
Advanced Automata Minimization

Lorenzo Clemente
LaBRI, University of Bordeaux I

lorenzo.clemente@labri.fr

Richard Mayr
University of Edinburgh

http://homepages.inf.ed.ac.uk/rmayr

Abstract
We present an efficient algorithm to reduce the size of nondeter-
ministic Büchi word automata, while retaining their language. Ad-
ditionally, we describe methods to solve PSPACE-complete au-
tomata problems like universality, equivalence and inclusion for
much larger instances (1-3 orders of magnitude) than before. This
can be used to scale up applications of automata in formal verifica-
tion tools and decision procedures for logical theories.

The algorithm is based on new transition pruning techniques.
These use criteria based on combinations of backward and forward
trace inclusions. Since these relations are themselves PSPACE-
complete, we describe methods to compute good approximations
of them in polynomial time.

Extensive experiments show that the average-case complexity
of our algorithm scales quadratically. The size reduction of the au-
tomata depends very much on the class of instances, but our algo-
rithm consistently outperforms all previous techniques by a wide
margin. We tested our algorithm on Büchi automata derived from
LTL-formulae, many classes of random automata and automata de-
rived from mutual exclusion protocols, and compared its perfor-
mance to the well-known automata tool GOAL [34].

Categories and Subject Descriptors D.2.4 [Software Verifica-
tion]: Model checking; F.1.1 [Models of Computation]: Automata

General Terms Automata minimization, inclusion checking

Keywords Büchi automata, simulation, minimization

1. Introduction
Nondeterministic Büchi automata are an effective way to represent
and manipulate ω-regular languages, since they are closed under
boolean operations. They appear in many automata-based formal
software verification methods, as well as in decision procedures
for logical theories. For example, in LTL software model check-
ing [13, 22], temporal logic specifications are converted into Büchi
automata. In other cases, different versions of a program (obtained
by abstraction or refinement of the original) are translated into au-
tomata whose languages are then compared. Testing the confor-
mance of an implementation with its requirements specification
thus reduces to a language inclusion or language equivalence prob-
lem. Another application of Büchi automata in software engineer-
ing is program termination analysis by the size-change termination

[Technical Report EDI-INF-RR-1414 of the School of Informatics at the University
of Edinburgh, UK. http://www.inf.ed.ac.uk/publications/report/
Made available at arXiv.org - Non-exclusive license to distribute
(http://arxiv.org/licenses/nonexclusive-distrib/1.0/).

Research supported by UK Royal Society Grant IE110996.]

method [15, 26]. Via an abstraction of the effect of program oper-
ations on data, the termination problem can often be reduced to a
language inclusion problem about two derived Büchi automata.

Our goal is to improve the efficiency and scalability of automata-
based formal software verification methods. We consider efficient
algorithms for the minimization of automata, in the sense of obtain-
ing a smaller automaton with the same language, though not neces-
sarily with the absolute minimal possible number of states. (And, in
general, the minimal automaton for a language is not even unique.)
The reason to perform minimization is that the smaller minimized
automaton is more efficient to handle in a subsequent computation.
Thus there is an algorithmic tradeoff between the effort for min-
imization and the complexity of the problem later considered for
this automaton. If only computationally easy questions are asked
(e.g., reachability/emptiness; solvable in Logspace/PTIME) then
extensive minimization usually does not pay off. Instead, the main
applications are the following:

1. Computationally hard automata problems like universality,
equivalence, and inclusion. These are PSPACE-complete [25],
but many practically efficient methods have been developed
[3, 4, 6, 10, 11, 15, 16, 29]. Still, these all have exponential
time complexity and do not scale well. Typically they are ap-
plied to automata with 15–100 states (unless the automaton has
a particularly simple structure). Thus, one should first minimize
the automata before applying these exponential-time methods.
A good minimization algorithm makes it possible to solve much
larger instances. Even better, many instances of the PSPACE-
complete universality, equivalence, and inclusion problems can
already be solved in the polynomial time minimization algo-
rithm (e.g., by reducing the automaton to the trivial universal
automaton), so that the complete exponential time methods only
need to be invoked in a small minority of instances.

2. Cases where the size of an automaton strongly affects the
complexity of an algorithm. In LTL model checking [22] one
searches for loops in a graph that is the product of a large system
specification with an automaton derived from an LTL-formula.
Smaller automata often make this easier, though in practice it
also depends on the degree of nondeterminism [30].

3. Procedures that combine and modify automata repeatedly.
Model checking algorithms and automata-based decision pro-
cedures for logical theories compute automata products, unions,
complements, projections, etc., and thus the sizes of automata
grow rapidly. Thus, it is important to intermittently minimize
the automata to keep their size manageable, e.g., [27].

In general, finding an automaton with the minimal number of
states for a given language is computationally hard; even decid-
ing whether a given automaton is minimal is already PSPACE-
complete [23]. Thus much effort has been devoted to finding meth-
ods for partial minimization [8, 13, 14, 24]. Simulation preorders
played a central role in these efforts, because they provide PTIME-

1 2012/10/24

computable under-approximations of trace inclusions. However,
the quality of the approximation is insufficient in many practical
examples. Multipebble simulations [12] yield coarser relations by
allowing the Duplicator player to hedge her bets in the simulation
game, but they are not easily computable in practice.

1. We present methods for transition pruning, i.e., removing tran-
sitions from automata without changing their language. The
idea is that certain transitions can be removed, because other
‘better’ transitions remain. The ‘better’ criterion relies on com-
binations of forward and backward simulations and trace inclu-
sions. We provide a complete picture which combinations are
correct to use for pruning. Moreover, the pruned transitions can
be removed ‘in parallel’ (i.e., without re-computing the simula-
tions and trace inclusions after every change), which makes the
method efficient and practical.

2. We present an efficient practical method to compute good
under-approximations of trace inclusions, by introducing looka-
head simulations. While it is correct to use full trace inclusions
and maximal-pebble multipebble simulations in our minimiza-
tion methods, these are not easily computed (PSPACE-hard).
However, lookahead simulations are PTIME-computable, and
it is correct to use them instead of the more expensive trace
inclusions and multipebble simulations. Lookahead itself is a
classic concept in parsing and many other areas, but it can be
defined in many different variants. Our contribution is to iden-
tify and formally describe the lookahead-variant for simulation
preorders that gives the optimal compromise between efficient
computability and maximizing the sizes of the relations.1 Prac-
tical degrees of lookahead range from 4 to 25, depending on the
size and shape of the automata. Our experiments show that even
moderate lookahead helps considerably in obtaining good ap-
proximations of trace-inclusions and multipebble simulations.

3. We show that variants of the polynomial time minimization
algorithm can solve most instances of the PSPACE-complete
language inclusion problem. Thus, the complete exponential
time methods of [3, 4, 6, 10, 11, 15, 16] need only be invoked in
a minority of the cases. This allows to scale language inclusion
testing to much larger instances (e.g., automata with ≥ 1000
states) which are beyond traditional methods.

4. We performed extensive tests of our algorithm on automata of
up-to 20000 states. These included random automata accord-
ing to the Tabakov-Vardi model [33], automata obtained from
LTL formulae, and real-world mutual exclusion protocols. The
empirically determined average-case time complexity on ran-
dom automata is quadratic, while the (never observed) worst-
case complexity is O(n4). The worst-case space complexity is
quadratic. Our algorithm always minimizes better, on average,
than all previously available practical methods. However, the
exact advantage varies, depending on the type of instances; cf.
Section 7. For example, consider random automata with 100–
1000 states, binary alphabet and varying transition density td.
Random automata with td = 1.4 cannot be minimized much by
any method. The only effect is achieved by the trivial removal
of dead states which, on average, yields automata of 78% of the
original size. On the other hand, for td = 1.8, . . . ,2.2, the best
previous minimization methods yielded automata of 85%–90%
of the original size on average, while our algorithm yielded au-
tomata of 3%–15% of the original size on average.

While we present our methods in the framework of Büchi automata,
they directly carry over to the simpler case of finite-word automata.

1 A thorough literature search showed that this has never been formally
described so far.

2. Preliminaries
A non-deterministic Büchi Automaton (BA) A is a tuple (Σ,Q, I,F,δ)
where Σ is a finite alphabet, Q is a finite set of states, I ⊆ Q is
the set of initial states, F ⊆ Q is the set of accepting states, and
δ ⊆ Q× Σ×Q is the transition relation. We write p σ−→ q for
(p,σ,q) ∈ δ. A transition is transient iff any path can contain it at
most once. To simplify the presentation, we assume that automata
are forward and backward complete, i.e., for any state p ∈ Q and
symbol σ ∈ Σ, there exist states q0,q1 ∈ Q s.t. q0

σ−→ p σ−→ q1.
Every automaton can be converted into an equivalent complete one
by adding at most two states and a linear number of transitions.2
A state is dead iff either it is not reachable from an initial state, or
it cannot reach an accepting loop. In our simplification techniques,
we always remove dead states.

A Büchi automaton A describes a set of infinite words (its
language), i.e., a subset of Σω. An infinite trace of A on a word
w = σ0σ1 · · · ∈ Σω (or w-trace) starting in a state q0 ∈ Q is an
infinite sequence of transitions π = q0

σ0−→ q1
σ1−→ ·· · . By π[0..i]

we denote the finite prefix π = q0
σ0−→ ·· · σi−1−→ qi, and by π[i..] the

infinite suffix qi
σi−→ qi+1

σi+1−→ ·· · . Finite traces starting in q0 and
ending in a state qm ∈ Q are defined similarly. A finite or infinite
trace is initial iff it starts in an initial state q0 ∈ I; if it is infinite,
then it is fair iff qi ∈ F for infinitely many i. The language of A is
L(A) = {w ∈ Σω | A has an infinite, initial and fair trace on w}.

Language inclusion. When automata are viewed as a finite rep-
resentation for languages, it is natural to ask whether two different
automata represent the same language, or, more generally, to com-
pare these languages for inclusion. Formally, for two automata A =
(Σ,QA , IA ,FA ,δA) and B = (Σ,QB , IB ,FB ,δB) we write A ⊆ B iff
L(A) ⊆ L(B) and A ≈ B iff L(A) = L(B). The language inclu-
sion/equivalence problem consists in determining whether A ⊆ B
or A ≈ B holds, respectively. For general non-deterministic au-
tomata, language inclusion and equivalence are PSPACE-complete
[25] (which entails that, under standard theoretic-complexity as-
sumptions, they admit no efficient deterministic algorithm). There-
fore, one considers suitable under-approximations.

Definition A preorder v on QA ×QB is good for inclusion (GFI)
iff the following holds: If ∀q ∈ IA∃q′ ∈ IB ·qv q′, then A ⊆ B .

In other words, GFI preorders give a sufficient condition for inclu-
sion, by matching initial states of A with initial states of B . (They
are not necessary for inclusion since there are several initial states.)
Moreover, if computing a GFI preorder is efficient, than also inclu-
sion can be established efficiently. Finally, if a preorder is GFI, then
all smaller preorders are GFI too, i.e., GFI is ⊆-downward closed.

Quotienting. Another interesting problem is how to simplify an
automaton while preserving its semantics, i.e., its language. Gen-
erally, one tries to reduce the number of states/transitions. This is
useful because the complexity of decision procedures usually de-
pends on the size of the input automata.

