Discrete Mathematics, Chapter 3:
Algorithms

Richard Mayr

University of Edinburgh, UK

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3

Outline

0 Properties of Algorithms
© The Growth of Functions

0 Complexity of Algorithms

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3

Algorithms@ (Abu Ja 'far Mohammed lbin Musa Al-Khowarizmi,
780-850)

Definition

An algorithm is a finite set of precise instructions for performing a
computation or for solving a problem.

Example: Describe an algorithm for finding the maximum value in a
finite sequence of integers.
Description of algorithms in pseudocode:
@ Intermediate step between English prose and formal coding in a
programming language.
@ Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language.
@ Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 3/28

Properties of Algorithms

Input: An algorithm has input values from a specified set.

Output: From the input values, the algorithm produces the output
values from a specified set. The output values are the
solution.

Correctness: An algorithm should produce the correct output values
for each set of input values.

Finiteness: An algorithm should produce the output after a finite
number of steps for any input.

Effectiveness: It must be possible to perform each step of the
algorithm correctly and in a finite amount of time.

Generality: The algorithm should work for all problems of the desired
form.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 4/28

Example: Linear Search
Prose: Locate an item in a list by examining the sequence of list
elements one at a time, starting at the beginning.
More formal prose: Find item x in the list [ay, ao, . . ., an)-
@ First compare x with a;. If they are equal, return the position 1.
@ If not, try a,. If x = ay, return the position 2.
@ Keep going, and if no match is found when the entire list is
scanned, return 0.

Pseudocode:
Algorithm 1: Linear Search
Input: x : integer, [a1, ..., an] : list of distinct integers
Output: Index i s.t. x = a; or 0 if x is not in the list.
i=1;
while i < n and x # a; do

L i=i+1;

if i < nthen result := i else result .= 0;
return result;

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 5/28

Binary Search

Prose description:

@ Assume the input is a list of items in increasing order, and the
target element to be found.
@ The algorithm begins by comparing the target with the middle
element.
» If the middle element is strictly lower than the target, then the
search proceeds with the upper half of the list.
» Otherwise, the search proceeds with the lower half of the list
(including the middle).
@ Repeat this process until we have a list of size 1.
» If target is equal to the single element in the list, then the position is
returned.
» Otherwise, 0 is returned to indicate that the element was not found.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 6/28

Binary Search

Pseudocode:
Algorithm 2: Binary Search
Input: x : integer, [ay, ..., an) : strictly increasing list of integers

Output: Index i s.t. x = a; or 0 if x is not in the list.
i:=1; /] iisthe left endpoint of the interval
j:=n; [/l jis the right endpoint of the interval
while i < jdo
L m = (i +])/2];

if x>anptheni:=m+1elsej:=m;
if x = a; then result := i else result := 0;
return result;

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 7/28

Example: Binary Search
Find target 19 in the list: 1235678101213 1516 18 19 20 22

@ The list has 16 elements, so the midpoint is 8. The value in the 8th
position is 10. As 19> 10, search is restricted to positions 9-16.
1235678101213151618 192022

© The midpoint of the list (positions 9 through 16) is now the 12th
position with a value of 16. Since 19 > 16, further search is
restricted to the 13th position and above.
1235678101213151618 192022

© The midpoint of the current list is now the 14th position with a
value of 19. Since 19 # 19, further search is restricted to the
portion from the 13th through the 14th positions.
1235678101213151618 192022

© The midpoint of the current list is now the 13th position with a
value of 18. Since 19 > 18, search is restricted to position 14.
1235678101213151618 192022

@ Now the list has a single element and the loop ends.

Since 19 = 19, the location 14 is returned.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 8/28

Greedy Algorithms

@ Optimization problems minimize or maximize some parameter
over all possible inputs.
@ Examples of optimization problems:
» Finding a route between two cities with the smallest total mileage.
» Determining how to encode messages using the fewest possible

bits.
» Finding the fiber links between network nodes using the least

amount of fiber.

@ Optimization problems can often be solved using a greedy
algorithm, which makes the “best” (by a local criterion) choice at
each step. This does not necessarily produce an optimal solution
to the overall problem, but in many instances, it does.

@ After specifying what the “best choice” at each step is, we try to
prove that this approach always produces an optimal solution, or
find a counterexample to show that it does not.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 9/28

Example: Greedy Scheduling

We have a group of proposed talks with start and end times.
Construct a greedy algorithm to schedule as many as possible in a
lecture hall, under the following assumptions:

@ When a talk starts, it continues till the end. (Indivisible).
@ No two talks can occur at the same time. (Mutually exclusive.)
@ Atalk can begin at the same time that another ends.

@ Once we have selected some of the talks, we cannot add a talk
which is incompatible with those already selected because it
overlaps at least one of these previously selected talks.

@ How should we make the “best choice” at each step of the
algorithm? That is, which talk do we pick?

