), and f (xi,j , yi,j) = 0 (because we have [xi,j , yi,j] = ϕΠi

(j)) we conclude
that f (xi,j , y

′) = 0, using Lemma 4.2 of Uno and Yagiura’s paper [16]. This yields
[xi,j , y

′] ∈ CΠi
. Since ϕΠi−1(j) ⊆ c(j, xi,j) we get a contradiction to the fact that

ϕΠi
(j) is the smallest common interval including ϕΠi−1(j) ∈ CΠi

. Thus y′ = yi,j

and c(j, xi,j) = [x′, y′] = [xi,j , yi,j] = ϕΠi
(j). �

Definition 6 Assume ϕΠi
(j) = [xi,j , yi,j]. For x ≥ xi,j , the interval c(j, x) is in

CΠi−1 and therefore has a subchain representation pc(j,x) = (cl(j,x), . . . , cm(j,x)). We
define crb(j, x) := cm(j,x) ∈ IΠi−1 , and call it the right border of c(j, x).

We note that due to the nesting structure of maximal chains we have ϕΠi−1(j) ⊆ ck ,
with k ∈ {l(j, x), . . . ,m(j, x)}, and that due to the minimality of c(j, x) the inter-
vals ck, . . . , cm(j,x)−1 are wasteful, while cm(j,x) is non-wasteful. Due to the nesting
structure of chains, and our choice of x we get the following lemma.

Lemma 7 Assume ϕΠi−1(j) = [xi−1,j , yi−1,j].
(a) For x ≥ yi−1,j we have c(j, x) = crb(j, x).
(b) Assume yi−1,j > x ≥ xi,j , and denote c = [x, y] a non-wasteful common interval

of CΠi−1 . We have

crb(j, x) ⊆ c ⇔ ϕΠi−1(j) ⊆ c.

Algorithmica

Proof (a) By definition, a right interval end y can only be wasteful with respect to
{π1,πi}, and x if y > x. Therefore, for yi−1,j ≤ x, we get ϕΠi−1(j) ∈ SC(j, x). We
conclude c(j, x) = ϕΠi−1(j). The corresponding subchain representation pc(j,x) =
(ϕΠi−1(j)) is trivial, and we have c(j, x) = crb(j, x). (b) If ϕΠi−1(j) ⊆ c then we
have c(j, x) ⊆ c by Lemma 6, and hence crb(j, x) ⊆ c. The reverse follows from the
nesting structure of maximal chains. Any common interval that contains crb(j, x) ei-
ther includes the maximal chain of crb(j, x) completely, and therefore also c(j, x), or
is a subchain of crb(j, x)’s maximal chain. Let’s assume c is a subchain of crb(j, x)’s
maximal chain which includes crb(j, x). Denote ck the first element of this subchain
with yi−1,j ∈ ck . Due to our assumption x < yi−1,j , and the fact that the right end of
crb(j, x) is larger than or equal to yi−1,j , the interval ck is well-defined. Due to the
nesting structure of maximal chains we conclude ϕΠi−1(j) ⊆ ck ⊆ c. �

5.2 The Extended Data Structure

We define a new data structure S, in addition to Y (which contains the ylist). The data
structure S contains the intervals from IΠi−1 in a particular order.

By Lemma 4(a), IΠi−1 is partitioned into maximal chains. In the data structure
S we have for each maximal chain a doubly-linked list containing as elements the
intervals of the chain. These lists are referred to as clists. The intervals in each list
are sorted in the increasing order of their right ends. By Lemma 4(b), any two chains
are either disjoint or one chain is completely contained in exactly one element or
the intersection of two consecutive elements of the other chain. Consider now all
maximal chains in IΠi−1 which contain an interval with a particular left end x. Since
each chain contains x, they are not disjoint and thus one is contained in one, or the
intersection of two consecutive elements of the other. Therefore, these chains are
nested and can be ordered hierarchically by nesting depth, starting with the highest
nesting depth. In particular, intervals from different clists with the same left end x are
nested. In S, they are connected by vertical pointers, yielding for each index x ∈ N

a doubly-linked vertical left end list. The intervals in each vertical list are ordered
by increasing length (decreasing nesting level). Analogously, we add vertical right
end lists. Finally we make a connection to the ylist Y , by adding to each ylist item a
pointer to its corresponding vertical right end list.

In our algorithm (see Section 5.3) unsatisfied labels keep track for which
ϕΠi−1(j) ∈ IΠi−1 the corresponding ϕΠi

(j) ∈ IΠi
has not been found yet—such in-

tervals are called unsatisfied. Originally, all intervals in IΠi−1 are unsatisfied, and we
mark the clist item vj with an unsatisfied label uj that corresponds to ϕΠi−1(j). Dur-
ing the execution of our algorithm the unsatisfied labels might be shifted to other clist
items. If we report ϕΠi

(j) ∈ IΠi
the corresponding unsatisfied label uj is deleted and

ϕΠi−1(j) ∈ IΠi−1 becomes satisfied.
If a clist carries an unsatisfied label it is called labeled, otherwise unlabeled. Thus,

originally, all clist items are labeled. The labeled elements of a clist are connected by
a doubly-linked labeled sublist, a sublist of the original clist in which the left to right
order is preserved.