A classical operation for reducing the number of states of an
automaton is that of quotienting, where states of the automaton are
identified according to a given equivalence, and transitions are pro-
jected accordingly. Since in practice we obtain quotienting equiva-
lences from suitable preorders, we directly define quotienting w.r.t.
a preorder. Formally, fix a BA A = (Σ,Q, I,F,δ) and a preorder v
on Q, with induced equivalence≡=v∩w. Given a state q∈Q, we
denote by [q] its equivalence class w.r.t. ≡, and, for a set of states
P⊆ Q, [P] is the set of equivalence classes [P] = {[p] | p ∈ P}.

2 For efficiency reasons, our implementation works directly on incomplete
automata.

2 2012/10/24

Definition The quotient of A by v is A/v= (Σ, [Q], [I], [F],δ′),
where δ′ = {([q1],σ, [q2]) | ∃q′1 ∈ [q1],q′2 ∈ [q2].(q′1,σ,q

′
2) ∈ δ},

i.e., transitions are induced element-wise.

Clearly, every trace q0
σ0−→ q1

σ1−→ ·· · in A immediately induces
a corresponding trace [q0]

σ0−→ [q1]
σ1−→ ·· · in A/ v, which is

fair/initial if the former is fair/initial, respectively. Consequently,
A ⊆ A/v for any preorderv. If, additionally, A/v⊆ A , then we
say that the preorder v is good for quotienting (GFQ).

Definition A preorder v is good for quotienting iff A/v ≈ A .

Like GFI preorders, also GFQ preorders are downward closed
(since a smaller preorder is quotienting “less”). Therefore, we are
interested in efficiently computable GFI/GFQ preorders. A classi-
cal example is given by simulation relations.

Simulation relations. Basic forward simulation is a binary rela-
tion on the states of A ; it relates states whose behaviors are step-
wise related, which allows one to reason about the internal structure
of automaton A— i.e., how a word is accepted, and not just whether
it is accepted. Formally, simulation between two states p0 and q0
can be described in terms of a game between two players, Spoiler
and Duplicator, where the latter wants to prove that q0 can step-
wise mimic any behavior of p0, and the former wants to disprove
it. The game starts in the initial configuration (p0,q0). Inductively,
given a game configuration (pi,qi) at the i-th round of the game,
Spoiler chooses a symbol σi ∈ Σ and a transition pi

σi−→ pi+1. Then,
Duplicator responds by choosing a matching transition qi

σi−→ qi+1,
and the next configuration is (pi+1,qi+1). Since the automaton
is assumed to be complete, the game goes on forever, and the
two players build two infinite traces π0 = p0

σ0−→ p1
σ1−→ ·· · and

π1 = q0
σ0−→ q1

σ1−→ ·· · . The winning condition depends on the type
of simulation, and different types have been considered depend-
ing on whether one is interested in GFQ or GFI relations. Here,
we consider direct [10], delayed [14] and fair simulation [21]. Let
x ∈ {di,de, f}. Duplicator wins the play if C x(π0,π1) holds, where

C di(π0,π1) ⇐⇒ ∀(i≥ 0) · pi ∈ F =⇒ qi ∈ F (1)

C de(π0,π1) ⇐⇒ ∀(i≥ 0) · pi ∈ F =⇒ ∃(j ≥ i) ·q j ∈ F (2)

C f(π0,π1) ⇐⇒ if π0 is fair, then π1 is fair (3)

Intuitively, direct simulation requires that accepting states are
matched immediately (the strongest condition), while in delayed
simulation Duplicator is allowed to accept only after a finite delay.
In fair simulation (the weakest condition), Duplicator must visit ac-
cepting states only if Spoiler visits infinitely many of them. Thus,
C di(π0,π1) implies C de(π0,π1), which, in turn, implies C f(π0,π1).

We define x-simulation relation vx⊆ Q×Q by stipulating that
p0 vx q0 iff Duplicator has a winning strategy in the x-simulation
game, starting from configuration (p0,q0); clearly, vdi⊆vde⊆vf .
Simulation between states in different automata A and B can be
computed as a simulation on their disjoint union. All these simula-
tion relations are GFI preorders which can be computed in polyno-
mial time [10, 14, 20]; moreover, direct and delayed simulation are
GFQ [14], but fair simulation is not [21].

Lemma 2.1 ([10, 14, 20, 21]). For x ∈ {di,de, f}, x-simulation vx

is a PTIME, GFI preorder, and, for y ∈ {di,de}, vy is also GFQ.

Trace inclusions. While simulations are efficiently computable,
their use is often limited by their size, which can be much smaller
than other GFI/GFQ preorders. One such example of coarser
GFI/GFQ preorders is given by trace inclusions, which are ob-
tained through a modification of the simulation game, as follows.

In simulation games, the players build two paths π0,π1 by
choosing single transitions in an alternating fashion; Duplicator

moves by knowing only the next 1-step move of Spoiler. We can
obtain coarser relations by allowing Duplicator a certain amount
of lookahead on Spoiler’s moves. In the extremal case of ω-
lookahead, i.e., where Spoiler has to reveal her whole path in ad-
vance, we obtain trace inclusions.

Analogously to simulations, we define direct, delayed, and fair
trace inclusion, as binary relations on Q. For x ∈ {di,de, f}, x-
trace inclusion holds between p and q, written p ⊆x q iff, for
every word w = σ0σ1 · · · ∈ Σω, and for every infinite w-trace π0 =

p0
σ0−→ p1

σ1−→ ·· · starting at p0 = p, there exists an infinite w-trace
π1 = q0

σ0−→ q1
σ1−→ ·· · starting at q0 = q, s.t. C x(π0,π1). All these

trace inclusions are GFI preorders subsuming the corresponding
simulation, i.e., vx ⊆⊆x (since Duplicator has more power in the
trace inclusion game); also, ⊆di is a subset of ⊆de, which, in turn,
is a subset of ⊆f . Regarding quotienting, ⊆di is GFQ (like vdi;
this follows from [12]), while ⊆f is not, since it is coarser than fair
simulation, which is not GFQ [21]. While delayed simulation vde

is GFQ, delayed trace inclusion ⊆de is not GFQ [8].

Lemma 2.2. For x ∈ {di,de, f}, x-trace inclusion ⊆x is a GFI
preorder. Moreover, ⊆di is a GFQ preorder.

Finally, though vde and ⊆di are incomparable, there exists a com-
mon generalization included in ⊆de called delayed fixed-word sim-
ulation which is GFQ [8].3

Backward simulation and trace inclusion. Yet another way of
obtaining GFQ/GFI preorders is to consider variants of simula-
tion/trace inclusion which go backwards in time. Backward simula-
tionvbw ([32], where it is called reverse simulation) is defined like
ordinary simulation, except that transitions are taken backwards:
From configuration (pi,qi), Spoiler selects a transition pi+1

σi−→ pi,
Duplicator replies with a transition qi+1

σi−→ qi, and the next con-
figuration is (pi+1,qi+1). Let π0 and π1 be the two infinite back-
ward traces built in this way. The corresponding winning condition
considers both accepting and initial states:

C bw(π0,π1) ⇐⇒ ∀(i≥ 0) ·
{

pi ∈ F =⇒ qi ∈ F, and
pi ∈ I =⇒ qi ∈ I (4)

vbw is an efficiently computable GFQ preorder [32] incomparable
with forward simulations. It can be used to establish language
inclusion by matching final states of A with final states of B (dually
to forward simulations); in this sense, it is GFI.

Lemma 2.3 ([32]). Backward sim. is a PTIME GFQ/GFI preorder.

The corresponding notion of backward trace inclusion ⊆bw is de-
fined as follows: p⊆bw q iff, for every finite word w=σ0σ1 · · ·σm−1 ∈
Σ∗, and for every initial, finite w-trace π0 = p0

σ0−→ p1
σ1−→

·· · σm−1−→ pm ending in pm = p, there exists an initial, finite w-trace
π1 = q0

σ0−→ q1
σ1−→ ·· · σm−1−→ qm ending in qm = q, s.t., for any i≥ 0,

if pi ∈ F , then qi ∈ F . Note that backward trace inclusion deals
with finite traces (unlike forward trace inclusions), which is due
to the asymmetry between past and future in ω-automata. Clearly,
vbw⊆⊆bw; we observe that even ⊆bw is GFQ/GFI.

Theorem 2.4. Backward trace inclusion is a GFQ/GFI preorder.

Proof. We first prove that ⊆bw is GFQ. Let v:=⊆bw. Let w =
σ0σ1 · · · ∈ L(A/v), and we show w ∈ L(A). There exists an
initial, infinite and fair w-trace π = [q0]

σ0−→ [q1]
σ1−→ ·· · . For i≥ 0,

let wi = σ0σ1 · · ·σi (with w−1 = ε), and let π[0..i] be the wi−1-trace

3 Delayed fixed-word simulation is defined as a variant of simulation where
Duplicator has ω-lookahead only on the input word w, and not on Spoiler’s
actual w-trace π0; that it subsumes ⊆di is non-trivial.

3 2012/10/24

prefix of π. For any i ≥ 0, we build by induction an initial, finite
wi−1-trace πi ending in qi (of length i) visiting at least as many
accepting states as π[0..i] (and at the same time π[0..i] does).

For i = 0, just take the empty ε-trace π0 = q0. For i > 0, assume
that an initial wi−2-trace πi−1 ending in qi−1 has already been built.
We have the transition [qi−1]

σi−1−→ [qi] in L(A/v). There exist q̂ ∈
[qi−1] and q̂′ ∈ [qi] s.t. we have a transition q̂

σi−1−→ q̂′ in A . W.l.o.g.
we can assume that q̂′ = qi, since [qi] = [q̂′]. By qi−1 ⊆bw q̂, there
exists an initial, finite wi−2-trace π′ ending in q̂. By the definition
of backward inclusion, π′ visits at least as many accepting states
as πi−1, which, by inductive hypothesis, visits at least as many
accepting states as π[0..i− 1]. Therefore, πi := π′

σi−1−→ qi is an
initial, finite wi−1-trace ending in qi. Moreover, if [qi] ∈ F ′, then,
since backward inclusion respects accepting states, [qi]⊆ F , hence
qi ∈ F , and, consequently, πi visits at least as many accepting states
as π[0..i]. Since π is fair, the finite, initial traces π0,π1, · · · visit
unboundedly many accepting states. Since A is finitely branching,
by König’s Lemma there exists an initial, infinite and fair w-trace
πω. Therefore, w ∈ L(A).

We now prove that ⊆bw is GFI. Let A and B be two automata.
For backward notions, we require that every accepting state in A is
in relation with an accepting state in B . Let w = σ0σ1 · · · ∈ L(A),
and let π0 = p0

σ0−→ p1
σ0−→ ·· · be an initial and fair w-path in

A . Since π0 visits infinitely many accepting states, and since each
such state is ⊆bw-related to an accepting state in B , by using the
definition of⊆bw it is possible to build in B longer and longer finite
initial traces in B visiting unboundedly many accepting states.
Since B is finitely branching, by König’s Lemma there exists an
infinite, initial and fair w-trace πω in B . Thus, w ∈ L(B).

3. Transition Pruning Minimization Techniques
While quotienting-based minimization techniques reduce the num-
ber of states by merging them, we explore an alternative method
which prunes (i.e., removes) transitions. The intuition is that certain
transitions can be removed from an automaton without changing its
language when other ‘better’ transitions remain.