» The talk that starts earliest among those compatible with already
chosen talks?

» The talk that is shortest among those already compatible?

» The talk that ends earliest among those compatible with already
chosen talks?

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 10/28

Greedy Scheduling

Start: 8:00 AM

Talk 1 Start: 9:00 AM
Talk 2

Start: 9:45 AM

End:9:45 AM
End: 10:00 AM Talk 3

End: 11:00 AM

@ Picking the shortest talk doesn’t work.

@ But picking the one that ends soonest does work. The algorithm is
specified on the next page.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 11/28

A Greedy Scheduling Algorithm

At each step, choose the talks with the earliest ending time among the
talks compatible with those selected.

Algorithm 3: Greedy Scheduling by End Time
Input: sq,5o,..., 8, starttimes and ey, es, ..., e, end times
Output: An optimal set S C {1,..., n} of talks to be scheduled.
Sort talks by end time and reorder sothat ey < e, < --- < ey
S =0
forj:=1tondo

if Talk j is compatible with S then
L | S:=SU{j}

return S;

Note: Scheduling problems appear in many applications. Many of
them (unlike this simple one) are NP-complete and do not allow
efficient greedy algorithms.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 12/28

The Growth of Functions

Given functions f : N — Ror f: R — R.
Analyzing how fast a function grows.

@ Comparing two functions.

@ Comparing the efficiently of different algorithms that solve the
same problem.

@ Applications in number theory (Chapter 4) and combinatorics
(Chapters 6 and 8).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 13/28

Big-O Notation

Definition
Let f,g : R — R. We say that f is O(g) if there are constants C and k

such that
Wx > k. |f(x)| < Clg(x)|

@ This is read as “f is big-O of g” or “g asymptotically dominates f”.

@ The constants C and k are called witnesses to the relationship
between f and g. Only one pair of withesses is needed. (One pair
implies many pairs, since one can always make k or C larger.)

@ Common abuses of notation: Often one finds this written as
“f(x) is big-O of g(x)” or “f(x) = O(g(x)).

This is not strictly true, since big-O refers to functions and not their
values, and the equality does not hold.

@ Strictly speaking O(g) is the class of all functions f that satisfy the
condition above. So it would be formally correct to write f € O(g).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 14/28

lllustration of Big-O Notation

f(x) =x2+2x+1, g(x) = x2.

fis O(g) witness k =1 and C = 4.

Abusing notation, this is often written as f(x) = x2 + 2x + 1 is O(x?).

4x?) s x%+2x+1 x?
4+
3 The part of the graph of f(x) = x>+ 2x+ 1
that satisfies f(x) < 4x2 is shown in blue.

2
1 x4+ 2x+ 1 <4x?forx>1

L L

1 2

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 15/28

Properties of Big-O Notation

e If fis O(g) and g is O(f) then one says that f and g are of the
same order.

e If fis O(g) and h(x) > g(x) for all positive real numbers x then f
is O(h).

@ The O-notation describes upper bounds on how fast functions
grow. E.g., f(x) = x® 4 3x is O(x?) but also O(x?), etc.

@ Often one looks for a simple function g that is as small as

possible such that still fis O(g).
(The word ‘simple’ is important, since trivially f is O(f).)

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 16/28

Example

Bounds on functions. Prove that
@ f(x)=anx"+ap X" '+ +ax+a isO(x").
@ 1+2+ ---+n isO(nP).
en=1x2x---xn isO(nN").
@ log(n!) is O(nlog(n)).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 17/28

Growth of Common Functions

4096
2048
1024
512
256

u]
]
I
ul
it

na
Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3

Useful Big-O Estimates

@ If d > ¢ > 1,then n®is O(n%), but n% is not O(n°).
@ If b> 1 and c and d are positive, then (log, n)¢ is O(n%), but n? is
not O((log,, n)°).
@ If b> 1 and d is positive, then n? is O(b"), but b” is not O(n?).
@ Ifc>b>1,then b"is O(c"), but c" is not O(b").
@ If fi(x) is O(g1(x)) and f(x) is O(ga(x)) then (f; + £)(x) is
O(max(|g1(x)l, [g2(x)1))-
@ If f; is O(g1) and £ is O(go) then (fi o f) is O(g1 © o).
Note: These estimates are very important for analyzing algorithms.
Suppose that g(n) = 5n®> +7n— 3 and f is a very complex function that

you cannot determine exactly, but you know that f is O(n®).
Then you can still derive that n - f(n) is O(n*) and g(f(n)) is O(n®).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 19/28

Big-Omega Notation

Definition
Let f,g : R — R. We say that f is Q(g) if there are constants C and k
such that

Vx> k. |f(x)| = Clg(x)|

@ This is read as “f is big-Omega of g”.

@ The constants C and k are called witnesses to the relationship
between f and g.

@ Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound. Big-Omega tells us that a
function grows at least as fast as another.

