
The Foundations: 
Logic and Proofs

Chapter 1, Part III: Proofs



Rules of Inference
Section 1.6



Section Summary
Valid Arguments

Inference Rules for Propositional Logic

Using Rules of Inference to Build Arguments

Rules of Inference for Quantified Statements

Building Arguments for Quantified Statements



Revisiting the Socrates Example
We have the two premises:

“All men are mortal.”

“Socrates is a man.”

And the conclusion: 

“Socrates is mortal.”

How do we get the conclusion from the 
premises?



The Argument
We can express the premises (above the line) 

and the conclusion (below the line) in predicate 
logic as an argument:

We will see shortly that this is a valid argument.



Valid Arguments 
 We will show how to construct valid arguments in two 

stages; first for propositional logic and then for 
predicate logic. The rules of inference are the 
essential building block in the construction of valid 
arguments. 

1. Propositional Logic

2. Inference Rules

3. Predicate Logic

4. Inference rules for propositional logic plus additional 
inference rules to handle variables and quantifiers.



Arguments in Propositional Logic
A argument in propositional logic is a sequence of propositions. All but 

the final proposition are called premises. The last statement is the 
conclusion. 

The argument is valid if the premises imply the conclusion.  An 
argument form   is  an argument that is valid no matter what 
propositions are substituted into its propositional variables.    

If the premises are  p1 ,p2, …,pn  and the conclusion is q  then               

        (p1  ∧ p2 ∧ … ∧ pn ) → q  is a tautology. 

Inference rules are all argument simple argument forms that will be 
used to construct more complex argument forms.

      



Rules of Inference for Propositional 
Logic: Modus Ponens

                        

Example:
Let p be “It is snowing.”
Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete 
math.”
“It is snowing.”

“Therefore , I will  study discrete math.”

Corresponding Tautology: 
       (p ∧ (p →q)) → q



Modus Tollens

                        

Example:
Let p be “it is snowing.”
Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete math.”
“I will not study discrete math.”

“Therefore , it is not snowing.”

Corresponding 
Tautology: 
       (¬p∧(p →q))→¬q



Hypothetical Syllogism

                        

Example:
Let p be “it snows.”
Let q be “I will study discrete math.”
Let r be “I will get an A.”

“If it snows,  then I will study discrete math.”
“If I study discrete math, I will get an A.”

“Therefore , If it snows, I will get an A.”

Corresponding Tautology: 
((p →q) ∧ (q→r))→(p→ r)
 



Disjunctive Syllogism

                        

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math or I will study English 
literature.”
“I will not study discrete math.”

“Therefore , I will study English literature.”

Corresponding 
Tautology: 
(¬p∧(p ∨q))→q



Addition

                        

Example:
Let p be “I will study discrete math.”
Let q be “I will visit Las Vegas.”

“I will study discrete math.”

“Therefore, I will  study discrete math or I will 
visit 
Las Vegas.”

Corresponding Tautology: 
            p →(p ∨q)



Simplification

                        

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math and English 
literature”

“Therefore, I will study discrete math.”

Corresponding Tautology: 
         (p∧q) →p



Conjunction

                        

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”

“I will study discrete math.”
“I will study  English literature.”

“Therefore, I will study discrete math and I will 
study English literature.”

Corresponding 
Tautology:
 ((p) ∧ (q)) →(p ∧ q)



Resolution

                        

Example:
Let p be “I will study discrete math.”
Let r be “I will study English literature.”
Let q be “I will study databases.”

“I will not study discrete math or I will study English 
literature.”
“I will study  discrete math or I will study databases.”

“Therefore, I will study databases or I will English 
literature.”

Corresponding Tautology: 
 ((¬p ∨ r ) ∧ (p ∨ q)) →(q ∨ r)

Resolution plays an important 
role in AI and is used in Prolog.



Using the Rules of Inference to Build Valid Arguments
A  valid argument is a sequence of statements. Each statement is either a 

premise or follows from previous statements by  rules of inference. The last 
statement is called conclusion.

A valid argument takes the following form:

                       S1

         S2

                                       .

                                       .

                                       .

                                  Sn

                               C 

                                      



Valid Arguments
Example 1: From the single proposition 

 Show that q is a conclusion.

Solution:



Valid Arguments
Example 2: 

 With these hypotheses:

“It is not sunny this afternoon and it is colder than yesterday.”

“We will go swimming only if it is sunny.”

“If we do not go swimming, then we will take a canoe trip.”

“If we take a canoe trip, then we will be home by sunset.”

 Using the inference rules, construct a valid argument for the conclusion:

“We will be home by sunset.”

Solution: 

1.   Choose propositional variables:

p : “It is sunny this afternoon.”      r  : “We will go swimming.”  t : “We will be home by sunset.”

q  : “It is colder than yesterday.”     s  : “We will take a canoe trip.” 