Definition Let A = (Σ,Q, I,F,δ) be a BA and let P a transi-
tive, asymmetric relation on δ. The pruned automaton is de-
fined as Prune(A ,P) := (Σ,Q, I,F,δ′), with δ′ = {(p,σ,r) ∈
δ | @(p′,σ′,r′) ∈ δ · (p,σ,r)P(p′,σ′,r′)}.
By the assumptions on P, the pruned automaton Prune(A ,P) is
uniquely defined. Notice that transitions are removed ‘in parallel’.
Though P might depend on δ, P is not re-computed even if the
removal of a single transition changes δ. This is important because
computing P may be expensive. Since removing transitions cannot
introduce new words in the language, Prune(A ,P)⊆ A . When also
the converse inclusion holds (so the language is preserved), we say
that P is good for pruning (GFP), i.e., P is GFP iff Prune(A ,P)≈A .
Clearly, GFP is ⊆-downward closed (like GFI and GFQ).

We study GFP relations obtained by comparing the endpoints of
transitions over the same input symbol. Formally, given two binary
relations Rb,Rf ⊆ Q×Q, we define

P(Rb,Rf) = {((p,σ,r),(p′,σ,r′)) | pRb p′ and rRf r′}
P(·, ·) is monotone in both arguments. In the following, we explore
which state relations Rb,Rf induce GFP relations P(Rb,Rf).

It has long been known that P(id,@di) and P(@bw, id) are
GFP (see [7] where the removed transitions are called ‘little
brothers’). Moreover, even the relation Rt(⊂f) := P(id,@di) ∪
{((p,σ,r),(p,σ,r′)) | (p,σ,r′) is transient and r ⊂f r′} is GFP
[32], i.e., strict fair trace inclusion suffices if the remaining tran-
sition can only be used once. However, in general, P(id,⊂f) is

Rb\Rf id @di ⊂di @de @f

id × X X × ×
@bw X X X × ×
⊂bw X X × × ×

Figure 1. GFP relations P(Rb,Rf)

not GFP. Moreover, even if only transient transitions are com-
pared/pruned, P(@bw,⊂f) is not GFP; cf. Fig. 2.

Theorem 3.1. For every asymmetric and transitive relation R⊆⊆di,
P(id,R) is GFP.

Proof. Let A ′ = Prune(A ,P(id,R)). We show A ⊆ A ′. If w =
σ0σ1 · · · ∈ L(A) then there exists an infinite fair initial trace π̂ on
w in A . We show w ∈ L(A ′).

We call a trace π = q0
σ0−→ q1

σ1−→ ·· · on w in A i-good if it does
not contain any transition q j

σ j−→ q j+1 for j < i s.t. there exists an A
transition q j

σ j−→ q′j+1 with q j+1 Rq′j+1 (i.e., no such transition is
used within the first i steps). Since A is finitely branching, for every
state and symbol there exists at least one R-maximal successor that
is still present in A ′, because R is asymmetric and transitive. Thus,
for every i-good trace π on w there exists an (i+ 1)-good trace π′

on w s.t. π and π′ are identical on the first i steps and C di(π,π′),
because R⊆⊆di. Since π̂ is an infinite fair initial trace on w (which
is trivially 0-good), there exists an infinite initial trace π̃ on w that is
i-good for every i and C di(π̂, π̃). Moreover, π̃ is a trace in A ′. Since
π̂ is fair and C di(π̂, π̃), π̃ is an infinite fair initial trace on w that is
i-good for every i. Therefore π̃ is a fair initial trace on w in A ′ and
thus w ∈ L(A ′).

Theorem 3.2. For every asymmetric and transitive relation R⊆⊆bw,
P(R, id) is GFP.

Proof. Let A ′ = Prune(A ,P(R, id)). We show A ⊆ A ′. If w =
σ0σ1 · · · ∈ L(A) then there exists an infinite fair initial trace π̂ on
w in A . We show w ∈ L(A ′).

We call a trace π = q0
σ0−→ q1

σ1−→ ·· · on w in A i-good if it does
not contain any transition q j

σ j−→ q j+1 for j < i s.t. there exists an A
transition q′j

σ j−→ q j+1 with q j Rq′j (i.e., no such transition is used
within the first i steps).

We show, by induction on i, the following property (P): For
every i and every initial trace π on w in A there exists an initial
i-good trace π′ on w in A s.t. π and π′ have identical suffixes from
step i onwards and C di(π,π′).

The base case i = 0 is trivial with π′ = π. For the induction step
there are two cases. If π is (i+ 1)-good then we can take π′ = π.
Otherwise there exists a transition q′i

σi−→ qi+1 with qi Rq′i. Without
restriction (since A is finite and R is asymmetric and transitive)
we assume that q′i is R-maximal among the σi-predecessors of
qi+1. In particular, the transition q′i

σi−→ qi+1 is present in A ′. Since
R⊆⊆bw, there exists an initial trace π′′ on w that has suffix q′i

σi−→
qi+1

σi+1−→ qi+2 . . . and C di(π,π′′). Then, by induction hypothesis,
there exists an initial i-good trace π′ on w that has suffix q′i

σi−→
qi+1

σi+1−→ qi+2 . . . and C di(π′′,π′). Since q′i is R-maximal among
the σi-predecessors of qi+1 we obtain that π′ is also (i+ 1)-good.
Moreover, π′ and π have identical suffixes from step i+1 onwards.
Finally, by C di(π,π′′) and C di(π′′,π′), we obtain C di(π,π′).

Given the infinite fair initial trace π̂ on w in A , it follows from
property (P) and König’s Lemma that there exists an infinite initial

4 2012/10/24

trace π̃ on w that is i-good for every i and C di(π̂, π̃). Therefore π̃ is
an infinite fair initial trace on w in A ′ and thus w ∈ L(A ′).

Theorem 3.3. If A = A/vbw then P(@bw,⊆di) is GFP.

Proof. Let A ′ = Prune(A ,P(@bw,⊆di)). We show A ⊆ A ′. Let
w = σ0σ1 · · · ∈ L(A). Then there exists an infinite fair initial trace
π̂ on w in A . We show w ∈ L(A ′).

We call a trace π= q0
σ0−→ q1

σ1−→ ·· · on w start-maximal iff it is
initial and there does not exist any trace π′= q′0

σ0−→ q′1
σ1−→·· · on w

s.t. C di(π,π′) and q0 @bw q′0. We call a trace π = q0
σ0−→ q1

σ1−→ ·· ·
on w i-good iff it is start-maximal and π does not contain any
transition q j

σ j−→ q j+1 for j < i s.t. there exists an A transition

q j
σ j−→ q′j+1 with q j+1 @bw q′j+1 and there exists an infinite trace

π′[j+1..] from q′j+1 with C di(π[j+1..],π′[j+1..]).
Since A is finite, there are @bw-maximal elements among those

finitely many successors of every state q j from which there exists
an infinite trace π′[j+1..] with C di(π[j+1..],π′[j+1..]). Thus, for
every infinite i-good trace π on w there exists an (i+1)-good trace
π′ on w s.t. π and π′ are identical on the first i steps and C di(π,π′).

Since there is an infinite fair initial trace π̂ on w, there also exists
a start-maximal, and thus 0-good, fair initial trace on w, because
@bw has maximal elements. Then it follows from the property
above that there exists an infinite initial trace π̃ on w that is i-good
for every i and C di(π̂, π̃). In particular, this implies that π̃ is fair. So
π̃ is an infinite fair initial trace on w that is i-good for every i.

Let now π̃ = q0
σ0−→ q1

σ1−→ ·· · . We show that π̃ is also possible
in A ′ by assuming the opposite and deriving a contradiction. Sup-
pose that π̃ contains a transition q j

σ j−→ q j+1 that is not present

in A ′. Then there must exist a transition q′j
σ j−→ q′j+1 in A ′ s.t.

q j @bw q′j and q j+1 ⊆di q′j+1. We cannot have j = 0, because in
this case π̃ would not be start-maximal and thus not even 1-good.
So we get j ≥ 1. Since q j @bw q′j and q j−1

σ j−1−→ q j there must ex-

ist a state q′j−1 s.t. q′j−1
σ j−1−→ q′j and q j−1 vbw q′j−1. In particular,

qx ∈ F ⇒ q′x+1 ∈ F for x ∈ { j−1, j}. By A = A/vbw we obtain
that either q j−1 = q′j−1 or q j−1 @bw q′j−1. The first case would im-
ply that π′ is not j-good, because q j+1 ⊆di q′j+1, and thus yield a
contradiction. Therefore, we must have q j−1 @bw q′j−1. We cannot
have j−1 = 0, because in this case π′ would not be start-maximal
and thus not even 1-good. So we get j−1≥ 1. The whole argument
above repeats with j− 1, j− 2, j− 3, . . . substituted for j until we
get a contradiction or 0 is reached. Reaching 0 also yields a con-
tradiction to start-maximality of π̃, as above. Therefore π̃ is a fair
initial trace on w in A ′ and thus w ∈ L(A ′).

Theorem 3.4. P(⊆bw,@di) is GFP.

Proof. Let A ′ = Prune(A ,P(⊆bw,@di)). We show A ⊆ A ′. Let
w = σ0σ1 · · · ∈ L(A). Then there exists an infinite fair initial trace
π̂ on w in A . We show w ∈ L(A ′).

Given some infinite initial trace π = q0
σ0−→ q1

σ1−→ ·· · on w, we
call it i-good iff its first i transitions are also possible in A ′.

We now show, by induction on i, the following property (P): For
every infinite initial trace π = q0

σ0−→ q1
σ1−→ ·· · on w and every

i≥ 0, there exists an infinite initial trace π′ = q′0
σ0−→ q′1

σ1−→ ·· · on
w that is i-good and C di(π,π′) and ∀ j ≥ i.q j vdi q′j.

The base case i= 0 is trivially true with π′= π. For the induction
step consider an infinite initial trace π = q0

σ0−→ q1
σ1−→ ·· · on

w. By induction hypothesis, there exists an infinite initial trace
π1 = q1

0
σ0−→ q1

1
σ1−→ ·· · on w that is i-good and C di(π,π1) and

∀ j ≥ i.q j vdi q1
j .