Initially, all ylist elements are non-wasteful, but during the execution of our algo-
rithm some values y might be discovered wasteful. In this case, each interval with

Algorithmica

Fig. 5 Visualization of the data structure S. The labeled sublist is in bold face. The only vertical list
depicted here is the vertical left end list for x = 5. Note that chains at nesting levels 1 and 2 are contained
in the intersection of two intervals of nesting level 0

right interval end y becomes wasteful and is removed from its labeled sublist and its
clist. Removing an interval from the labeled sublist and the clist just means adjusting
the pointers. The list item is not deleted, because the interval might still be contained
in a vertical list. If the interval is labeled, its labels are shifted to a non-wasteful
interval (see below).

Figure 5 illustrates the structure of S.

5.3 Description of the Algorithm

In this section we will describe the algorithm which operates in the data structure S.
The correctness of the algorithm will be shown in Section 5.4, and the time and
space complexities of an efficient implementation of the algorithm are established in
Section 5.5.

Algorithm 5 (Extended Algorithm RC)
Input: Two permutations π1 = idn and πi of N = {1, . . . , n};

a set of irreducible intervals IΠi−1 .
Output: The set of irreducible intervals IΠi

.
1: initialize Y and S

2: for x = n − 1, . . . ,1 do
3: update Y and S

4: while (([x, y], [x′, y]) ← S.next_candidate(x)) exists and f (x, y) = 0 do
5: report [x, y]
6: remove [x′, y] from its labeled sublist
7: end while
8: end for

Algorithmica

Pseudocode is given in Algorithm 5. In addition to the notation used in Algo-
rithms 1 and 2, in this section we will also denote by v.start the left end and by v.end
the right end of an interval v.

The algorithm starts by initializing the data structures Y and S (line 1 of Algo-
rithm 5). Y is initialized as in the original Algorithm RC. To initialize S, we parti-
tion IΠi−1 into maximal chains of non-trivially overlapping irreducible intervals as
in line 1 of Algorithm 4. The details of this algorithm were explained in Section 4.
We add for each chain p = (c1, . . . , ck) a corresponding clist = (v1, . . . , vk) to S, as
described in the previous section.

Now, a counter x for the left end of the probed candidate intervals is decreased
iteratively from n − 1 down to 1 (line 2). Each iteration starts with an update of data
structures Y and S (line 3). First, we remove any clist with clist.head.start = x + 1
from S. Second, we update Y in the same way as in Algorithm RC, but each time we
remove an element y from ylist we traverse the vertical right end list of y and mark
any clist item v with v.end = y wasteful, and remove it from its clist in S.

If during these updates some interval v = [x1, y1], labeled with uj , is removed,
we also remove v from its labeled sublist, and shift the label uj to the non-wasteful
interval crb(j, x). If crb(j, x) was unlabeled at that point then this operation re-adds
it to the labeled sublist. Section 5.4 shows that during the execution of our algorithm
the label uj is linked to crb(j, x) until the irreducible interval ϕΠi

(j) ∈ IΠi
is found

and reported, afterwards the label is deleted. The interval crb(j, x) is defined as the
right border of the non-wasteful interval c(j, x), and it could be computed using this
definition. However, to speed-up our algorithm, we describe in Section 5.5 how the
algorithm can be modified to avoid this time consuming computation.

After removing interval v = [x1, y1] we also update its left end vertical list. In
order to implement the function S.next_candidate(x) which generates candidates for
irreducible common intervals efficiently (see below), we need to treat the following
cases separately:

• If x1 > x (i.e., x /∈ v) then we do not have to update the corresponding vertical left
end list at all. The interval v = [x1, y1] can never be the first interval in a clist with
left end x, because x1 > x.

• Due to Definition 1 the wasteful interval v = [x1, y1] always satisfies y1 > x, but
it is possible that x1 ≤ x (i.e., it is possible that x ∈ v). In this case, the item v

could be the first interval in a clist with left end x1 which is accessed later when x

has been decremented to x1. Therefore, after shifting the label of v (if one exists),
we search for the next labeled interval α in the clist of v. If α exists then we set a
pointer from v to α and keep v in the vertical sublist for x1, otherwise we remove
v from the vertical list.

Due to Lemma 3, there are at most two such intervals (e.g. v and v′) which con-
tain x, and have a wasteful right interval end in every clist. Therefore, in addition
to its clist and labeled sublist pointers, any labeled interval α needs to maintain
at most two additional 2-way pointers pointing to wasteful intervals like v and v′
with left ends smaller than or equal to x. However, during the execution of the al-
gorithm, x is decreased, and v and v′ as well as the corresponding pointers might
be replaced by new ones. The situation described above is illustrated in Fig. 6. The
2-way pointers are needed for subsequent updates where α might be discovered as

Algorithmica

Fig. 6 Visualization of a clist in
S which contains wasteful
intervals [x1, y1] and [x2, y2].
The labeled sublist is in bold
face

wasteful and removed from its clist. We have to distinguish two cases. First, if the
unsatisfied labels attached to α are shifted to another item α′ in the same clist, then
the 2-way pointers of α are also shifted to α′. If there are already 2-way pointers
pointing to α′ then the obsolete pointers and their corresponding items are deleted.
Second, if the labels attached to α are moved to an item in a different clist, i.e. α

is the last element in its clist, then we use the 2-way pointers to remove v and v′
from their vertical left end lists, since the left ends of v and v′ cannot be left ends
of common intervals anymore.

