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Basic Counting: The Product Rule
Recall: For a set A, |A| is the cardinality of A (# of elements of A).

For a pair of sets A and B, A× B denotes their cartesian product:

A× B = {(a,b) | a ∈ A ∧ b ∈ B}

Product Rule
If A and B are finite sets, then: |A× B| = |A| · |B|.

Proof: Obvious, but prove it yourself by induction on |A|.

general Product Rule
If A1,A2, . . . ,Am are finite sets, then

|A1 × A2 × . . .× Am| = |A1| · |A2| · . . . · |Am|

Proof: By induction on m, using the (basic) product rule.
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Product Rule: examples

Example 1: How many bit strings of length seven are there?

Solution: Since each bit is either 0 or 1, applying the product rule,
the answer is 27 = 128.

Example 2: How many different car license plates can be made if
each plate contains a sequence of three uppercase English letters
followed by three digits?

Solution: 26 · 26 · 26 · 10 · 10 · 10 = 17,576,000.
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Counting Subsets

Number of Subsets of a Finite Set
A finite set, S, has 2|S| distinct subsets.

Proof: Suppose S = {s1, s2, . . . , sm}.
There is a one-to-one correspondence (bijection), between subsets of
S and bit strings of length m = |S|.
The bit string of length |S| we associate with a subset A ⊆ S has a 1 in
position i if si ∈ A, and 0 in position i if si 6∈ A, for all i ∈ {1, . . . ,m}.

{s2, s4, s5, . . . , sm} ∼= 0 1 0 1 1 . . . 1︸ ︷︷ ︸
m

By the product rule, there are 2|S| such bit strings.
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Counting Functions

Number of Functions
For all finite sets A and B, the number of distinct functions, f : A→ B,
mapping A to B is:

|B||A|

Proof: Suppose A = {a1, . . . ,am}.
There is a one-to-one correspondence between functions f : A→ B
and strings (sequences) of length m = |A| over an alphabet of size
n = |B|:

(f : A→ B) ∼= f (a1) f (a2) f (a3) . . . f (am)

By the product rule, there are nm such strings of length m.
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Sum Rule

Sum Rule
If A and B are finite sets that are disjoint (meaning A ∩ B = ∅), then

|A ∪ B| = |A|+ |B|

Proof. Obvious. (If you must, prove it yourself by induction on |A|.)

general Sum Rule
If A1, . . . ,Am are finite sets that are pairwise disjoint, meaning
Ai ∩ Aj = ∅, for all i , j ∈ {1, . . . ,m}, then

|A1 ∪ A2 ∪ . . . ∪ Am| = |A1|+ |A2|+ . . .+ |Am|
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Sum Rule: Examples
Example 1: Suppose variable names in a programming language
can be either a single uppercase letter or an uppercase letter followed
by a digit. Find the number of possible variable names.

Solution: Use the sum and product rules: 26 + 26 · 10 = 286.

Example 2: Each user on a computer system has a password which
must be six to eight characters long.
Each character is an uppercase letter or digit.
Each password must contain at least one digit.
How many possible passwords are there?

Solution: Let P be the total number of passwords, and let P6,P7,P8
be the number of passwords of lengths 6, 7, and 8, respectively.

By the sum rule P = P6 + P7 + P8.
P6 = 366 − 266; P7 = 367 − 267; P8 = 368 − 268.
So, P = P6 + P7 + P8 =

∑8
i=6(36i − 26i).
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Subtraction Rule (Inclusion-Exclusion for two sets)

Subtraction Rule
For any finite sets A and B (not necessarily disjoint),

|A ∪ B| = |A|+ |B| − |A ∩ B|

Proof: Venn Diagram:

A A ∩ B B

|A| + |B| overcounts (twice) exactly those elements in A ∩ B.
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Subtraction Rule: Example

Example: How many bit strings of length 8 either start with a 1 bit or
end with the two bits 00?

Solution:
Number of bit strings of length 8 that start with 1: 27 = 128.
Number of bit strings of length 8 that end with 00: 26 = 64.
Number of bit strings of length 8 that start with 1 and end with 00:
25 = 32.

Applying the subtraction rule, the number is 128 + 64− 32 = 160.
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The Pigeonhole Principle

Pigeonhole Principle
For any positive integer k , if k + 1 objects (pigeons) are placed in k
boxes (pigeonholes), then at least one box contains two or more
objects.