If π1 is (i+1)-good then we are done. Otherwise, the transition
q1

i
σi−→ q1

i+1 is not present in A ′. Since A ′=Prune(A ,P(⊆bw,@di)),

there must exist a transition q2
i

σi−→ q2
i+1 in A ′ s.t. q1

i ⊆bw q2
i and

q1
i+1 @di q2

i+1. It follows from the definitions of ⊆bw and @di that

there exists an infinite initial trace π2 = q2
0

σ0−→ q2
1

σ1−→ ·· · on w
s.t. C di(π1,π2), q1

i+1 @di q2
i+1 and ∀ j ≥ i+ 1.q1

j vdi q2
j . (This last

property uses the fact that vdi propagates forward. Direct trace in-
clusion ⊆di does not suffice.) By induction hypothesis, there exists
an infinite initial trace π3 = q3

0
σ0−→ q3

1
σ1−→ ·· · on w that is i-good

and C di(π2,π3) and ∀ j ≥ i.q2
j vdi q3

j . By transitivity we obtain
C di(π1,π3), q1

i+1 @
di q3

i+1 and ∀ j ≥ i+1.q1
j vdi q3

j .
If π3 is (i+1)-good then we are done. Otherwise, the argument

of the above paragraph repeats and we obtain an infinite initial
trace π5 = q5

0
σ0−→ q5

1
σ1−→ ·· · on w that is i-good and C di(π3,π5),

that q3
i+1 @di q5

i+1 and ∀ j ≥ i+ 1.q3
j vdi q5

j . This process cannot
repeat infinitely often, because this would imply an infinite strictly
increasing @di-chain q2x+1

i+1 for x = 0,1,2, . . . , which is impossible
in finite automata. Therefore, for some finite index x, we obtain an
infinite initial trace πx = qx

0
σ0−→ qx

1
σ1−→ ·· · on w that is (i+1)-good

and, by transitivity, C di(π,πx) and ∀ j ≥ i+1.q j vdi qx
j. Thus πx is

the trace π′ that we were looking for.
Given the infinite fair initial trace π̂ on w in A , it follows from

property (P) and König’s Lemma that there exists an infinite initial
trace π̃ on w that is i-good for every i and C di(π̂, π̃). Therefore π̃ is
an infinite fair initial trace on w in A ′ and thus w ∈ L(A ′).

Theorem 3.4 implies that P(@bw,@di) is GFP, but P(⊂bw,⊂di)
is not; see Figure 2. Moreover, P(id,@de) is not GFP (even if
A = A/vde); see Figure 2.

The quotienting and transition pruning techniques described
above use intricate combinations of backward and forward simu-
lations (and more general trace inclusions). In particular, they sub-
sume previous attempts to combine backward and forward simula-
tions for automata minimization by mediated preorder [5] (but not
vice-versa). Mediated preorder is defined as the largest fragment
M ⊆vdi ◦(vbw)−1 s.t. M◦ vdi⊆M. In particular, M is a preorder
that is GFQ. However, an automaton A that has been minimized by
the techniques described above cannot be further reduced by me-
diated preorder. First we have A = A/vbw= A/vdi by repeated
quotienting. Second, there cannot exist any distinct states x,y in A
s.t. (xvdi y∧ xvbw y) by the pruning techniques above (used with
simulations as approximations for trace inclusions) and the removal
of dead states. Under these conditions, quotienting with mediated
preorder has no effect, as the following theorem shows.

Theorem 3.5. Let A be an automaton s.t. (1) A = A/vbw=
A/vdi and (2) xvdi y∧ xvbw y⇒ x = y. Then A = A/M.

Proof. We show that xMy∧yMx⇒ x = y which implies A = A/M.
Let xMy and yMx. By definition of M there exist mediators z

s.t. x vdi z and y vbw z, and w s.t. x vbw w and y vdi w. Since
M◦ vdi⊆ M we have xMw. Thus there exists a mediator k s.t.
xvdi k and wvbw k. By transitivity of vbw we also have xvbw k.
By (2) we get x = k. Thus x vbw w and w vbw x. By (1) we get
x = w. Thus yvdi w = xvdi z and by transitivity yvdi z. Moreover,
y vbw z as above. By (2) we get z = y. Thus x vdi z = y and
yvdi w = x. By (1) we get x = y.

5 2012/10/24

p0 q0 r0 s0

p1 q1 r1 s1

a

c
b

a a a
a,d

a

a

a,c

a b

a a a

a

a

d

e

⊂
b
w

⊂
d
i ⊂

b
w

⊂
d
i

(a) P(⊂bw,⊂di) is not GFP: If the dashed transitions p0
a−→ q0 and r1

a−→
s1 are removed, then a5eω is no longer accepted. Note that A = A/⊆bw=

A/⊆di. (This example even holds for≺k-bw,≺k-di and k = 3; cf. Section 4).

p

q

r

s

a a,b

a,b a

c

(b) GFP is not closed under
union: Pruning automaton A with
P(id,@di) ∪ P(@bw, id) would
remove the transitions p a−→ r and
q a−→ s, and thus aacω would no
longer be accepted.

p qa

a,b a

(c) P(id,@de) is not GFP: We
have q @de p, but removing
the dashed transition p a−→
q makes the language empty,
even though A = A/vde.

p q ra a,b

a,b a

(d) P(@bw,⊂f) is not GFP: In the automaton above, both transi-
tions p a−→ q and q a−→ r are transient. Moreover, r ⊂f q (even
r @de q) and q @bw p. However, removing the smaller transition
q a−→ r changes the language, since aω is no longer accepted.
Thus, P(@bw,⊂f) is not GFP even when one restricts to compar-
ing/pruning only transient transitions (unlike P(id,⊂f)).

Figure 2. Pruning counterexamples.

4. Lookahead Simulations
While trace inclusions are theoretically appealing as GFQ/GFI pre-
orders coarser than simulations, it is not feasible to use them in
practice, because they are too hard to compute (even their member-
ship problem is PSPACE-complete). As a first attempt at achieving
a better trade-off between complexity and size we recall multipeb-
ble simulations [12], which are obtained by providing Duplicator
with several pebbles, instead of one. However, computing multi-
pebble simulations is not feasible in practice either, on automata of
nontrivial size. Therefore, we explore yet another way of obtain-
ing good under-approximations of trace inclusion: We introduce
lookahead simulations, which are obtained by providing Duplicator
with a limited amount of information about Spoiler’s future moves.
While lookahead itself is a classic concept (e.g., in parsing) it can
be defined in several different ways in the context of adversarial
games like in simulation. We compare different variants for com-
putational efficiency and approximation quality.

k-pebble simulation. Simulation preorder can be generalized by
allowing Duplicator to control several pebbles instead of just one.
In k-pebble simulation, k > 0, Duplicator’s position is a set of at
most k states (while Spoiler still controls exactly 1 state), which
allows Duplicator to ‘hedge her bets’ in the simulation game. The
direct, delayed, fair and backward winning conditions can be gen-
eralized to the multipebble framework [12]. For x ∈ {di,de, f,bw}
and k > 0, k-pebble x-simulation is coarser than x-simulation and
it implies x-containment; by increasing k, one can control the qual-
ity of the approximation to trace inclusion. Direct, delayed, fair
and backward k-pebble simulations are not transitive in general,
but their transitive closures are GFI preorders; the direct, delayed
and backward variants are also GFQ. However, computing k-pebble
simulations is infeasible, even for modest values for k. In fact, for a
BA with n states, computing k-pebble simulation requires solving a
game of size n ·nk. Even in the simplest case of k = 2 this means at
least cubic space, which is not practical for large n. For this reason,
we consider a different way to extend Duplicator’s power, i.e., by
using lookahead on the moves of Spoiler.

k-step simulation. We generalize simulation by having the play-
ers select sequences of transitions of length k > 0 instead of sin-
gle transitions: This gives Duplicator more information, and thus
yields a larger simulation relation. In general, k-step simulation
and k-pebble simulation are incomparable, but k-step simulation is
strictly contained in n-pebble simulation. However, the rigid use of
lookahead in big-steps causes at least two issues: 1) For a BA with
n states, we need to store only n2 configurations (p,q) (which is
much less than k-pebble simulation). However, in every round we
have to explore up-to dk different moves for each player (where d is
the maximal out-degree of the automaton). In practice (e.g., d = 4,
k = 12) this is still too large. 2) Duplicator’s lookahead varies be-
tween 1 and k, depending where she is in her response to Spoiler’s
long move. Thus, Duplicator might lack lookahead where it is most
needed, while having a large lookahead in other situations where it
is not useful. In the next notion, we attempt at ameliorating this.

k-continuous simulation. Duplicator is continuously kept in-
formed about Spoiler’s next k moves, i.e., she always has looka-
head k. Formally, a configuration of the simulation game consists
in a pair (ρi,qi), where ρi is the sequence of the next k− 1 moves
from pi that Spoiler has already committed to. In every round of
the game, Spoiler reveals another move k steps in the future, and
then makes the first of her announced k moves, to which Dupli-
cator responds as usual. A pair of states (p,q) is in k-continuous
simulation if Duplicator can win this game from every configura-
tion (ρ,q), where ρ is a sequence of k−1 moves from p. (k = 1 is
ordinary simulation.) k-continuous simulation is strictly contained
in n-pebble simulation (but incomparable with k-pebble simula-
tion), and larger than k-step simulation. While this is arguably the
strongest way of giving lookahead to Duplicator, it requires storing
n2 · dk−1 configurations, which is infeasible for nontrivial n and k
(e.g., n = 10000, d = 4, k = 12).

k-lookahead simulation. We introduce k-lookahead simulation
as an optimal compromise between k-step and k-continuous simu-
lation. Intuitively, we put the lookahead under Duplicator’s control,
who can choose at each round how much lookahead she needs (up
to k). Formally, configurations are pairs (pi,qi) of states. In every
round of the game, Spoiler chooses a sequence of k consecutive
transitions pi

σi−→ pi+1
σi+1−→ ·· · σi+k−1−→ pi+k. Duplicator then chooses

a number 1 ≤ m ≤ k and responds with a matching sequence of
m transitions qi

σi−→ qi+1
σi+1−→ ·· · σi+m−1−→ qi+m. The remaining k−m

moves of Spoiler are forgotten, and the next round of the game
starts at (pi+m,qi+m). In this way, the players build two infinite
traces π0 from p0 and π1 from q0. Backward simulation is de-

6 2012/10/24

fined similarly with backward transitions. For acceptance condition
x ∈ {di,de, f,bw}, Duplicator wins this play if C x(π0,π1) holds.

Definition Two states (p0,q0) are in k-lookahead x-simulation,
written p0 vk-x q0, iff Duplicator has a winning strategy in the
above game.

Since vk-x is not transitive (unless k = 1; cf. Appendix B), we
denote its transitive closure, which is a preorder, by �k-x, and its
asymmetric restriction by ≺k-x=�k-x \(�k-x)−1.

Lookahead simulation offers the optimal trade-off between k-
step and k-continuous simulation. Since the lookahead is discarded
at each round, k-lookahead simulation is (strictly) included in k-
continuous lookahead (where the lookahead is never discarded).
However, this has the benefit of only requiring to store n2 con-
figurations, which makes computing lookahead simulation space-
efficient. On the other side, when Duplicator always chooses a max-
imal reply m = k we recover k-step simulation, which is thus in-
cluded in k-lookahead simulation. Moreover, thanks to the fact that
Duplicator controls the lookahead, most rounds of the game can
be solved without ever reaching the maximal lookahead k: 1) for
a fixed attack by Spoiler, we only consider Duplicator’s responses
for small m = 1,2, . . . ,k until we find a winning one, and 2) also
Spoiler’s attacks can be built incrementally since, if she loses for
some lookahead h, then she also loses for h′>h. In practice, this
greatly speeds up the computation, and allows us to use lookaheads
in the range 4-25, depending on the size and structure of the au-
tomata; see Section 7 for the experimental evaluation and bench-
mark against the GOAL tool [34].

k-lookahead simulation can also be expressed as a restriction
of n-pebble simulation, where Duplicator is allowed to split peb-
bles maximally (thus n-pebbles), but after a number m ≤ k rounds
(where m is chosen dynamically by Duplicator) she has to discard
all but one pebble. Then, Duplicator is allowed to split pebbles
maximally again, etc. Thus, k-lookahead simulation is contained
in n-pebble simulation, though it is generally incomparable with
k-pebble simulation.