After these updates, the function S.next_candidate(x) generates candidate inter-
vals [x, y] for irreducible common intervals in IΠi

(this is checked in the following
step). The function S.next_candidate(x) processes the clists which include an item
v with v.start = x in decreasing order of nesting level using the corresponding ver-
tical left end list. Each time this function is called, it returns the smallest (w.r.t. the
interval order; see Definition 4) remaining non-wasteful common interval [x, y] of
CΠi−1 which has a left end x, and contains some labeled interval [x′, y] (of IΠi−1)
with x′ ≥ x. The interval [x, y] is a candidate for a common interval (to be tested
by checking if f (x, y) = 0; see line 4 in Algorithm 5). In addition, the function
S.next_candidate(x) also returns the interval [x′, y] as a second part of its return
value, because one might later need to remove this interval from the labeled sublist
(see line 6 in Algorithm 5). In the following, we will focus only on the interval [x, y],
and call it the return value of S.next_candidate(x).

More formally, the function S.next_candidate(x) is defined on the labeled sub-
lists of the data structure S as follows. S.next_candidate(x) returns an interval [x, y]
which is uniquely defined by the following criteria.

Primary criterion: [x, y] contains a labeled interval [x′, y] from some chain in S

which contains an element with left end x, and x′ ≥ x.
Secondary criterion: This labeled interval [x′, y] has maximal nesting depth.
Tertiary criterion: This labeled interval [x′, y] has minimal left end x′.

Note that during the execution of our algorithm for decreasing values x the se-
quence of candidate intervals [x, y] obtained by successive calls to the function
S.next_candidate(x) is strictly increasing w.r.t. the interval order from Definition 4.
The function S.next_candidate(x) can be implemented in such a way that it uses only
constant time. When the function S.next_candidate(x) is called for the first time with
a particular parameter x, it accesses the vertical left end list for x which takes it to

Algorithmica

the clist with highest nesting depth which contained at initialization an interval with
left end x, and which still contains a labeled interval with left end larger than or equal
to x. The clists which do not contain any labeled interval with left end smaller than
or equal to x are skipped in the vertical list (see above). Since all previous calls to
the S.next_candidate function were with a parameter x′ > x, the first interval v in the
clist could not have become satisfied yet, because all intervals are initially unsatisfied
and this interval with left end x has never been accessed before. However, v might
have been labeled as wasteful earlier, and in this case we follow its pointer which
takes us directly to the first labeled interval α in this clist. This takes only constant
time.

Further calls of S.next_candidate(x) result in the traversal of the labeled sublist of
the clist with the highest nesting depth and thus each call takes constant time. When
the end of the labeled sublist of a clist is reached then the function accesses the labeled
sublist of the clist with the next lower nesting depth which still contains labeled inter-
vals by following the vertical left-end list for x. It then traverses the labeled elements
in this clist as described above. Thus the function S.next_candidate(x) does not have
to search for the first unsatisfied interval, but every call to S.next_candidate(x) takes
constant time.

Our algorithm probes each candidate interval c = [x, y] obtained from the function
S.next_candidate(x). As in the original algorithm RC, we evaluate function f (x, y)

in order to decide if c is a common interval of permutations π1 and πi . If f (x, y) > 0
we conclude c /∈ IΠi

, and that no further irreducible interval with left interval end x

exists. We decrement x and continue with the next iteration.
If f (x, y) = 0, and v = [x′, y] is labeled by uj , then we conclude c = ϕΠi

(j) ∈
IΠi

and report c. The interval ϕΠi−1(j) ∈ IΠi−1 becomes satisfied, we delete all un-
satisfied labels from v, and the interval v is removed from its labeled sublist. This
can only happen to intervals v = [x′′, y] with x′′ ≥ x (see Section 5.4). Finally, the
function S.next_candidate(x) continues its traversal.

The example in Fig. 5 shows a data structure S with some gaps in the labeled
sublists of the clists. This is possible, because intervals with left end x̃ > x have been
accessed earlier and some have become satisfied or wasteful.

In the example in Fig. 5, successive calls of the function S.next_candidate(5)

would yield the increasing sequence of intervals [5,7], [5,9], [5,12], [5,18]
and [5,23]. If one considers the full combined return values of the form ([x, y],
[x′, y]) containing also the interval [x′, y], then the results are ([5,7], [5,7]),
([5,9], [6,9]), ([5,12], [5,12]), ([5,18], [15,18]) and ([5,23], [5,23]).

5.4 Correctness of the Algorithm

The correctness of our algorithm relies on the following Theorem.

Theorem 2 Assume ϕΠi
(j) = [xi,j , yi,j]. For any x ≥ xi,j the unsatisfied label uj

and the clist item crb(j, x) exist, and label uj is linked to crb(j, x) at the start of
line 4 in Algorithm 5. In iteration x = xi,j , the function S.next_candidate(xi,j) will
report interval c(j, xi,j) = ϕΠi

(j), and the label uj will be deleted. For x < xi,j the
label uj is deleted.

Algorithmica

Proof By Lemma 7(a), we have crb(j, x) = ϕΠi−1(j) for x ≥ yi−1,j . We use induc-
tion to prove the theorem. First we note that during the initialization of data structure
S every clist item ϕΠi−1(j) is labeled with uj , and that for x = n − 1 no item is
removed during the updates in line 3. Hence the theorem is true for x = n − 1.

To prove correctness in the general case we assume that the theorem is true for
x = t + 1, . . . , n − 1, and show its correctness for x = t . We distinguish three cases
for t .

Case 1, t ≥ yi−1,j . By assumption, the label uj exists and is linked to ϕΠi−1(j) =
[xi−1,j , yi−1,j] in line 4 of iteration x = t + 1. Since for any x = t > yi−1,j − 1
our algorithm does not affect the clist item [xi−1,j , yi−1,j], we conclude that uj still
exists and is still linked to ϕΠi−1(j) in iteration x = t .