2. Translation into propositional logic:

Continued on next slide 



Valid Arguments
3.  Construct the Valid Argument 



Handling Quantified Statements
Valid arguments for quantified statements are a 

sequence of statements. Each statement is either 
a premise or follows from previous statements by  
rules of inference which include:

Rules of Inference for Propositional Logic

Rules of Inference for Quantified Statements

The rules of inference for quantified statements 
are introduced in the next several slides.



Universal Instantiation (UI)
          

                        

Example:

Our domain consists of all dogs and Fido is a dog.

“All dogs are cuddly.”

“Therefore,  Fido is cuddly.”



Universal Generalization (UG)

                        

Used often implicitly in Mathematical 
Proofs. 



Existential Instantiation (EI)
       

                        

Example:

“There is someone who got an A in the course.”
“Let’s call her a and say that a got an A”



Existential Generalization (EG)

                        

Example:

“Michelle got an A in the class.”
“Therefore,  someone got an A in the class.”



Using Rules of Inference
Example 1: Using the rules of inference, construct a valid argument to show that

“John Smith has two legs”

    is a consequence of the premises:

“Every man has two legs.” “John Smith is a man.”

Solution: Let M(x) denote  “x is a man” and L(x) “ x has two legs” and let John 
Smith be a member of the domain. 

Valid Argument:

   

   

    

   

    

  



Using Rules of Inference
   Example 2: Use the rules of inference to construct a valid argument showing that the 
conclusion

“Someone who passed the first exam has not read the book.”

    follows from the premises

“A student in this class has not read the book.”

“Everyone in this class passed the first exam.”

    Solution: Let C(x) denote  “x is in this class,” B(x) denote  “ x has  read the book,” 
and P(x) denote   “x passed the first exam.”

 First we translate the

 premises and conclusion 

 into symbolic form.
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 Using Rules of Inference
Valid Argument:



Returning to  the Socrates Example



Solution for Socrates Example

Valid Argument



Universal Modus Ponens

Universal Modus Ponens combines 
universal instantiation and modus 
ponens into one rule. 

 This rule could be used in the Socrates 
example.



Introduction to 
Proofs

Section 1.7



Proofs of Mathematical Statements
A proof is a valid argument that establishes the truth of a statement.

In math, CS,  and other disciplines, informal proofs  which are generally 
shorter, are generally used.

More than one rule of inference are often used in a step. 

Steps may be skipped.

The rules of inference used are not explicitly stated. 

Easier for to understand and to explain to people. 

But it is also easier to introduce errors. 

Proofs have many practical applications:

verification that computer programs are correct 

establishing that operating systems are secure 

enabling programs to make inferences in artificial intelligence 

showing that system specifications are consistent



Definitions
A theorem is a statement that can be shown to be true using:

definitions

other theorems

axioms (statements which are given as true) 

rules of inference

A lemma is a ‘helping theorem’ or a result which is needed to prove a theorem.

A corollary is a result which follows directly from a theorem.

Less important theorems are sometimes called propositions. 

A conjecture is a statement that is being proposed to be true. Once a proof of a 
conjecture is found, it becomes a theorem. It may turn out to be false. 



Forms of  Theorems 
Many theorems assert that a property holds for all elements in a 

domain, such as the integers, the real numbers, or some of the 
discrete structures that we will study in this class. 

Often the universal quantifier (needed for a precise statement of 
a theorem) is omitted by standard mathematical convention. 

    For example, the statement:

        “If x > y, where x and y are positive real numbers, then x2 > y2 ”

   really means

       “For all positive real numbers x and y, if x > y, then x2 > y2 .”



Proving Theorems
Many theorems have the form:  

To prove them, we show that where c is an 
arbitrary element of the domain, 

By universal generalization the truth of the 
original formula follows.

So, we must prove something of the form:  



Proving Conditional Statements: p 
→ q 

Trivial Proof: If we know q is true, then

          p → q   is true as well.   

 

“If it is raining  then 1=1.”

       

 Vacuous Proof: If we know p is false then

           p → q   is true as well.

“If I am both rich and poor then 2 + 2 = 5.” 

 [ Even though these examples seem silly, both trivial and vacuous proofs 
are often used in mathematical induction, as we will see in Chapter 5) ]



Even and Odd Integers
   Definition:  The integer n is even if there exists 
an integer k such that n = 2k, and n is odd if there 
exists an integer k, such that n = 2k + 1. Note 
that every integer is either even or odd and no 
integer is both even and odd.

 

   We will need this basic fact about the integers in 
some of the example proofs to follow. We will learn 
more about the integers in Chapter 4.



Proving Conditional Statements: p → q 
Direct Proof: Assume that  p  is true. Use rules of 

inference, axioms, and logical equivalences to show 
that   q  must also be true.