Direct, delayed, fair and backward k-lookahead simulation have
a fixed-point characterization expressible in µ-calculus (cf. Ap-
pendix C), which can be useful for a symbolic implementation.
However, our current algorithm computes them with an explicit-
state representation.

5. Automata Minimization
We minimize automata by transition pruning and quotienting.
While trace inclusions would be an ideal basis for such techniques,
they (i.e., their membership problems) are PSPACE-complete. In-
stead, we use lookahead simulations as efficiently computable
under-approximations; in particular, we use

• �k-di in place of direct trace inclusion⊆di (which is GFQ [12]).

• �k-de in place of n-pebble delayed simulation (GFQ [12]).

• �k-f in place of fair trace inclusion ⊆f (which is GFI).

• �k-bw in place of backward trace inclusion⊆bw (which is GFQ
by Theorem 2.4).

For pruning, we apply the results of Section 3 and the substitutions
above to obtain the following GFP relations:

P(id,≺k-di),P(≺k-bw, id),P(@bw,�k-di),P(�k-bw,@di),Rt(≺k-f)

For quotienting, we employ delayed �k-de and backward �k-bw k-
lookahead simulations (which are GFQ). Below, we describe two
possible ways to combine our simplification techniques: Heavy-k
and Light-k (which are parameterized by the lookahead value k).

Heavy-k. We advocate the following minimization procedure,
which repeatedly applies all the techniques described in this paper
until a fixpoint is reached: 1) Remove dead states. 2) Prune transi-
tions w.r.t. the GFP relations above (using lookahead k). 3) Quo-
tient w.r.t. �k-de and �k-bw. The resulting simplified automaton
cannot be further reduced by any of these techniques. In this sense,
it is a local minimum in the space of automata. Applying the tech-
niques in a different order might produce a different local mini-
mum, and, in general, there does not exist an optimal order that
works best in every instance. In practice, the order is determined
by efficiency considerations and easily computable operations are
used first [1, 2].

Remark While quotienting with ordinary simulation is idempo-
tent, in general this is not true for lookahead simulations, because
these relations are not preserved under quotienting (unlike ordi-
nary simulation). Moreover, quotienting w.r.t. forward simulations
does not preserve backward simulations, and vice-versa. Our exper-
iments showed that repeatedly and alternatingly quotienting w.r.t.
�k-de and �k-bw (in addition to our pruning techniques) yields the
best minimization effect.

The Heavy-k procedure strictly subsumes all simulation-based
automata minimization methods described in the literature (remov-
ing dead states, quotienting, pruning of ‘little brother’ transitions,
mediated preorder), except for the following two: 1) The fair simu-
lation minimization of [19] works by tentatively merging fair sim-
ulation equivalent states and then checking if this operation pre-
served the language. (In general, fair simulation is not GFQ.) It
subsumes quotienting withvde (but not�k-de) and is implemented
in GOAL [34]. We benchmarked our methods against it and found
Heavy-k to be much better in both effect and efficiency; cf Sec-
tion 7. 2) The GFQ jumping-safe preorders of [8, 9] are incompa-
rable to the techniques described in this paper. If applied in addition
to Heavy-k, they yield a very modest extra minimization effect.

Light-k. This procedure is defined purely for comparison reasons.
It demonstrates the effect of the lookahead k in a single quotienting
operation and works as follows: Remove all dead states and then
quotient w.r.t. �k-de. Although Light-k achieves much less than
Heavy-k, it is not necessarily faster. This is because it uses the more
expensive to compute relation�k-de directly, while Heavy-k applies
other cheaper (pruning) operations first and only then computes
�k-de on the resulting smaller automaton.

6. Language Inclusion Checking
The language inclusion problem A ⊆ B is PSPACE-complete [25].
It can be solved via complementation of B [31, 34] and, more ef-
ficiently, by rank-based ([17] and references therein) or Ramsey-
based methods [3, 4, 15, 16], or variants of Piterman’s construc-
tion [29, 34]. Since these all have exponential time complexity, it
helps significantly to first minimize the automata in a preprocessing
step. Better minimization techniques, as described in the previous
sections, make it possible to solve significantly larger instances.
However, our simulation-based techniques can not only be used
in preprocessing, but actually solve most instances of the inclu-
sion problem directly. This is significant, because simulation scales
polynomially (quadratic average-case complexity; cf. Section 7).

6.1 Inclusion-preserving minimization
Inclusion checking algorithms generally benefit from language-
preserving minimization preprocessing (cf. Sec. 5). However, pre-
serving the languages of A and B in the preprocessing is not ac-
tually necessary. A preprocessing on A ,B is said to be inclusion-
preserving iff it produces automata A ′,B ′ s.t. A ⊆ B ⇐⇒ A ′ ⊆ B ′

7 2012/10/24

(regardless of whether A ≈ A ′ or B ≈ B ′). In the following, we
consider two inclusion-preserving preprocessing steps.

Simplify A . In theory, the problem A ⊆ B is only hard in B ,
but polynomial in the size of A . However, this is only relevant
if one actually constructs the exponential-size complement of B ,
which is of course to be avoided. For polynomial simulation-based
algorithms it is crucial to also minimize A . The idea is to remove
transitions in A which are ‘covered’ by better transitions in B .

Definition Given A =(Σ,QA , IA ,FA ,δA), B =(Σ,QB , IB ,FB ,δB),
let P⊆ δA ×δB be a relation for comparing transitions in A and B .
The pruned version of A is Prune(A ,B,P) := (Σ,QA , IA ,FA ,δ

′)
with δ′ = {(p,σ,r) ∈ δA | @(p′,σ′,r′) ∈ δB .(p,σ,r)P(p′,σ′,r′)}.

A ⊆ B implies Prune(A ,B,P) ⊆ B (since Prune(A ,B,P) ⊆ A).
When also the other direction holds (so pruning is inclusion-
preserving), we say that P is good for A ,B-pruning, i.e., when
A ⊆ B ⇐⇒ Prune(A ,B,P) ⊆ B . Intuitively, pruning is cor-
rect when the removed edges do not allow A to accept any word
which is not already accepted by B . In other words, if there is
a counter example to inclusion in A , then it can even be found
in Prune(A ,B,P). As in Sec. 3, we compare transitions by look-
ing at their endpoints: For state relations Rb,Rf ⊆ QA ×QB , let
P(Rb,Rf) = {((p,σ,r),(p′,σ,r′)) | pRb p′ ∧ rRf r′}.

Since inclusion-preserving pruning does not have to respect
the language, we can use much weaker (i.e., coarser) relations
for comparing endpoints. Let ⊆bw− be the variant of ⊆bw where
accepting states are not taken into consideration.

Theorem 6.1. P(⊆bw−,⊆f) is good for A ,B-pruning.

Proof. Let P = P(⊆bw−,⊆f). One direction is trivial. For the other
direction, by contraposition, assume Prune(A ,B,P)⊆ B , but A 6⊆
B . There exists a w ∈ L(A) s.t. w /∈ L(B). There exists an initial
fair trace π = q0

σ0−→ q1
σ1−→ ·· · on w in A . There are two cases.

1. π does not contain any transition qi
σi−→ qi+1 that is not present

in Prune(A ,B,P). Then π is also an initial fair trace on w in
Prune(A ,B,P), and thus we obtain w∈L(Prune(A ,B,P)) and
w ∈ L(B). Contradiction.

2. π contains a transition qi
σi−→ qi+1 that is not present in

Prune(A ,B,P). Therefore there exists a transition q′i
σi−→ q′i+1

in B s.t. qi⊆bw− q′i and qi+1⊆f q′i+1. Thus there exists an initial
fair trace on w in B and thus w ∈ L(B). Contradiction.

We can approximate ⊆bw− with (the transitive closure of) a cor-
responding k-lookahead simulation vk-bw−, which is defined as
vk-bw, except that only initial states are considered, i.e., the win-
ning condition is C bw−(π0,π1) ⇐⇒ ∀(i ≥ 0) · pi ∈ I =⇒ qi ∈ I.
Let �k-bw− be the transitive closure of vk-bw−. Since GFP is ⊆-
downward closed and P(·, ·) is monotone, we get this corollary.

Corollary 6.2. P(�k-bw−,�k-f) is good for A ,B-pruning.

Simplify B . Let A×B be the synchronized product of A and B .
The idea is to remove states in B which cannot be reached in A×B .
Let R be the set of states in A×B reachable from IA × IB , and let
X ⊆ QB be the projection of R to the B-component. We obtain B ′
from B by removing all states /∈ X and their associated transitions.
Although B ′ 6≈ B , this operation is clearly inclusion-preserving.

6.2 Jumping fair simulation as a better GFI relation
We further generalize the GFI preorder �k-f by allowing Dupli-
cator even more freedom. The idea is to allow Duplicator to take
jumps during the simulation game (in the spirit of [9]). For a pre-
order ≤ on Q, in the game for ≤-jumping k-lookahead simulation

Duplicator is allowed to jump to ≤-larger states before taking a
transition. Thus, a Duplicator’s move is of the form qi ≤ q′i

σi−→
qi+1 ≤ q′i+1

σi+1−→ ·· · σi+m−1−→ qi+m, and she eventually builds an infi-
nite≤-jumping trace. We say that this trace is accepting at step i iff
∃q′′i ∈ F.qi ≤ q′′i ≤ q′i, and fair iff it is accepting infinitely often. As
usual, ≤-jumping k-lookahead fair simulation holds iff Duplicator
wins the corresponding game, with the fair winning condition lifted
to jumping traces.

Not all preorders ≤ induce GFI jumping simulations. The pre-
order ≤ is called jumping-safe [9] if, for every word w, there exists
a≤-jumping initial fair trace on w iff there exists an initial fair non-
jumping one. Thus, jumping-safe preorders allows to convert jump-
ing traces into non-jumping ones. Consequently, for a jumping-safe
preorder ≤, ≤-jumping k-lookahead fair simulation is GFI.

One can prove that ⊆bw is jumping-safe, while ⊆bw− is not.
We even improve ⊆bw to a slightly more general jumping-safe
relation ⊆bw-c, by only requiring that Duplicator visits at least as
many accepting states as Spoiler does, but not necessarily at the
same time. Formally, pm ⊆bw-c qm iff, for every initial w-trace
π0 = p0

σ0−→ p1
σ1−→ ·· · σm−1−→ pm, there exists an initial w-trace

π1 = q0
σ0−→ q1

σ1−→ ·· · σm−1−→ qm, s.t. |{i | pi ∈ F}| ≤ |{i |qi ∈ F}|.

Theorem 6.3. The preorder ⊆bw-c is jumping-safe.

Proof. Since ⊆bw-c is reflexive, the existence of an initial fair trace
on w directly implies the existence of a ⊆bw-c-jumping initial fair
trace on w.

Now, we show the reverse implication. Given two initial ⊆bw-c-
jumping traces on w π0 = p0⊆bw-c p′0

σ0−→ p1⊆bw-c p′1
σ1−→ ·· · and

π1 = q0 ⊆bw-c q′0
σ0−→ q1 ⊆bw-c q′1

σ1−→ ·· · we define C c
j (π0,π1)

iff |{i ≤ j |∃p′′i ∈ F. pi ⊆bw-c p′′i ⊆bw-c p′i}| ≤ |{i ≤ j |∃q′′i ∈
F.qi ⊆bw-c q′′i ⊆bw-c q′i}|. We say that an initial ⊆bw-c-jumping
trace on w is i-good iff it does not jump within the first i steps.