Case 2, xi,j ≤ t < yi−1,j . By assumption, the label uj exists and is linked to
crb(j, t + 1) = [x∗, y∗] at the start of line 4 in iteration x = t + 1. First we show
that at the start of line 4 in iteration x = t the label uj still exists, and then we will
show that at this time the label uj is linked to crb(j, t).

To show that the label uj still exists at the start of iteration x = t we remark that
our algorithm deletes labels only if common intervals of CΠi

are reported in lines 4–7
of iteration x = t + 1. Therefore, the label uj will be deleted iff [t + 1, y∗] is a
common interval of CΠi

. In this case, by Lemma 6(a), we get ϕΠi−1(j) ⊆ [t + 1, y∗].
Using Theorem 1(a.ii) and (c) we conclude [xi,j , yi,j] = ϕΠi

(j) ⊆ [t + 1, y∗], and
thus xi,j ≥ t + 1. This contradicts our assumption t ≥ xi,j . Hence we may assume
that at the beginning of iteration t the label uj still exists, and that it is linked to
crb(j, t + 1).

Now we argue that at the start of line 4 in iteration x = t the label uj is linked
to crb(j, t). Whenever item crb(j, t + 1) is deleted in the update of S in line 3 of
iteration x = t , our algorithm will move uj to crb(j, t), where the interval crb(j, t)

can be computed using Definition 6.
Therefore, we will now focus on the case that crb(j, t + 1) is not deleted, and

show that in this case crb(j, t + 1) = crb(j, t). We distinguish two sub-cases: 1. If
c(j, t + 1) = c(j, t) then we also have crb(j, t + 1) = crb(j, t). 2. If c(j, t + 1) �=
c(j, t) we conclude c(j, t + 1) = [t + 1, y∗]. The interval [t + 1, y∗] corresponds to a
subchain p = (il, . . . , i∗). Due to the nesting structure of maximal chains we conclude
that c(j, t) corresponds to p′ = (il−1, il, . . . , i∗), hence crb(j, t +1) = crb(j, t). Note
that the existence of item il−1 is guaranteed by the fact that the chain corresponding
to p is not deleted in the transition from x = t + 1 to x = t .

Case 3, t < xi,j . We argue that in iteration t = xi,j the label uj is deleted in
lines 4–7 of Algorithm 5 and hence does not exist anymore for t < xi,j . As seen
above, at the start of line 4 in iteration t = xi,j , the label uj is linked to crb(j, xi,j).
Using Lemma 6(d) we get c(j, xi,j) = [xi,j , yi,j] = ϕΠi

(j). Since ϕΠi
(j) ∈ IΠi

,
and hence also ϕΠi

(j) ∈ C{π1,πi } we have f (xi,j , yi,j) = 0. Using the monotonicity
of f we conclude f (xi,j , y) = 0 for all non-wasteful y ≤ yi,j . Therefore, in itera-
tion t = xi,j , while traversing the clist which corresponds to c(j, xi,j), the function
S.next_candidate(t) will probe and report interval c(j, xi,j), and the label uj will be
deleted. �

To prove the correctness of our algorithm, we show the following three conditions:

Algorithmica

1. No interval is reported twice.
2. Only irreducible intervals are reported.
3. Every irreducible interval is reported.

No interval is reported twice. We note that S.next_candidate() probes candidate in-
tervals in strictly increasing interval order, hence no interval will be tested or reported
twice.

Only irreducible intervals are reported. The algorithm reports the interval c =
[x, y] only if c is a subchain (cl, . . . , cm) of a maximal chain in IΠi−1 , and cm is
labeled. Assume cm is labeled by uj . The algorithm will delete uj after reporting
c, hence, using Theorem 2 we conclude cm = crb(j, x), x = xi,j , and c = c(j, x) =
ϕΠi

(j). This implies that c is irreducible.

Every irreducible interval is reported. This is a direct consequence of Theo-
rem 1(b.ii) and Theorem 2.

5.5 Complexity Analysis

In the following we will describe an O(kn) time and O(n) space implementation of
a slight modification of the above algorithm. The modification omits certain details
of the original algorithm used only to simplify the correctness proof. This improves
its efficiency without changing the output.

Our implementation differs from the original algorithm only in how unsatisfied
intervals are handled. We keep track if a clist item is labeled using a binary flag, but
we do not maintain individual labels for each unsatisfied interval of IΠi−1 . Below we
describe how these binary flags are updated during the execution of our algorithm.
Since our original algorithm only uses the information that there is an unsatisfied
interval of IΠi−1 contained in a candidate interval, this modification does not affect
the correctness of the algorithm, but its running time is improved.

The initialization of Y in line 1 is done as in the original Algorithm RC and takes
overall O(n) time, see [16]. To initialize S, we first partition IΠi−1 in O(n) time into
maximal chains, see Section 4. During initialization, all intervals in S are unsatis-
fied. Thus we mark the corresponding clist items unsatisfied, and add labeled sublist
pointers between all consecutive clist elements. In contrast to the above description,
the unsatisfied label is now only a flag, and does not include the information of the
corresponding underlying interval of IΠi−1 . We also keep track of interval ends, and
add the corresponding vertical interval end lists. Since there are at most O(n) inter-
vals and unsatisfied labels, and each interval appears in exactly one labeled sublist,
one vertical left end list, and one vertical right end list, the entire initialization takes
O(n) time.

As in the original Algorithm RC [16], in the extended Algorithm RC the time
spent in updating Y in line 3 is proportional to the number of deleted items in ulist,
llist, and ylist. Hence, it takes overall O(n) time.