Proof: Suppose no box has more than 1 object. Sum up the number
of objects in the k boxes. There can’t be more than k .
Contradiction.

Pigeonhole Principle (rephrased more formally)
If a function f : A→ B maps a finite set A with |A| = k + 1 to a finite set
B, with |B| = k , then f is not one-to-one.

(Recall: a function f : A→ B is called one-to-one if ∀a1,a2 ∈ A, if
a1 6= a2 then f (a1) 6= f (a2).)
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Pigeonhole Principle: Examples

Example 1: At least two students registered for this course will
receive exactly the same final exam mark. Why?

Reason: There are at least 102 students registered for DMMR
(suppose the actual number is 145), so, at least 102 objects. Final
exam marks are integers in the range 0-100 (so, exactly 101
boxes).
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Generalized Pigeonhole Principle

Generalized Pigeonhole Principle (GPP)
If N ≥ 0 objects are placed in k ≥ 1 boxes, then at least one box
contains at least

⌈N
k

⌉
objects.

Proof: Suppose no box has more than
⌈N

k

⌉
− 1 objects. Sum up the

number of objects in the k boxes. It is at most

k · (
⌈

N
k

⌉
− 1) < k · ((N

k
+ 1)− 1) = N

Thus, there must be fewer than N. Contradiction.
(We are using the fact that

⌈N
k

⌉
< N

k + 1.)

Exercise: Rephrase GPP as a statement about functions f : A→ B
that map a finite set A with |A| = N to a finite set B, with |B| = k .
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Generalized Pigeonhole Principle: Examples
Example 1: Consider the following statement:

“At least d students in this course were born in the same month.” (1)

Suppose the actual number of students registered for DMMR is 145.
What is the maximum number d for which it is certain that statement
(1) is true?

Solution: Since we are assuming there are 145 registered students
in DMMR.⌈145

12

⌉
= 13, so by GPP we know statement (1) is true for d = 13.

Statement (1) need not be true for d = 14, because if 145 students are
distributed as evenly as possible into 12 months, the maximum number
of students in any month is 13, with other months having only 12.

(In probability theory you will learn that nevertheless it is highly
probable, assuming birthdays are randomly distributed, that at least 14
of you (and more) were indeed born in the same month. )
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GPP: more Examples

Example 2: How many cards must be selected from a standard deck
of 52 cards to guarantee that at least thee cards of the same suit are
chosen?

Solution: There are 4 suits. (In a standard deck of 52 cards, every
card has exactly one suit. There are no jokers.) So, we need to choose
N cards, such that

⌈N
4

⌉
≥ 3. The smallest integer N such that

⌈N
4

⌉
≥ 3

is 2 · 4 + 1 = 9.
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Permutations

Permutation
A permutation of a set S is an ordered arrangement of the elements
of S.

In other words, it is a sequence containing every element of S exactly
once.

Example: Consider the set S = {1,2,3}.

The sequence (3,1,2) is one permutation of S.

There are 6 different permutations of S. They are:

(1,2,3) , (1,3,2) , (2,1,3) , (2,3,1) , (3,1,2) , (3,2,1)
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Permutations (an alternative view)

A permutation of a set S can alternatively be viewed as a bijection (a
one-to-one and onto function), π : S → S, from S to itself.

Specifically, if the finite set is S = {s1, . . . , sm}, then by fixing the
ordering s1, . . . , sm, we can uniquely associate to each bijection
π : S → S a sequence ordering {s1, . . . , sm} as follows:

(π : S → S) ∼= π(s1) π(s2) π(s3) . . . π(sm)

Note that π is a bijection if and only if the sequence on the right
containing every element of S exactly once.
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r-Permutation

r-Permutation
An r -permutation of a set S, is an ordered arrangement (sequence) of
r distinct elements of S.

(For this to be well-defined, r needs to be an integer with 0 ≤ r ≤ |S|.)

Examples:
There is only one 0-permutation of any set: the empty sequence ().

For the set S = {1,2,3}, the sequence (3,1) is a 2-permutation.

(3,2,1) is both a permutation and 3-permutation of S (since |S| = 3).