We show, by induction on i, the following property (P): For
every i and every infinite ⊆bw-c-jumping initial trace π = p0 ⊆bw-c

p′0
σ0−→ p1 ⊆bw-c p′1

σ1−→ ·· · on w there exists an initial i-good trace
πi = q0

σ0−→ q1
σ1−→ ·· · σi−→ qi · · · on w s.t. C c

i (π,π
i) and the suffixes

of the traces are identical, i.e., qi = pi and π[i..] = πi[i..].
For the case base i = 0 we take π0 = π. Now we consider the

induction step. By induction hypothesis we get an initial i-good
trace πi s.t. C c

i (π,π
i) and qi = pi and π[i..] = πi[i..]. If πi is (i+1)-

good then we can take πi+1 = πi. Otherwise, πi contains a step
qi ⊆bw-c q′i

σi−→ qi+1. First we consider the case where there exists
a q′′i ∈ F s.t. qi ⊆bw-c q′′i ⊆bw-c q′i. (Note that the i-th step in πi

can count as accepting in C c because q′′i ∈ F , even if qi and q′i are
not accepting.) By def. of ⊆bw-c there exists an initial trace π′′ on a
prefix of w that ends in q′′i and visits accepting states at least as often
as the non-jumping prefix of πi that ends in qi. Again by definition
of ⊆bw-c there exists an initial trace π′ on a prefix of w that ends
in q′i and visits accepting states at least as often as π′′. Thus π′

visits accepting states at least as often as the jumping prefix of πi

that ends in q′i (by the definition of C c). By composing the traces
we get πi+1 = π′(q′i

σi−→ qi+1)π
i[i+ 1..]. Thus πi+1 is an (i+ 1)-

good initial trace on w and π[i+1..] = πi[i+1..] = πi+1[i+1..] and
C c

i+1(π
i,πi+1) and C c

i+1(π,π
i+1). The other case where there is no

q′′i ∈ F s.t. qi ⊆bw-c q′′i ⊆bw-c q′i is similar, but simpler.
Let π be an initial ⊆bw-c-jumping fair trace on w. By property

(P) and König’s Lemma there exists an infinite initial non-jumping
fair trace π′ on w. Thus ⊆bw-c is jumping-safe.

8 2012/10/24

As a direct consequence, ⊆bw-c-jumping k-lookahead fair simula-
tion is GFI. Since ⊆bw-c is difficult to compute, we approximate
it by a corresponding lookahead-simulation vk-bw-c which, in the
same spirit, counts and compares the number of visits to accept-
ing states in every round of the k-lookahead backward simulation
game. Let �k-bw-c be the transitive closure of vk-bw-c.

Corollary 6.4. �k-bw-c-jumping k-lookahead fair sim. is GFI.

6.3 Advanced inclusion checking algorithm
Given these techniques, we propose the following algorithm for
inclusion checking A ⊆ B .

(1) Use the Heavy-k procedure to minimize A and B , and ad-
ditionally apply the inclusion-preserving minimization tech-
niques from Sec. 6. Lookahead simulations are computed not
only on A and B , but also between them (i.e., on their disjoint
union). Since they are GFI, we check whether they already wit-
ness inclusion. Since many simulations are computed between
partly minimized versions of A and B , this witnesses inclu-
sion much more often than checking fair simulation between
the original versions. This step either stops showing inclusion,
or produces smaller inclusion-equivalent automata A ′,B ′.

(2) Check the GFI �k-bw-c-jumping k-lookahead fair simulation
from Sec. 6.2 between A ′ and B ′, and stop if the answer is yes.

(3) If inclusion was not established in steps (1) or (2) then try
to find a counterexample to inclusion. This is best done by a
Ramsey-based method (optionally using simulation-based sub-
sumption techniques), e.g., [1, 4]. Use a small timeout value,
since in most non-included instances there exists a very short
counterexample. Stop if a counterexample is found.

(4) If steps (1)-(3) failed (rare in practice), use any complete
method, (e.g., Rank-based, Ramsey-based or Piterman’s con-
struction) to check A ′ ⊆ B ′. At least, it will benefit from work-
ing on the smaller instance A ′,B ′ produced by step (1).

Note that steps (1)-(3) take polynomial time, while step (4) takes
exponential time. (For the latter, we recommend the improved
Ramsey method of [1, 4] and the on-the-fly variant of Piterman’s
construction [29] implemented in GOAL [34].) This algorithm
allows to solve much larger instances of the inclusion problem
than previous methods [3, 4, 15–17, 29, 31, 34], i.e., automata with
1000-20000 states instead of 10-100 states; cf. Section 7.

7. Experiments
We test the effectiveness of Heavy-k minimization on Tabakov-
Vardi random automata [33], on automata derived from LTL for-
mulae, and on automata derived from mutual exclusion protocols,
and compare it to the best previously available techniques imple-
mented in GOAL [34]. A scalability test shows that Heavy-k has
quadratic average-case complexity and it is vastly more efficient
than GOAL. Furthermore, we test our methods for language inclu-
sion on large instances and compare their performance to previous
techniques. Due to space limitations, we only give a summary of
the results, but all details and the runnable tools are available [2].
Unless otherwise stated, the experiments were run with Java 6 on
Intel Xeon X5550 2.67GHz and 14GB memory.

Random automata. The Tabakov-Vardi model [33] generates
random automata according to the following parameters: the num-
ber of states n, the size of the alphabet |Σ|, the transition density
td (number of transitions, relative to n and |Σ|) and the acceptance
density ad (percentage of accepting states). Apart from this, they
do not have any special structure, and thus minimization and lan-
guage inclusion problem are harder for them than for automata

from other sources (see below). Random automata provide general
reproducible test cases, on average. Moreover, they are the only
test cases that are guaranteed to be unbiased towards any particular
method. Thus, it is a particular sign of quality if a method performs
well even on these hard cases.

The inherent difficulty of the minimization problem, and thus
also the effectiveness of minimization methods, depends strongly
on the class of random automata, i.e., on the parameters listed
above. Thus, one needs to compare the methods over the whole
range, not just for one example. Variations in ad do not affect
Heavy-k much (cf. Appendix A.1), but very small values make min-
imization harder for the other methods. By far the most important
parameter is td. The following figure shows typical results. We take
n = 100, |Σ| = 2, ad = 0.5 and the range of td = 1.0,1.1, . . . ,3.0.
For each td we created 300 random automata, minimized them
with different methods, and plotted the resulting average number of
states after minimization. Each curve represents a different method:
RD (just remove dead states), Light-1, Light-12, Heavy-1, and
Heavy-12 and GOAL. The GOAL curve shows the best effort of
all previous techniques (as implemented in GOAL), which include
RD, quotienting with backward and forward simulation, pruning
of little brother transitions and the fair simulation minimization of
[19] (which subsumes quotienting with delayed simulation).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

RD
Light-1
GOAL
Heavy-1
Light-12
Heavy-12

Transition density

N
um

b
e

r
o

f
st

at
e

s
af

te
r

m
in

im
iz

at
io

n

Sparse automata with low td have more dead states. For td≤ 1.4 no
technique except RD has any significant effect. GOAL minimizes
just slightly worse than Heavy-1 but it is no match for our best tech-
niques. Heavy-12 vastly outperforms all others, particularly in the
interesting range between 1.4 and 2.5. Moreover, the minimization
of GOAL (in particular the fair simulation minimization of [19]) is
very slow. For GOAL, the average minimization time per automa-
ton varies between 39s (at td = 1.0) and 612s (maximal at td = 2.9).
In contrast, for Heavy-12, the average minimization time per au-
tomaton varies between 0.012s (at td = 1.0) and 1.482s (max. at
td = 1.7). So Heavy-12 minimizes not only much better, but also at
least 400 times faster than GOAL (see also the scalability test).

For td ≥ 2.0, Heavy-12 yields very small automata. Many of
these are even universal, i.e., with just one state and a univer-
sal loop. However, this frequent universality is not due to triv-
ial reasons (otherwise simpler techniques like Light-1 and GOAL
would also recognize this). Consider the following question: Given
Tabakov-Vardi random automata with parameters n, |Σ| and td,
what is the probability U(n, |Σ|, td) that every state has at least
one outgoing transition for every symbol in Σ? (Such an automaton
would be trivially universal if ad = 1.)

Theorem 7.1. U(n, |Σ|, td) = (α(n,T)/β(n,T))|Σ|, with T = n · td,
α(n,T) = ∑

n2

m=n
(m−n

T−n
)

∑
n
i=0(−1)i(n

i
)(m−in−1

n−1
)

and β(n,T) =
(n2

T
)

Proof. For each symbol in Σ there are T = n · td transitions and
n2 possible places for transitions, described as a grid. α(n,T) is

9 2012/10/24

the number of ways T items can be placed onto an n× n grid
s.t. every row contains ≥ 1 item, i.e., every state has an outgo-
ing transition. β(n,T) is the number of possibilities without this
restriction, which is trivially

(n2

T
)
. Since the Tabakov-Vardi model

chooses transitions for different symbols independently, we have
U(n, |Σ|, td) = (α(n,T)/β(n,T))|Σ|. It remains to compute α(n,T).
For the i-th row let xi ∈ {1, . . . ,n} be the maximal column contain-
ing an item. The remaining T − n items can only be distributed to
lower columns. Thus α(n,T) = ∑x1,...,xn

((∑xi)−n
T−n

)
. With m = ∑xi

and a standard dice-sum problem from [28] the result follows.

For n= 100, |Σ|= 2 we obtain the following values for U(n, |Σ|, td):
10−15 for td = 2.0, 2.9 ·10−5 for td = 3.0, 0.03 for td = 4.0, 0.3 for
td = 5.0, 0.67 for td = 6.0, and 0.95 for td = 8.0. So this transition
saturation effect is negligible in our tested range with td ≤ 3.0.

While Heavy-12 performs very well, an even smaller lookahead
can already be sufficient for a good minimization. However, this
depends very much on the density td of the automata. The following
chart shows the effect of the lookahead by comparing Heavy-k for
varying k on different classes of random automata with different
density td = 1.6,1.7,1.8,1.9,2.0. We have n = 100, |Σ| = 2 and
ad = 0.5, and every point is the average of 1000 automata.

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

The effect of lookahead: Heavy k for k=1,...,12

1.6

1.7

1.8

1.9

2

Lookahead

R
e

m
ai

n
in

g
 n

u
m

be
r

of
 s

ta
te

s
af

te
r

m
in

im
iz

at
io

n

The big advantage of Heavy-12 over Light-12 is due to the prun-
ing techniques. However, these only reach their full potential at
higher lookaheads (thus the smaller difference between Heavy-1
and Light-1). Indeed, the simulation relations get much denser with
higher lookahead k. We consider random automata with n = 100,
|Σ|= 2 and td = 1.8 (a nontrivial case; larger td yield larger simu-
lations). We let ad = 0.1 (resp. ad = 0.9), and plot the size of fair,
delayed, direct, and backward simulation as k increases from 1 to
12. Every point is the average of 1000 automata.