The update of S in line 3 is performed as follows. For each index y that is deleted
from the ylist, all corresponding clist items with right end y in S are removed. If a re-
moved item v is labeled, and if its successor in the same clist exists, then we label the

Algorithmica

successor. Subsequently, the labeled sublists are updated correspondingly. However,
in contrast to the description of the update of S in Section 5.4, if the clist successor
does not exist, we do not perform additional updates. Although such cases might oc-
cur, e.g. after deleting the tail item of a clist, or after deleting an entire clist, we argue
in the following that an update is not necessary because the corresponding interval is
already labeled. This saves us the time for searching the corresponding non-wasteful
hull in another clist, and guarantees that the label manipulations can be performed in
constant time. Assume a clist item v marked with the label uj is deleted. As noted
in Section 5.1, the corresponding non-wasteful hull c(j, x) exists and has a subchain
representation pc(j,x) = (cl, . . . , cm), where v ⊆ ck , k ∈ {l, . . . ,m} and ck, . . . , cm−1

are wasteful. Assume ck corresponds to ϕΠi−1(k
′). Since v ⊆ ck , label uk′ still exists,

and is linked to cm. Using Lemma 6(b) we conclude c(j, x) ⊆ c(k′, x). We also have
ϕΠi−1(k

′) ⊆ c(j, x), hence c(k′, x) ⊆ c(j, x) by Lemma 6(a). Together this yields
c(j, x) = c(k′, x). Since c(j, x − t) = c(c(j, x), x − t) we conclude that c(j, x − t) =
c(k′, x − t) for t ∈ {1, . . . , x − 1}. This implies crb(j, x − t) = crb(k′, x − t) for
t ∈ {1, . . . , x − 1}. We conclude that during the execution of our algorithm we only
have to make sure that crb(k′, x) is updated correctly, i.e. marked with an unsatisfied
label. If for t ∈ {1, . . . , x − 1} the chain that represents c(k′, x) has to be extended
in order to represent c(k′, x − t), the update will be correctly performed by our al-
gorithm. If however c(k′, x − t) is represented by another chain, we use the same
argument as above for a different k′

2. This concludes our argument.
Since each of the O(n) clist items is discovered as wasteful at most once during

the updates, and since each such event causes one removal from the clist, at most one
removal and one insertion in the labeled sublist, a constant number of removals from
vertical left end lists, and a constant number of pointer updates, and since each of
these operations can be performed in constant time, this part takes overall O(n) time.

For every x, the function S.next_candidate(x) generates the first candidate interval
[x, y] and its potential successors in constant time, as described in Section 5.3.

For every candidate interval, the evaluation of f (x, y), as well as the correspond-
ing update operations for f (x, y) = 0, are constant time operations. Therefore, as in
Algorithm RC, the time required for reporting the output is proportional to the size
of the output, here |IΠi

| < n.
Putting things together, Algorithm 5 takes O(n) time and space. Since at any point

of Algorithm 5 we need to store only two permutations π1 and πi , the data structures
Y and S, and the current IΠi

, we have:

Theorem 3 The irreducible intervals of k permutations of n elements can be found
in optimal O(kn) time and O(n) additional space.

Combining these results with the result of Section 4 we get:

Theorem 4 The z common intervals of k permutations of n elements can be found in
optimal O(kn + z) time and O(n) additional space.

Algorithmica

6 Common Intervals of Multichromosomal Permutations

We define a chromosome γ of N := {1,2, . . . , n} as a linearly ordered subset of N ,
and represent it as a linear list. A multichromosomal permutation π of N is defined
as a set of chromosomes, containing each element of N exactly once, i.e.

π = {γ1, . . . , γl} with N =
⋃̇

1≤i≤l
γi .

Given a family Π = (π1, . . . , πk) of k multichromosomal permutations of N , a
subset c ⊆ N of cardinality |c| ≥ 2 is called a common interval of Π if and only if
for each multichromosomal permutation πi , i = 1, . . . , k, there exists a chromosome
with c as an interval. Reducible and irreducible intervals are defined as in Defini-
tion 3.

Example 2 Let N = {1, . . . ,6} and Π = (π1,π2,π3) with π1 = {(1,2,3), (4,5,6)},
π2 = {(1,5,6,4), (3,2)}, and π3 = {(1,6,4,5), (3), (2)}. Here chromosome ends are
indicated by parentheses. The only common interval is {4,5,6}. �

A modification of the algorithms from the previous section can be used for find-
ing all common intervals of k multichromosomal permutations. We start by concate-
nating the chromosomes of each multichromosomal permutation in arbitrary order.
This way we obtain a family Π ′ = (π ′

1,π
′
2, . . . , π

′
k) of k (standard) permutations π ′

i ,
i = 1, . . . , k. Without loss of generality we assume that π ′

1 = idn. Now, as above, set
Π ′

i := (π ′
1,π

′
2, . . . , π

′
i). Starting with

IΠ ′
1
:= {[j, j + 1] | 1 ≤ j < n and j, j + 1 on the same chromosome in π1},

we successively compute IΠ ′
i

from IΠ ′
i−1

for i = 2, . . . , k using a modification of the
algorithm described in Section 5, where we suppress reporting irreducible intervals
if the elements at indices x and y belong to different chromosomes of πi (line 5 of
Algorithm 5), but continue the execution of the algorithm without a change otherwise.