There are 6 different different 2-permutations of S. They are:

(1,2) , (1,3) , (2,1) , (2,3) , (3,1) , (3,2)

Question: How many r -permutations of an n-element set are there?
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r -Permutations (an alternative view)

An r -permutation of a set S, with 1 ≤ r ≤ |S|, can alternatively be
viewed as a one-to-one function, f : {1, . . . , r} → S.

Specifically, we can uniquely associate to each one-to-one function
f : {1, . . . , r} → S, an r -permutation of S as follows:

(f : {1, . . . , r} → S) ∼= f (1) f (2) f (3) . . . f (r)

Note that f is one-to-one if and only if the sequence on the right is an
r -permutation of S.

So, for a set S with |S| = n, the number of r -permutions of S,
1 ≤ r ≤ n, is equal to the number of one-to-one functions:

f : {1, . . . , r} → {1, . . . ,n}
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Formula for # of permutations, and # of r -permutations
Let P(n, r) denote the number of r -permutations of an n-element set.

P(n,0) = 1, because the only 0-permutation is the empty sequence.

Theorem
For all integers n ≥ 1, and all integers r such that 1 ≤ r ≤ n:

P(n, r) = n · (n − 1) · (n − 2) . . . (n − r + 1) =
n!

(n − r)!

Proof. There are n different choices for the first element of the
sequence. For each of those choices, there are n − 1 remaining
choices for the second element. For every combination of the first two
choices, there are n − 2 choices for the third element, and so forth.

Corollary: the number of permutations of an n element set is:

n! = n · (n − 1) · (n − 2) . . . · 2 · 1 = P(n,n)
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Example: a simple counting problem

Example: How many permutations of the letters ABCDEFGH contain
the string ABC as a (consecutive) substring?

Solution: We solve this by noting that this number is the same as the
number of permutations of the following six objects:
ABC, D, E, F, G, and H. So the answer is:

6! = 720.
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How big is n! ?

The factorial function, n! , is fundamental in combinatorics and
discrete maths. So it is important to get a good handle on how fast n!
grows.

Questions:
Which is bigger n! or 2n ?

Which is bigger n! or nn ?

Answers (easy)
1 n! ≤ nn, for all n ≥ 0. (Note 00 = 1 and 0! = 1, by definition.)

2 2n < n!, for all n ≥ 4.

So, 2n ≤ n! ≤ nn, but that’s a big gap between growth 2n and nn.
Question: Is there a really good formula for approximating n! ?

Yes! A brilliant Scottish mathematician discovered it in 1730!
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Grave of James Stirling (1692-1770), in Greyfriar’s kirkyard, Edinburgh.
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Stirling’s Approximation Formula
Stirling’s approximation formula

n! ∼
√

2πn ·
(n

e

)n

In other words: limn→∞
n!√

2πn·( n
e )

n = 1.

(e denotes the base of the natural logarithm.)

Unfortunately, we won’t prove this. (The proof needs calculus.)

It is often more useful to have explicit lower and upper bounds on n!:

Stirling’s approximation (with lower and upper bounds)
For all n ≥ 1,

√
2πn ·

(n
e

)n
· e

1
12n+1 ≤ n! ≤

√
2πn ·

(n
e

)n
· e

1
12n

For a proof of this see, e.g., [Feller, Vol.1, 1968].
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Combinations

r -Combinations
An r -combination of a set S is an unordered collection of r elements
of S. In other words, it is simply a subset of S of size r .

Example: Consider the set S = {1,2,3,4,5}.

The set {2,5} is a 2-combination of S.

There are 10 different 2-combinations of S. They are:

{1,2} , {1,3} , {1,4} , {1,5} ,
{2,3} , {2,4} , {2,5} ,
{3,4} , {3,5} ,
{4,5}

Question: How many r -combinations of an n-element set are there?
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Formula for the number of r -combinations

Let C(n, r) denote the number of r -combinations of an n-element set.
Another notation for C(n, r) is: (

n
r

)
These are called binomial coefficients, and are read as “n choose r ”.

Theorem
For all integers n ≥ 1, and all integers r such that 0 ≤ r ≤ n:

C(n, r) .
=

(
n
r

)
=

n!

r ! · (n − r)!
=

n · (n − 1) · . . . · (n − r + 1)

r !