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000 n=100, td=1.8, ad=0.1

Fair

Delayed

Direct

Backward

Lookahead

P
a

ir
s

 o
f s

ta
te

s
 in

 s
im

u
la

tio
n

 r
e

la
tio

n

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000 n=100, td=1.8, ad=0.9

Fair

Delayed

Direct

Backward

Lookahead

P
a

ir
s

 o
f s

ta
te

s
 in

 s
im

u
la

tio
n

 r
e

la
tio

n

Fair/delayed simulation is not much larger than direct simulation
for k = 1, but they benefit strongly from higher k. Backward sim-
ulation increases only slightly (e.g., from 365 to 381 pairs for
ad = 0.9). Initially, it seems as if backward/direct simulation does
not benefit from higher k if ad is small (on random automata),
but this is wrong. Even random automata get less random during
the Heavy-k minimization process, making lookahead more effec-
tive for backward/direct simulation. Consider the case of n = 300,
td = 1.8 and ad = 0.1. Initially, the average ratio | �12-di |/| �1-di |
is 1.00036, but after quotienting with �12-de this ratio is 1.103.

LTL. For model checking [22], LTL-formulae are converted into
Büchi automata. This conversion has been extensively studied and
there are many different algorithms which try to construct the
smallest possible automaton for a given formula (see references
in [34]). It should be noted however, that LTL is designed for hu-
man readability and does not cover the full class of ω-regular lan-
guages. Moreover, Büchi Store [35] contains handcrafted automata
for almost every human-readable LTL-formula and none of these
automata has more than 7 states. Still, since many people are inter-
ested in LTL to automata conversion, we tested how much our min-
imization algorithm can improve upon the best effort of previous
techniques. For LTL model checking, the size of the automata is not
the only criterion [30], since more non-determinism also makes the
problem harder. However, our transition pruning techniques only
make an automaton ‘more deterministic’.

Using a function of GOAL, we created 300 random LTL-
formulae of nontrivial size: length 70, 4 predicates and probability
weights 1 for boolean and 2 for future operators. We then con-
verted these formulae to Büchi automata and minimized them with
GOAL. Of the 14 different converters implemented in GOAL we
chose LTL2BA [18] (which is also used by the SPIN model checker
[22]), since it was the only one which could handle such large for-
mulae. (The second best was COUVREUR which succeeded on
90% of the instances, but produced much larger automata than
LTL2BA. The other converters ran out of time (4h) or memory
(14GB) on most instances.) We thus obtained 300 automata and
minimized them with GOAL. The resulting automata vary signifi-
cantly in size from 1 state to 1722 states [2].

Then we tested how much further these automata could be
reduced in size by our Heavy-12 method (cf. Appendix A.2).
In summary, 82% of the automata could be further reduced in
size. The average number of states declined from 138 to 78,
and the average number of transitions from 3102 to 1270. Since
larger automata have a disproportionate effect on averages, we
also computed the average reduction ratio per automaton, i.e.,
(1/300)∑

300
i=1 newsizei/oldsizei. (Note the difference between the

average ratio and the ratio of averages.) The average ratio was 0.76
for states and 0.68 for transitions. The computation times for mini-
mization vary a lot due to different automata sizes (average 122s),
but were always less than the time used by the LTL to automata
translation. If one only considers the 150 automata above median
size (30 states) then the results are even stronger. 100% of these

10 2012/10/24

automata could be further reduced in size. The average number of
states declined from 267 to 149, and the average number of transi-
tions from 6068 to 2435. The average reduction ratio was 0.65 for
states and 0.54 for transitions. To conclude, our minimization can
significantly improve the quality of LTL to automata translation
with a moderate overhead.

Mutual exclusion protocols. We consider automata derived from
mutual exclusion protocols. The protocols were described in a
language of guarded commands and automatically translated into
Büchi automata, whose size is given in the column ‘Original’. By
row, the protocols are Bakery.1, Bakery.2, Fischer.3.1, Fischer.3.2,
Fischer.2, Phils.1.1, Phils.2 and Mcs.1.2. We minimize these au-
tomata with GOAL and with our Heavy-12 method and describe
the sizes of the resulting automata and the runtime in subsequent
columns (Java 6 on Intel i7-740, 1.73 GHz). In some instances
GOAL ran out of time (2h) or memory (14GB).

Original GOAL Time Heavy-12 Time
Trans. States Tr. St. GOAL Tr. St. Heavy-12
2597 1506 N/A N/A > 2h 696 477 6.17s
2085 1146 N/A N/A > 2h 927 643 9.04s
1401 638 14 10 15.38s 14 10 1.16s
3856 1536 212 140 4529s 96 70 5.91s

67590 21733 N/A N/A oom(14GB) 316 192 325.76s
464 161 362 134 540.3s 359 134 11.51s
2350 581 284 100 164.2s 225 97 4.04s

21509 7968 108 69 2606.7s 95 62 48.18s

Scalability. We test the scalability of Heavy-12 minimization
by applying it to Tabakov-Vardi random automata of increas-
ing size but fixed td, ad and Σ. We ran four separate tests with
td = 1.4,1.6,1.8 and 2.0. In each test we fixed ad = 0.5, |Σ| = 2
and increased the number of states from n = 50 to n = 1000 in
increments of 50. For each parameter point we created 300 random
automata and minimized them with Heavy-12. We analyze the av-
erage size of the minimized automata in percent of the original size
n, and how the average computation time increases with n.

For td = 1.4 the average size of the minimized automata stays
around 77% of the original size, regardless of n. For td = 1.6 it
stays around 65%. For td = 1.8 it decreases from 28% at n = 50
to 2% at n = 1000. For td = 2.0 it decreases from 8% at n = 50
to < 1% at n = 1000 (cf. Appendix A.2). Note that the lookahead
of 12 did not change with n. Surprisingly, larger automata do not
require larger lookahead for a good minimization.

We plot the average computation time (measured in ms) in n
and then compute the optimal fit of the function time = a ∗ nb to
the data by the least-squares method, i.e., this computes the pa-
rameters a and b of the function that most closely fits the experi-
mental data. The important parameter is the exponent b. For td =
1.4,1.6,1.8,2.0 we obtain 0.018 ∗ n2.14, 0.32 ∗ n2.39, 0.087 ∗ n2.05

and 0.055 ∗ n2.09, respectively. Thus, the average-case complexity
of Heavy-12 scales (almost) quadratically. This is especially sur-
prising given that Heavy-12 does not only compute one simula-
tion relation but potentially many simulations until the repeated
minimization reaches a fixpoint. Quadratic complexity is the very
best one can hope for in any method that explicitly compares
states/transitions by simulation relations, since the relations them-
selves are of quadratic size. Lower complexity is only possible with
pure partition refinement techniques (e.g., bisimulation, which is
O(n logn)), but these achieve even less minimization than quotient-
ing with direct simulation (i.e., next to nothing on hard instances).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 200 400 600 800 1000

ti
m

e
 i
n
 m

s

 Average time for Heavy-12 minimization for td=1.4,1.6,1.8, 2.0 with y=a*x
b
 fit.

td=1.4 fit
td=1.4 data

td=1.6 fit
td=1.6 data

td=1.8 fit
td=1.8 data

td=2.0 fit
td=2.0 data

The computation time of Heavy-k depends on the class of au-
tomata, i.e., on the density td, as the scalability test above shows.
Moreover, it also depends on k. The following graph shows the av-
erage computation time of Heavy-k on automata of size 100 and
varying td and k. The most difficult cases are those where min-
imization is possible (and thus the alg. does not give up quickly),
but does not massively reduce the size of the instance. For Heavy-k,
this peak is around td = 1.6,1.7 (like in the scalability test).

Language Inclusion Checking. We test the language inclusion
checking algorithm of Section 6.3 (with lookahead up-to 15) on
nontrivial instances and compare its performance to previous tech-
niques like ordinary fair simulation checking and the best effort of
GOAL (which uses simulation-based minimization followed by an
on-the-fly variant of Piterman’s construction [29, 34]). In this test
we use only the polynomial time steps (1)-(3) of our algorithm, thus
it may fail in some instances. We consider pairs of Tabakov-Vardi
random automata with 1000 states each, |Σ|= 2 and ad = 0.5. For
each separate case of td = 1.6,1.8 and 2.0, we create 300 such au-
tomata pairs and check if language inclusion holds. (For td < 1.6
inclusion rarely holds, except trivially if one automaton has empty
language. For td > 2 inclusion often holds but is easier to prove.)

For td = 1.6 our algorithm solved 294 of 300 instances (i.e.,
98%): 45 included (16 in step (1) and 29 in step (2)), 249 non-
included (step (3)), and 6 failed. Average computation time 1167s.
Ordinary fair simulation solved only 13 included instances. GOAL
(timeout 60min, 14GB memory) solved only 13 included instances
(the same 13 as fair simulation) and 155 non-included instances.

For td = 1.8 our algorithm solved 297 of 300 instances (i.e.,
99%): 104 included (103 in step (1) and 1 in step (2)) and 193 non-
included (step (3)) and 3 failed. Average computation time 452s.
Ordinary fair simulation solved only 5 included instances. GOAL
(timeout 30min, 14GB memory) solved only 5 included instances
(the same 5 as fair simulation) and 115 non-included instances.

For td = 2.0 our algorithm solved every instance: 143 included
(shown in step (1)) and 157 non-included (step (3)). Average com-

11 2012/10/24

putation time 258s. Ordinary fair simulation solved only 1 of the
143 included instances. GOAL (timeout 30min, 14GB memory)
solved only 1 of 143 included instances (the same one as fair sim-
ulation) and 106 of 157 non-included instances.

8. Conclusion and Future Work
Our automata minimization techniques perform significantly better
than previous methods. In particular, they can be applied to solve
PSPACE-complete automata problems like language inclusion for
much larger instances. While we presented our methods in the con-
text of Büchi automata, most of them trivially carry over to the
simpler case of automata over finite words. Future work includes
more efficient algorithms for computing lookahead simulations, ei-
ther along the lines of [20] for normal simulation, or by using sym-
bolic representations of the relations. Moreover, we are applying
similar techniques to minimize tree-automata.

References
[1] RABIT tool: www.languageinclusion.org/doku.php?id=tools.

[2] See the appendix of this technical report for details, and
www.languageinclusion.org/doku.php?id=tools for the Java code of
the tools and the data of the experiments.

[3] P. Abdulla, Y.-F. Chen, L. Clemente, L. Holik, C.-D. Hong,
R. Mayr, and T. Vojnar. Simulation Subsumption in Ramsey-
Based Büchi Automata Universality and Inclusion Testing. In
T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Ver-
ification, volume 6174 of LNCS, pages 132–147, 2010. ISBN
978-3-642-14294-9. doi: 10.1007/978-3-642-14295-6 14. URL
http://dx.doi.org/10.1007/978-3-642-14295-6 14.

[4] P. Abdulla, Y.-F. Chen, L. Clemente, L. Holik, C.-D. Hong, R. Mayr,
and T. Vojnar. Advanced Ramsey-based Büchi Automata Inclusion
Testing. In J.-P. Katoen and B. König, editors, International Confer-
ence on Concurrency Theory, volume 6901 of LNCS, pages 187–202,
Sept. 2011.

[5] P. A. Abdulla, Y.-F. Chen, L. Holı́k, and T. Vojnar. Mediating for
reduction (on minimizing alternating Büchi automata). In FSTTCS,
volume 4 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2009.