By the definition of IΠ ′
1
, this algorithm will never place two elements from differ-

ent chromosomes in π1 together in an irreducible interval. Moreover, by the modifi-
cation of Algorithm 5, no irreducible interval containing two elements from different
chromosomes of the other permutations π2, . . . , πk will be reported. Nevertheless, the
location of irreducible intervals that lie on the same chromosome in all permutations
is not affected by the modification of the algorithm. Since the additional test if x and
y belong to the same chromosome is a constant-time operation, and the output can
not be larger than that of the original Algorithm 5, the new algorithm also takes O(n)

time to generate IΠ ′
i

from IΠ ′
i−1

. The final generation of the common intervals from
the irreducible intervals (Algorithm 4) is unchanged, so that we have the following:

Theorem 5 Given k multichromosomal permutations of N = {1, . . . , n}, all z com-
mon intervals can be found in optimal O(kn+z) time using O(n) additional space. �

Algorithmica

7 Common Intervals of Circular Permutations

In this section we consider arrangements of N = {1,2, . . . , n} along a circle and call
this a circular permutation. Common intervals of circular permutations are of special
interest in biological applications, such as genome comparisons.

Given a family Π = (π1, . . . , πk) of k circular permutations of N , a subset c ⊆ N

is called a common interval if and only if the elements of c occur uninterruptedly in
each circular permutation. Note that here we do not exclude trivial intervals consisting
of only a single element, or the empty set, in order to simplify the notation of the
following Lemma 8.

Example 3 Let N = {1, . . . ,6} and Π = (π1,π2,π3) be a family of circular permu-
tations with π1 = (1,2,3,4,5,6), π2 = (2,4,3,5,1,6), and π3 = (6,1,5,4,3,2).
The common intervals of Π are {}, {1}, {2}, {3}, {4}, {5}, {6}, {1,6}, {3,4}, {2,3,4},
{3,4,5}, {5,6,1}, {6,1,2}, {2,3,4,5}, {5,6,1,2}, {1,2,3,4,5}, {2,3,4,5,6},
{3,4,5,6,1}, {4,5,6,1,2}, {5,6,1,2,3}, {6,1,2,3,4}, and {1,2,3,4,5,6}. �

In the following we will show how to find all z common intervals in a family of cir-
cular permutations in optimal O(kn + z) time. This can be done by a modification of
the original algorithm from Section 5, in combination with the following observation.

Lemma 8 Let c be a common interval of a family Π of circular permutations of N .
Then its complement c̄ := N \ c is also a common interval of Π .

Proof This follows immediately from the definition of common intervals of circular
permutations. �

Note that Lemma 8 does not hold for irreducible intervals. For instance, in Exam-
ple 3, {3,4} is an irreducible interval, while its complement {5,6,1,2} is not, as it is
generated by the shorter intervals {5,6,1} and {6,1,2}.

The general idea is now to find the common intervals of size ≤ �n
2 �, and then to

form their complements. The procedure is outlined in Algorithm 6. The main dif-
ference from the algorithm described in Section 5 is that function ϕi is replaced by
a variant, denoted ϕ∗

i , that works on circular permutations and only generates irre-
ducible intervals of size ≤ �n

2 �. This function is implemented by multiple calls to the
original function ϕi . The two circular permutations π1 and πi are linearized in two
different ways each, namely by once cutting them between positions n and 1, and
once cutting between positions �n

2 � and �n
2 � + 1. Then ϕi is applied to each of the

four resulting pairs of linearized permutations. For convenience, the output of irre-
ducible intervals of length > �n

2 � is suppressed. Note that no irreducible interval will
become reducible due to the above linearization, and that every irreducible interval
of size ≤ �n

2 � will be reported at least once. The resulting sets of intervals of the
four runs of ϕi are merged, sorted according to their start and end positions using
bucket sort, and duplicates are removed. This procedure generates I ∗

Πi
, the set of all

irreducible intervals of Πi of size ≤ �n
2 �, in O(n) time.

We order the resulting irreducible intervals with respect to the two linearizations
of π1. Subsequently, we apply Algorithm 4, where the output of common intervals of

Algorithmica

Algorithm 6 (Finding all Common Intervals of k Circular Permutations)
Input: A family Π = (π1 = idn,π2, . . . , πk) of k circular permutations of

N = {1, . . . , n}.
Output: The set of all common intervals CΠ .

1: I ∗
Π1

← {{1,2}, {2,3}, . . . , {n − 1, n}, {n,1}}
2: for i = 2, . . . , k do
3: I ∗

Πi
← {ϕ∗

i (c) | c ∈ I ∗
Πi−1

}
4: end for
5: generate C∗

Π from I ∗
Π = I ∗

Πk
using Algorithm 4 // (suppress intervals of

size > �n
2 �)

6: C
∗
Π ← {c̄ | c ∈ C∗

Π }
7: output C∗

Π ∪ C
∗
Π

size > �n
2 � is suppressed. Merging the resulting intervals, removing duplicates, and

adding the trivial intervals gives the set C∗
Πi

of all common intervals of Πi of size

≤ �n
2 �. Finally, the set of interval complements C

∗
Π ← {c̄ | c ∈ C∗

Π } is added. This
procedure generates all z common intervals in O(n + z) time. Hence, we have the
following:

Theorem 6 Given k circular permutations of N = {1, . . . , n}, all z common intervals
can be found in optimal O(kn + z) time using O(n) additional space. �

8 Common Intervals of Mixed Permutations

A mixed permutation of N = {1, . . . , n} is a multichromosomal permutation, where
individual chromosomes might be linear or circular. The definitions of common and
irreducible intervals are carried over from the previous sections. In the following, we
adapt our algorithms to mixed permutations without losing the optimal running time.
Difficulties arise because circular chromosomes of different permutations might not
contain the same set of elements, and Lemma 8 no longer holds as the following
example shows.