   Example: Give a direct proof of the theorem “If n is an 
odd integer, then n^2  is odd.”

   Solution: Assume that n is odd. Then n = 2k + 1 for an 
integer k. Squaring both sides of the equation, we get:

n^2   = (2k + 1)^2   = 4k^2 + 4k +1 = 2(2k^2 + 2k) + 
1= 2r + 1, where r = 2k^2 + 2k , an integer.                     
 We have proved that if n is an odd integer, then n^2  is 
an odd integer.       

(      marks the  end of  the proof. Sometimes 
QED is used instead. )  



Proving Conditional Statements: p 
→ q 
   Example: Prove that for an integer n, if n^2  is odd, then 
n is odd. 

   Solution:  Use proof by contraposition. Assume n is even 
(i.e., not odd).  Therefore, there exists an integer k such 
that n = 2k. Hence,

               n^2   =  4k^2 = 2 (2k^2) 

    and n^2   is even (i.e., not odd).

    We have shown that if n is an even integer, then n^2  is 
even. Therefore by contraposition, for an integer n, if n^2  
is odd, then n is odd. 

    



Proving Conditional Statements: p 
→ q 
Proof by Contradiction: (AKA reductio ad absurdum).  

   To prove  p, assume  ¬p  and derive a contradiction such as    p ∧ 
¬p. (an indirect form of proof). Since we have shown that ¬p →F is 
true , it follows that the contrapositive  T→p also holds. 

   Example:  Prove that if you pick 22 days from the calendar, at least 
4 must fall on the same day of the week.

    Solution: Assume that no more than 3  of the 22 days fall on the 
same day of the week. Because there are 7 days of the week, we could 
only have picked 21 days. This contradicts the assumption that we 
have picked 22 days.

                 



Proof by Contradiction
A preview of  Chapter 4.
    Example: Use a proof by contradiction to give a proof that  √2 is irrational.
     Solution: Suppose √2 is rational. Then there exists integers a and b with √2  = a/b, 
where b≠ 0 and a and b have no common factors (see Chapter 4). Then a^2=2b^2
                                                  
     Therefore a^2  must be even. If a^2  is even then a must be even (an exercise). Since a 
is even, a = 2c  for some integer c. Thus,

Therefore b^2  is even.  Again then b must be even as well.
     But then 2 must divide both a and b. This contradicts our assumption that a and b have 
no common factors. We have proved by contradiction  that our initial assumption must be 
false  and  therefore  √2 is  irrational . 
      
 

           



Proof by Contradiction 
A preview of Chapter 4.

   Example: Prove that there is no largest prime number.

   Solution: Assume that there is a largest prime number. Call it 
pn. Hence, we can list all the primes 2,3,.., pn. Form

   

None of the prime numbers on the list divides r. Therefore, by a 
theorem in Chapter 4, either r is prime or there is a smaller prime 
that divides r. This contradicts the assumption that there is a 
largest prime. Therefore, there is no largest prime.



Theorems that are Biconditional 
Statements
To prove a theorem that is a biconditional statement, 

that is, a statement of the form p ↔ q, we show that     p 
→ q and q →p are both true. 

   Example: Prove the theorem: “If n is an integer, then n 
is odd if and only if n^2  is odd.”

   Solution:  We have already shown (previous slides) 
that both p →q and q →p. Therefore we can conclude p ↔ 
q.

  

   Sometimes iff   is used as an abbreviation for “if an only if,” as in

                  “If n is an integer, then n is odd iff n^2  is odd.”



What is wrong with this?
“Proof” that 1 = 2

Solution: Step 5.  a - b = 0 by the 
premise and division by 0 is undefined. 



Proof Methods and 
Strategy

Section 1.8



Proof by Cases
To prove a conditional statement of the form:

Use the tautology

Each of the implications                   is a case. 



Proof by Cases
Example: Let  a @ b = max{a, b} = a  if a ≥ b,  

otherwise  a @ b = max{a, b} = b. 

Show that for all  real numbers a, b, c 

                (a @b) @ c = a @ (b @ c)

(This means the operation @ is associative.)

Proof: Let a, b, and c be arbitrary real numbers.

Then one of the following 6 cases must hold. 

1. a ≥ b ≥ c

2. a ≥ c ≥ b

3. b ≥ a ≥c

4. b ≥ c ≥a

5. c ≥ a ≥ b

6. c ≥ b ≥ a
Continued on next slide 



Proof by Cases
Case 1: a ≥ b ≥ c

(a @ b) = a, a @ c = a, b @ c = b

Hence (a @ b) @ c = a = a @ (b @ c)

Therefore the equality holds for the first case.

      A complete proof requires that the equality be 
shown to hold for all 6 cases. But the proofs of 
the remaining cases are similar. Try them.