Proof. We can see that P(n, r) = C(n, r) · P(r , r). (To get an
r -permutation: first choose r elements, then order them.) Thus

C(n, r) =
P(n, r)
P(r , r)

=
n!/(n − r)!
r !/(r − r)!

=
n!

r ! · (n − r)!
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Some simple approximations and bounds for
(n

r

)
Using basic considerations and Stirling’s approximation formula, one
can easily establish the following bounds and approximations for

(n
r

)
:(n

r

)r
≤
(

n
r

)
≤
(n · e

r

)r

(
2n
n

)
∼ 22n
√
πn

22n

2n + 1
≤
(

2n
n

)
≤ 22n
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Combinations: examples

Example:
1 How many different 5-card poker hands can be dealt from a deck

of 52 cards?
2 How many different 47-card poker hands can be dealt from a deck

of 52 cards?

Solutions:
1 (

52
5

)
=

52!

5! · 47!
=

52 · 51 · 50 · 49 · 48
5 · 4 · 3 · 2 · 1

= 2,598,960

2 (
52
47

)
=

52!

47! · 5!
=

52 · 51 · 50 · 49 · 48
5 · 4 · 3 · 2 · 1

= 2,598,960

Question: Why are these numbers the same?
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Combinations: an identity

Theorem
For all integers n ≥ 1, and all integers r , 1 ≤ r ≤ n:(

n
r

)
=

(
n

n − r

)
Proof:(

n
r

)
=

n!

r ! · (n − r)!
=

n!

(n − r)! · (n − (n − r))!
=

(
n

n − r

)

We can also give a combinatorial proof: Suppose |S| = n. A
function, f , that maps each r -element subset A of S to the
(n − r)-element subset (S − A) is a bijection.
Any two finite sets having a bijection between them must have exactly
the same number of elements.
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Binomial Coefficients
Consider the polynomial in two variables, x and y , given by:

(x + y)n = (x + y) · (x + y) . . . (x + y)︸ ︷︷ ︸
n

By multiplying out the n terms, we can expand this polynomial and
write it in a standard sum-of-monomials form:

(x + y)n =
n∑

j=0

cjxn−jy j

Question: What are the coefficients cj? (These are called binomial
coefficients.)

Examples:
(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3
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The Binomial Theorem
Binomial Theorem
For all n ≥ 0:

(x + y)n =
n∑

j=0

(
n
j

)
xn−jy j =

(
n
0

)
xn +

(
n
1

)
xn−1y + . . .+

(
n
n

)
yn

Proof: What is the coefficient of xn−jy j?
To obtain a term xn−jy j in the expansion of the product

(x + y)n = (x + y)(x + y) . . . (x + y)︸ ︷︷ ︸
n

we have to choose exactly n − j copies of x and (thus) j copies of y .
How many ways are there to do this? Answer:

(n
j

)
=
( n

n−j

)
.

Corollary:
∑n

j=0
(n

j

)
= 2n.

Proof: By the binomial theorem, 2n = (1 + 1)n =
∑n

j=0
(n

j

)
.
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Pascal’s Identity

Theorem (Pascal’s Identity)
For all integers n ≥ 0, and all integers r , 0 ≤ r ≤ n + 1:(

n + 1
r

)
=

(
n

r − 1

)
+

(
n
r

)
Proof: Suppose S = {s0, s1, . . . , sn}. We wish to choose s subset
A ⊆ S such that |A| = r . We can do this in two ways. We can either:
(I) choose a subset A such that s0 ∈ A, or
(II) choose a subset A such that s0 6∈ A.

There are
( n

r−1

)
sets of the first kind,

and there are
(n

r

)
sets of the second kind.

So,
(n+1

r

)
=
( n

r−1

)
+
(n

r

)
.
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Pascal’s Triangle
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Many other useful identities...
Vandermonde’s Identity
For m,n, r ≥ 0, r ≤ m, and r ≤ n, we have(

m + n
r

)
=

r∑
k=0

(
m

r − k

)(
n
k

)

Proof: Suppose we have two disjoint sets A and B, with |A| = m and
|B| = n, and thus |A ∪ B| = m + n. We want to choose r elements out
of A ∪ B. We can do this by either:
(1) choosing 0 elements from A and r elements from B, or
(2) choosing 1 element from A and r − 1 elements from B, or
. . .
(r) choosing r elements from A and 0 elements from B.
There are

( m
r−k

)(m
k

)
possible choices of kind (k).