Example 4 Let N = {1, . . . ,8} and Π = (π1,π2) with π1 = {(1,2,3,4), (5,6,7,8)}
and π2 = {(1,3,5,6,7), (2,4,8)} where all chromosomes are circular. While c =
{5,6} is a common interval, its complement N \ c = {1,2,3,4,7,8} is not. �

We overcome this problem by a preprocessing step where we include artificial
breakpoints into the permutations. The breakpoints do not affect common intervals
but refine the permutations so that they can be handled by our algorithms. The first
time a breakpoint is inserted in a circular chromosome, the chromosome is linearized
by cutting it at the breakpoint and replacing it in the permutation by the appropriately
circularly shifted linear chromosome. Breakpoints in a linear chromosome dissect the
chromosome. The preprocessing is performed as follows.

Algorithmica

For a given set Π = (π1, . . . , πk) of mixed permutations we compare per-
mutation π1 successively to each of the other permutations πi , 2 ≤ i ≤ k, and
test for each pair of neighboring elements in π1 (i.e. for each chromosome γ =
(π1(l),π1(l + 1), . . . , π1(r)) the pairs {π1(j),π1(j + 1)} for l ≤ j ≤ r − 1, plus
the pair {π1(l),π1(r)} if γ is circular) whether they lie on the same chromosome in
πi or not. If not, they cannot be elements of the same common interval and we in-
troduce a new artificial breakpoint between the two elements in π1. Then we reverse
the comparison, i.e., we introduce breakpoints between neighboring elements of πi ,
2 ≤ i ≤ k, whenever they do not lie on the same chromosome of π1. This preprocess-
ing can be performed in O(kn) time.

After the preprocessing, the elements of each remaining circular chromosome cor-
respond in the other permutations either to exactly one circular chromosome or to one
or more linear chromosomes. This allows us to partition N into a set Nl of elements
that only occur in linear chromosomes, and into sets Nc1, . . . ,Nct of elements that
occur in at least one circular chromosome.

The elements of Nl can be handled by the algorithm for multichromosomal per-
mutations (Section 6) in a straightforward way. The sets Nc1, . . . ,Nct are treated sep-
arately. We start by restricting all permutations to the selected element set. If each of
the restricted permutations is circular, we can apply the algorithm for circular permu-
tations (Section 7) directly. Otherwise, we choose one of the restricted permutations
that consists of one or more linear chromosomes, as a start permutation, and arrange
these chromosomes in an arbitrary order. Denote by l (r) the first (last) element in
this order. We proceed as in the multichromosomal case (Section 6), except if we
encounter a circular permutation πc. If l and r are neighboring elements in πc , we
linearize πc by cutting between them and proceed as for a linear permutation. Other-
wise, similar to the case of circular permutations (Section 7), we copy πc four times
and linearize the copies by cutting one copy on the left of l, one copy on the right of l,
one copy on the left of r , and one copy on the right of r . For each of these permu-
tations we compute the irreducible common intervals with the previously processed
permutations π1, . . . , πc−1. The resulting intervals are merged, sorted according to
their start and end positions using bucket sort, and duplicates are removed. This pro-
cedure guarantees that we determine all irreducible intervals except for those that
contain l and r simultaneously. Due to our choice of l and r there is at most one
such interval—the trivial one—which contains all elements. We test this interval sep-
arately. Then we continue with permutation πc+1 in the same way. Finally, we order
the resulting irreducible intervals with respect to the start permutation π1 and apply
Algorithm 4 to recover all common intervals.

Since the above described preprocessing, and the modifications of the algorithms
for multichromosomal and circular permutations do not affect the optimal asymptotic
running time, we have

Theorem 7 Given k mixed permutations of N = {1, . . . , n}, all z common intervals
can be found in optimal O(kn + z) time using O(n) additional space.

Algorithmica

9 Conclusion

In this paper we have presented a time and space optimal algorithm for finding com-
mon intervals in a family of permutations, and we have shown how this algorithm can
be extended to multichromosomal, circular, and mixed permutations. The algorithm
is based on the idea of restricting the computations to the smaller set of irreducible
intervals and later recovering the whole solution. The efficiency of the algorithm is
derived from the fact that there are always less than n irreducible intervals, which
are sufficient to generate the whole set of common intervals with up to

(
n
2

)
elements.

Additionally, this compact representation might be of importance for applications in
pattern matching and association detection.

In the Appendix we demonstrate the potential advantages of Algorithm 5 over
naive approaches. We show that, for fixed k, the expected number of non-trivial com-
mon intervals of k permutations generated uniformly at random is O(1), thus the
expected runtime in this case is O(kn); in essence the time necessary for reading
the input data. In a simulation experiment we verify this linear run-time behavior,
and compare it with an approach that checks all intervals of one permutation and, by
consequence, shows O(n2) running time behavior.

Acknowledgements The authors would like to thank the anonymous referees for their extremely helpful
suggestions, which contributed greatly to this paper.

Appendix

A.1 Random Inputs

Let Π = (π1, . . . , πk) be a family of k ≥ 2 linear permutations, generated uniformly
at random; i.e., every permutation appears with probability 1

n! . For l = 2, . . . , n and
i = 1, . . . , n − l + 1 we define indicator variables

Xk
l,i :=

{
1 if π1([i, i + l − 1]) is a common interval of Π ,
0 otherwise.