@ Similar abuse of notation as for big-O.

e fis Q(g) if and only if g is O(f).

(Prove this by using the definitions of O and Q.)

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 20/28

Big-Theta Notation

Definition
Letf,g: R — R. We say that f is ©(g) if fis O(g) and f is Q(g). J

@ We say that “f is big-Theta of g” and also that “f is of order g” and
also that “f and g are of the same order”.

@ fis ©(g) if and only if there exists constants Cy, C, and k such
that C1g(x) < f(x) < Cog(x) if x > k. This follows from the
definitions of big-O and big-Omega.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 21/28

Example

Show that the sum 1 + 2 + - - - + n of the first n positive integers is
o(n?).

Solution: Letf(n)=1+2+---+n.

We have previously shown that f(n) is O(n?).

To show that 7(n) is Q(n?), we need a positive constant C such that
f(n) > Cn? for sufficiently large n.

Summing only the terms greater than n/2 we obtain the inequality

1+2+---+n>[n/2]+([n/2] +1)+---+n
> [n/2] + [n/2] +---+ [n/2]

=(n—[n/2] +1)[n/2]

> (n/2)(n/2) = n?/4

Taking C = 1/4, f(n) > Cn? for all positive integers n. Hence, f(n) is
Q(n?), and we can conclude that f(n) is ©(n?).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 22/28

Complexity of Algorithms

@ Given an algorithm, how efficient is this algorithm for solving a
problem given input of a particular size?

» How much time does this algorithm use to solve a problem?
» How much computer memory does this algorithm use to solve a
problem?
@ We measure time complexity in terms of the number of operations
an algorithm uses and use big-O and big-Theta notation to
estimate the time complexity.

@ Compare the efficiency of different algorithms for the same
problem.

@ We focus on the worst-case time complexity of an algorithm.
Derive an upper bound on the number of operations an algorithm
uses to solve a problem with input of a particular size.

(As opposed to the average-case complexity.)

@ Here: Ignore implementation details and hardware properties.
— See courses on algorithms and complexity.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 23/28

Worst-Case Complexity of Linear Search
Algorithm 4: Linear Search

Input: x : integer, [ay, ..., an] : list of distinct integers
Output: Index i s.t. x = a; or 0 if x is not in the list.
i=1;
while i < nand x # a; do

L [=1i+1;

if i < nthen result := i else result := 0;
return result;

Count the number of comparisons.

@ At each step two comparisons are made; i < nand x # a;.

@ To end the loop, one comparison i < nis made.

@ After the loop, one more i < n comparison is made.
If x = a;, 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made and then an additional comparison is used to
exit the loop. So, in the worst case 2n + 2 comparisons are made.
Hence, the complexity is ©(n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 24/28

Average-Case Complexity of Linear Search

For many problems, determining the average-case complexity is very
difficult.
(And often not very useful, since the real distribution of input cases
does not match the assumptions.)
However, for linear search the average-case is easy.
Assume the element is in the list and that the possible positions are
equally likely. By the argument on the previous slide, if x = a;, the
number of comparisons is 2/ + 1. Hence, the average-case complexity
of linear search is .

1 Y 2i+1=n+2

n

i=1

Which is ©(n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 25/28

Worst-Case Complexity of Binary Search

Algorithm 5: Binary Search

Input: x : integer, [ay, ..., an] : strictly increasing list of integers
Output: Index i s.t. x = a; or 0 if x is not in the list.
i:=1; //iisthe left endpoint of the interval
j:=n; /] jis the right endpoint of the interval
while /i < j do
L m = [(i+])/2];
if x > apthen/:=m+1elsej:=m,;
if x = a; then result := i else result .= 0;
return result;

Assume (for simplicity) n = 2 elements. Note that k = log n.

Two comparisons are made at each stage; i < j, and x > an,.

At the first iteration the size of the list is 2% and after the first iteration it is
2k=1. Then 2¥—2 and so on until the size of the listis 2' = 2.

At the last step, a comparison tells us that the size of the list is the size is
20 = 1 and the element is compared with the single remaining element.

Hence, at most 2k + 2 = 2log n + 2 comparisons are. made. ©(log n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3

26/28

Terminology for the Complexity of Algorithms

TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.
Complexity Terminology
o) Constant complexity
®(log n) Logarithmic complexity
®n) Linear complexity
O log n) Linearithmic complexity
O ") Polynomial complexity
O "), where b > 1 Exponential complexity
O (n!) Factorial complexity

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 27/28

Further topics

See courses on algorithms and complexity for
@ Space vs. time complexity
@ Intractable problems

@ Complexity classes: E.g., P, NP, PSPACE, EXPTIME, EXPSPACE,
etc.

@ Undecidable problems and the limits of algorithms.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 28/28

	Properties of Algorithms
	The Growth of Functions
	Complexity of Algorithms