So, in total, there are
∑r

k=0
( m

r−k

)(n
k

)
r -element subsets of an

(n + m)-element set. So
(n+m

r

)
=
∑r

k=0
( m

r−k

)(n
k

)
.
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r-Combinations with repetition (with replaced)
Sometimes, we want to choose r elements with repetition allowed from
a set of size n. In how many ways can we do this?

Example: How many different ways are there to place 12 colored balls
in a bag, when each ball should be either Red,Green, or Blue?

Let us first formally phrase the general problem.
A multi-set over a set S is an unordered collection (bag) of copies of
elements of S with possible repetition. The size of a multi-set is the
number of copies of all elements in it (counting repetitions).
For example, if S = {R,G,B}, then the following two multi-sets over S
both have size 4:

[G,G,B,B] [R,G,G,B]

Note that ordering doesn’t matter in multi-sets, so [R,R,B] = [R,B,R].

Definition: an r -Combination with repetition (r -comb-w.r.) from a set S
is simply a multi-set of size r over S.
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Formula for # of r -Combinations with repetition

Theorem
For all integers n, r ≥ 1, the number of r -combs-w.r. from a set S of
size n is: (

n + r − 1
r

)
=

(
n + r − 1

n − 1

)
Proof: Each r -combination with repetition can be associated uniquely
with a string of length n + r − 1 consisting of of n − 1 bars and r stars,
and vice versa.
The bars partition the string into n different segments, and the number
of stars in each segment denotes the number of copies of the
corresponding element of S in the multi-set.
For example, for S = {R,G,B,Y}, then with the multiset

[R,R,B,B] we associate the string ? ?|| ? ?|

How many strings of length n + r − 1 with n − 1 bars and r stars are
there? Answer:

(n+r−1
r

)
=
(n+r−1

n−1

)
.
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Example

Example
How many different solutions in non-negative integers x1, x2, and x3,
does the following equation have?

x1 + x2 + x3 = 11

Solution: We have to place 11 “pebbles” into three different “bins”,
x1, x2, and x3.
This is equivalent to choosing an 11-comb-w.r. from a set of size 3, so
the answer is (

11 + 3− 1
11

)
=

(
13
2

)
=

13 · 12
2 · 1

= 78.
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Permutations with indistinguishable objects
Question: How many different strings can be made by reordering the
letters of the word “SUCCESS”?

Theorem: The number of permutations of n objects, with n1
indistinguishable objects of Type 1, n2 indistinguishable objects of Type
2, . . ., and nk indistinuishable objects of Type k , is: n!

n1! · n2! . . . nk !

Proof: First, the n1 objects of Type 1 can be placed among the n
positions in

( n
n1

)
ways. Next, the n2 objects of Type 2 can be placed in

the remaining n − n1 positions in
(n−n1

n2

)
ways, and so on... We get:(

n
n1

)
·
(

n − n1

n2

)
·
(

n − n1 − n2

n3

)
. . .

(
n − n1 − n2 − . . .− nk−1

nk

)
=

n!

n1!(n − n1)!

(n − n1)!

n2!(n − n1 − n2)!
. . .

(n − n1 − . . .− nk−1)!

nk !0!
=

n!

n1!n2! . . . nk !
.
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Multinomial Coefficients
Multinomial coefficients
For integers n,n1,n2, . . . ,nk ≥ 0, such that n = n1 + n2 + . . .+ nk , let:(

n
n1,n2, . . . ,nk

)
=

n!

n1!n2! . . . nk !

Multinomial Theorem
For all n ≥ 0, and all k ≥ 1:

(x1 + x2 + . . .+ xk )n =
∑

0≤n1,n2,...,nk≤n

(
n

n1,n2, . . . ,nk

)
xn1

1 xn2
2 . . . xnk

k

n1+n2+...+nk=n

Note: the Binomial Theorem is the special case of this where k = 2.

Question: In how many ways can the elements of a set S, |S| = n, be
partitioned into k distinguishable boxes, such that Box 1 gets n1
elements, . . ., Box k gets nk elements? Answer:

( n
n1,n2,...,nk

)
.
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