Let Xk
l := ∑n−l+1

i=1 Xk
l,i be the number of common intervals of size l, and Xk :=

∑n
l=2 Xk

l the total number of common intervals. In the following we will show that
for k ≥ 2 we get the expected value E(Xk) = O(1). More precisely,

E(Xk) =
{

3 + O(n−1) if k = 2,

1 + O(n−1) if k > 2.

This extends the result of Uno and Yagiura [16] for k = 2 permutations. Figure 7
shows the corresponding number of common intervals for different values of n and k,
averaged over 1000 randomly generated permutations.

Proof We have

E(Xk
n−1) = 2k

nk−1
, E(Xk

n) = 1.

Algorithmica

Fig. 7 Empirical measurement of the number of common intervals. After an initial increase, the averaged
number of common intervals approaches the asymptotic value

Uno and Yagiura [16] showed that E(X2
2) = 2− 2

n
and E(

∑n−2
l=3 X2

l) = O(n−1). This
yields the above result for k = 2.

Now suppose that k > 2. Since E(Xk
l) = [(n−l)!l!

n! (n − l + 1)]k−2E(X2
l) and

[(n−l)!l!
n! (n − l + 1)]k−2 < C

nk−2 for l = 2, . . . , n − 1, we get:

E(Xk) = E(Xk
2) + E

(
n−2∑

l=3

Xk
l

)

+ E(Xk
n−1) + E(Xk

n)

<
C

nk−2
E(X2

2) + C

nk−2
E

(
n−2∑

l=3

X2
l

)

+ 2k

nk−1
+ 1

= 1 + O(n−1).

�

A.2 Empirical Running Times

Here we compare an implementation of our new algorithm with a naive approach that
tests for each interval of the first input permutation if it also exists in the remaining
k − 1 permutations. All implementations were done in ANSI C. Time measurements
were performed on a Linux laptop with a 750 MHz Intel Pentium III Mobile CPU and
256 MB of main memory. We generated instances of k = 2, . . . ,10 permutations with
up to n = 10,000 elements uniformly at random. Figure 8, left, shows the average
running time of the naive algorithm, showing a distinct quadratic increase in running
time. In contrast to that, our algorithm (Fig. 8, right) shows a linear running time
increase. Each value is an average over 100 independent measurements.

Algorithmica

Fig. 8 Average running times of the algorithms. Left: naive O(n2) time algorithm. Right: linear time
algorithm (Algorithms 5–4). Note the different scalings on the time axis

References

1. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Proceedings of the First International
Workshop on Algorithms in Bioinformatics (WABI 2001). Lecture Notes in Computer Science,
vol. 2149, pp. 252–263. Springer, Berlin (2001)

2. Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Proceedings of the 12th
Annual Symposium on Combinatorial Pattern Matching (CPM 2001). Lecture Notes in Computer
Science, vol. 2089, pp. 207–218. Springer, Berlin (2001)

3. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting protein
function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999)

4. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to infer
functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901 (1999)

5. Snel, B., Lehmann, G., Bork, P., Huynen, M.A.: STRING: A web-server to retrieve and display the
repeatedly occurring neigbourhood of a gene. Nucleic Acids Res. 28, 3443–3444 (2000)

6. Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: A marriage of necessity.
In: Proceedings of the European Conference on Computational Biology (ECCB 2002) (Supplement
of Bioinformatics), vol. 18, pp. 54–63. University Press, Oxford (2002) (Suppl. 2)

7. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome
comparison. In: Proceedings of the 9th International Computing and Combinatorics Conference, CO-
COON 2003. Lecture Notes in Computer Science, vol. 2697, pp. 68–79. Springer, Berlin (2003)

8. Brady, R.M.: Optimization strategies gleaned from biological evolution. Nature 317, 804–806 (1985)
9. Kobayashi, S., Ono, I., Yamamura, M.: An efficient genetic algorithm for job shop scheduling prob-

lems. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 506–511. Mor-
gan Kaufmann, San Francisco (1995)

10. Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combinatorial optimiza-
tion. Parallel Comput. 7, 65–85 (1988)

11. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K per-
mutations, with applications to modular decomposition of graphs. In: Proceedings of the 13th Annual
European Symposium on Algorithms, ESA 2005. Lecture Notes in Computer Science, vol. 3669,
pp. 779–790. Springer, Berlin (2005)

12. Heber, S., Savage, C.: Common intervals of trees. Inf. Process. Lett. 93, 69–74 (2005)
13. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs and graph pla-

narity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)
14. Fulkerson, D., Gross, O.: Incidence matrices with the consecutive 1s property. Bull. Am. Math. Soc.

70, 681–684 (1964)
15. Golumbic, C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1990)
16. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algo-

rithmica 26, 290–309 (2000)

	Common Intervals of Multiple Permutations
	Abstract
	Introduction
	Finding All Common Intervals of Two Permutations
	Irreducible Intervals
	Finding All Common Intervals of k Permutations
	Finding All Irreducible Intervals of k Permutations
	Auxiliary Definitions and Lemmas
	The Extended Data Structure
	Description of the Algorithm
	Correctness of the Algorithm
	No interval is reported twice.
	Only irreducible intervals are reported.
	Every irreducible interval is reported.

	Complexity Analysis

	Common Intervals of Multichromosomal Permutations
	Common Intervals of Circular Permutations
	Common Intervals of Mixed Permutations
	Conclusion
	Acknowledgements
	Appendix
	Random Inputs
	Empirical Running Times

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