Without Loss of Generality
    Example: Show that if x and y are integers  and both x∙y and x+y are 
even, then both x and y are even.

     Proof: Use a proof by contraposition. Suppose  x and y are not both even. 
Then, one or both are odd. Without loss of generality, assume that x is odd. 
Then  x = 2m + 1 for some integer k. 

    Case 1: y is even. Then y = 2n for some integer n, so                                   
               x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

    Case 2: y is odd. Then y = 2n + 1 for some integer n, so                              
              x ∙ y = (2m + 1) (2n + 1) = 2(2m ∙ n +m + n) + 1 is odd.

     

    We only cover the case where x is odd because the case where y is odd is  
similar. The use phrase without  loss of generality (WLOG) indicates this. 

     



Existence Proofs
Proof of theorems of the form                   .

Constructive existence proof: 

Find an explicit value of c, for which  P(c) is true.

Then                       is   true by Existential Generalization (EG).

    Example: Show that there is a positive integer that can be  
written as the sum of cubes of positive integers in two different 
ways:

    Proof:        1729 is such a number since 

                          1729 = 10^3  + 9^3  = 12^3  + 1^3

   
Godfrey Harold Hardy
  (1877-1947)

Srinivasa Ramanujan
  (1887-1920)



Nonconstructive Existence Proofs
In a nonconstructive existence proof, we assume no c exists 

which makes P(c) true and derive  a contradiction.

   Example: Show that there exist irrational numbers x and y such 
that x^y is rational.

   Proof: We know that √2 is irrational. Consider the number 
(√2)^(√2) . If it is rational, we have two irrational numbers x and y 
with x^y  rational, namely x = √2 and y = √2. 

But if (√2)^(√2) is irrational, then we can let  x = (√2)^(√2)  and y 
= √2 so that x^y = ((√2)^(√2))^(√2) = (√2)^(√2 √2)  = (√2)^2  
= 2, which is rational.



Counterexamples
Recall                                     .  

To establish that                  is true (or               
 is false) find a c such that P(c) is true or P(c) 
is false. 

In this case c is called a counterexample to 
the assertion              .

   Example: “Every positive integer is the sum 
of the squares of 3 integers.” The integer 7 is a 
counterexample.  So the claim is false.



Uniqueness Proofs
Some theorems asset the existence of a unique element with a 

particular property, !x P(x). The two parts of a uniqueness proof are 

Existence: We show that an element x with the property exists.

Uniqueness: We show that if y≠x, then y does not have the property.

    Example: Show that if a and b are real numbers and  a ≠0, then 
there is a unique real number r  such that  ar + b = 0.

    Solution:

Existence: The real number r = −b/a is a solution of ar + b = 0 because 
a(−b/a) + b = −b + b =0.

Uniqueness: Suppose that s is a real number such that   as + b = 0. Then 
ar + b = as + b, where r = −b/a.  Subtracting b from both sides and 
dividing by a shows that r = s.  



Proof Strategies for proving p → q 
Choose a method.

1. First try a direct method of proof.  

2. If this does not work, try an indirect method (e.g., try to 
prove the contrapositive).

 For whichever method you are trying, choose a strategy.

1. First try forward reasoning.  Start with the axioms and 
known theorems and construct a sequence of steps that 
end in the conclusion.  Start with p and prove q, or start 
with ¬q and prove ¬p.

2. If this doesn’t work, try backward reasoning. When trying to 
prove q,  find a statement p that we can prove with the  
property p → q.



Universally Quantified Assertions
To prove theorems of the form               ,assume x is an 

arbitrary member of the domain and show that P(x) must 
be true. Using UG it follows that               .

    Example: An integer x is even if and only if x^2 is even. 

    Solution: The quantified assertion is 

        x [x is even  x^2  is even]

    We assume x is arbitrary.

    Recall that                  is equivalent to

    So, we have  two cases to consider. These are 
considered in turn.
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 Universally Quantified Assertions
   Case 1. We show that if x is even then x^2  
is even using a direct proof (the only if part or 
necessity).

   If x is even then x = 2k for some integer k.

   Hence x^2 =  4k^2 = 2(2k^2 ) which is even 
since it is an integer divisible by 2.

  This completes the proof of case 1.

Case 2 on next slide 



Universally Quantified Assertions
   Case 2. We show that if x^2 is even then x  must be  even (the if part or 
sufficiency). We use a proof by contraposition.

   Assume x is  not even  and then show that x^2  is not even. 

   If x is not even then it must be odd. So, x = 2k + 1 for some k. Then  x^2 
=   (2k + 1)^2 = 4k^2 + 4k + 1 =  2(2k^2 + 2k) + 1

    which is odd and hence not even. This completes the proof of case 2.

   Since x was arbitrary, the result follows by UG.

   Therefore we have shown that x is even if and only if  x^2 is even. 

  