[6] P. A. Abdulla, Y.-F. Chen, L. Holik, R. Mayr, and T. Vojnar. When
Simulation Meets Antichains. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 6015 of LNCS, 2010. URL
http://hal.inria.fr/inria-00460294/en/.

[7] D. Bustan and O. Grumberg. Simulation-based minimization.
ACM Trans. Comput. Logic, 4:181–206, April 2003. ISSN
1529-3785. doi: http://doi.acm.org/10.1145/635499.635502. URL
http://doi.acm.org/10.1145/635499.635502.

[8] L. Clemente. Büchi Automata Can Have Smaller Quotients.
In L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP, vol-
ume 6756 of LNCS, pages 258–270. 2011. ISBN 978-
3-642-22011-1. doi: 10.1007/978-3-642-22012-8 20. URL
http://arxiv.org/pdf/1102.3285.

[9] L. Clemente. Generalized Simulation Relations with Applications in
Automata Theory. PhD thesis, University of Edinburgh, 2012.

[10] D. L. Dill, A. J. Hu, and H. Wont-Toi. Checking for Language Inclu-
sion Using Simulation Preorders. In Computer Aided Verification, vol-
ume 575 of LNCS. Springer-Verlag, 1991. doi: 10.1007/3-540-55179-
4 25. URL http://dx.doi.org/10.1007/3-540-55179-4 25.

[11] L. Doyen and J.-F. Raskin. Antichains Algorithms for Finite Au-
tomata. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 6015 of LNCS, pages 2–22. Springer-Verlag, 2010.

[12] K. Etessami. A Hierarchy of Polynomial-Time Computable
Simulations for Automata. In International Conference on
Concurrency Theory, volume 2421 of LNCS, pages 131–144.
Springer-Verlag, 2002. doi: 10.1007/3-540-45694-5 10. URL
http://dx.doi.org/10.1007/3-540-45694-5 10.

[13] K. Etessami and G. Holzmann. Optimizing Büchi Automata. In
International Conference on Concurrency Theory, volume 1877 of
LNCS, pages 153–168. Springer-Verlag, 2000.

[14] K. Etessami, T. Wilke, and R. A. Schuller. Fair Simu-
lation Relations, Parity Games, and State Space Reduc-
tion for Büchi Automata. SIAM J. Comput., 34(5):1159–
1175, 2005. doi: 10.1137/S0097539703420675. URL
http://epubs.siam.org/sam-bin/dbq/article/42067.

[15] S. Fogarty and M. Vardi. Büchi Complementation and Size-Change
Termination. In S. Kowalewski and A. Philippou, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 5505
of LNCS, pages 16–30. 2009. doi: 10.1007/978-3-642-00768-2 2.
URL http://dx.doi.org/10.1007/978-3-642-00768-2 2.

[16] S. Fogarty and M. Y. Vardi. Efficient Büchi Universality Checking.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 205–220, 2010.

[17] S. Fogarty, O. Kupferman, M. Y. Vardi, and T. Wilke. Unify-
ing Büchi Complementation Constructions. In M. Bezem, edi-
tor, Computer Science Logic, volume 12 of LIPIcs, pages 248–
263. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011. doi:
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.248.

[18] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
CAV, volume 2102 of LNCS, pages 53–65. Springer, 2001.

[19] S. Gurumurthy, R. Bloem, , and F. Somenzi. Fair simulation mini-
mization. In CAV, volume 2404 of LNCS, pages 610–624. Springer,
2002.

[20] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Com-
puting simulations on finite and infinite graphs. In Founda-
tions of Computer Science, FOCS ’95, Washington, DC, USA,
1995. IEEE Computer Society. ISBN 0-8186-7183-1. URL
http://portal.acm.org/citation.cfm?id=796255.

[21] T. A. Henzinger, O. Kupferman, and S. K. Rajamani.
Fair Simulation. Information and Computation, 173:
64–81, 2002. doi: 10.1006/inco.2001.3085. URL
http://dx.doi.org/10.1006/inco.2001.3085.

[22] G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.

[23] T. Jiang and B. Ravikumar. Minimal NFA Problems are Hard. In
J. Albert, B. Monien, and M. Artalejo, editors, ICALP, volume 510 of
LNCS, pages 629–640. 1991. doi: 10.1007/3-540-54233-7 169.

[24] S. Juvekar and N. Piterman. Minimizing Generalized Büchi Au-
tomata. In Computer Aided Verification, volume 4414 of LNCS,
pages 45–58. Springer-Verlag, 2006. doi: 10.1007/11817963 7. URL
http://dx.doi.org/10.1007/11817963 7.

[25] O. Kupferman and M. Vardi. Verification of Fair Tran-
sition Systems. In Computer Aided Verification, volume
1102 of LNCS, pages 372–382. Springer-Verlag, 1996. URL
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9654.

[26] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. POPL ’01, pages 81–92, 2001. doi:
http://doi.acm.org/10.1145/360204.360210.

[27] J. Leroux and G. Point. TaPAS: The Talence Presburger Arithmetic
Suite. In Proceedings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 5505 of LNCS. Springer, 2009.

[28] I. Niven. Mathematics of Choice. The Mathematical Association of
America, 1965.

[29] N. Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. In LICS, pages 255–264. IEEE, 2006.

[30] R. Sebastiani and S. Tonetta. More deterministic vs. smaller Büchi
automata for efficient LTL model checking. In Correct Hardware
Design and Verification Methods, volume 2860 of LNCS, 2003.

[31] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complemen-
tation problem for Büchi automata with applications to tem-
poral logic. Theor. Comput. Sci., 49:217–237, Jan. 1987.
ISSN 0304-3975. doi: 10.1016/0304-3975(87)90008-9. URL
http://dx.doi.org/10.1016/0304-3975(87)90008-9.

12 2012/10/24

[32] F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL
Formulae. In Computer Aided Verification, volume 1855 of LNCS,
pages 248–263. Springer-Verlag, 2000. doi: 10.1007/10722167 21.
URL http://dx.doi.org/10.1007/10722167 21.

[33] D. Tabakov and M. Vardi. Model Checking Büchi Specifications.
In LATA, volume Report 35/07. Research Group on Mathematical
Linguistics, Universitat Rovira i Virgili, Tarragona, 2007.

[34] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, W.-C. Chan, and C.-J. Luo. GOAL
extended: Towards a research tool for omega automata and temporal
logic. In C. Ramakrishnan and J. Rehof, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 4963
of LNCS, pages 346–350. 2008. ISBN 978-3-540-78799-0. URL
http://dx.doi.org/10.1007/978-3-540-78800-3 26.

[35] Y.-K. Tsay, M.-H. Tsai, J.-S. Chang, and Y.-W. Chang. Büchi
store: An open repository of Büchi automata. In P. Abdulla
and K. Leino, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 6605 of LNCS,
pages 262–266. 2011. ISBN 978-3-642-19834-2. URL
http://dx.doi.org/10.1007/978-3-642-19835-9 23.
10.1007/978-3-642-19835-9 23.

A. Additional Experiments
This appendix contains additional material related to experiments
with our minimization algorithm (cf. Section 7).

A.1 The Effect of the Acceptance Density
Figure 3 shows the performance of our minimization algorithm
on random automata with acceptance density 0.5 and 0.1, respec-
tively. Clearly, variations in the acceptance density do not affect our
methods with lookahead (e.g., Light-12 and Heavy-12) very much.
However, a small acceptance density like 0.1 makes the problem
somewhat harder for methods without lookahead (e.g., Light-1 and
Heavy-1).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

Minimization of Tabakov-Vardi Random Automata

Alphabet size 2, Acceptance density 0.5

Light 1

Light 12

Heavy 1

Heavy 12

Transition density

R
e

m
a

in
in

g
nu

m
be

r
o

f
st

a
te

s
a

ft
e

r
m

in
im

iz
a

tio
n

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

Minimization of Tabakov-Vardi Random Automata

Alphabet size 2, Acceptance density 0.1

Light 1

Light 12

Heavy 1

Heavy 12

Transition density

R
e

m
a

in
in

g
nu

m
be

r
o

f
st

a
te

s
a

ft
e

r
m

in
im

iz
a

tio
n

Figure 3. Minimization of Tabakov-Vardi random automata with
n = 100, |Σ| = 2, ad = 0.5 (top), ad = 0.1 (bottom) and varying
td. We use the Light 1, Light 12, Heavy 1 and Heavy 12 methods
and plot the average number of states of the minimized automata.
Every point in the top (resp. bottom) graph the average of 1000
(resp. 300) automata. Note how a small acceptance density makes
minimization harder without lookahead, but not much harder for
lookahead 12.

13 2012/10/24

A.2 Scalability
In this section we present the complete data for our scalability
experiments. We tested our Heavy-12 minimization algorithm on
random automata of increasing size but fixed td, ad and Σ. In
Figure 4 we show the reduction in size, while in Figure 5 we show
the computation time (for the same set of experiments).

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

Scalability of Heavy-12 Minimization

Average size of minimized automata in % of original

Td=1.4
Td=1.6
Td=1.8
Td=2.0

Number of states of original automaton (ad=0.5, separate curves for different td)S
iz

e
of

 m
in

im
iz

ed
 a

ut
om

at
on

 in
 p

er
ce

nt
 o

f
or

ig
in

al

Figure 4. Minimization of Tabakov-Vardi random automata with
ad = 0.5, |Σ| = 2, and increasing n = 50,100, . . . ,1000. Different
curves for different td. We plot the average size of the Heavy-12
minimized automata, in percent of their original size. Every point
is the average of 300 automata. Note that the lookahead of 12 does
not change, i.e., larger automata do not require a higher lookahead
for a good minimization.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 200 400 600 800 1000

ti
m

e
 i
n

 m
s

 Average time for Heavy-12 minimization for td=1.4,1.6,1.8, 2.0 with y=a*x
b
 fit.

td=1.4 fit
td=1.4 data

td=1.6 fit
td=1.6 data

td=1.8 fit
td=1.8 data

td=2.0 fit
td=2.0 data

Figure 5. Minimization of Tabakov-Vardi random automata as in
Figure 4. Here we plot the average computation time (in ms) for the
minimization, and a least-squares fit by the function a∗nb. For td =
1.4,1.6,1.8,2.0 we obtain 0.018 ∗ n2.14, 0.32 ∗ n2.39, 0.087 ∗ n2.05

and 0.055∗n2.09, respectively.

p0 q0

q1 q2

r0

r1 r2

a,b

a,b a,b

a b

a,b a,b

a

a

b

b

vk vk

Figure 6. Lookahead simulation is not transitive.

B. Non-transitivity of Lookahead Simulation
In this section we show that lookahead simulation is not transitive
for k ≥ 2. Consider the example in Figure 6. We have p0 vk q0 vk

r0 (and k = 2 suffices), but p0 6vk r0 for any k > 0. In fact,

• p0 vk q0, with k = 2: Duplicator takes the transition via q1 or q2
depending on whether Spoiler plays word (a+b)a or (a+b)b,
respectively.
• q0 vk r0, with k = 2: If Spoiler goes to q1 or q2, then Duplicator

goes to r1 or r2, respectively. That q1 vk r1 holds can be
shown as follows (the case q2 vk r2 is similar). If Spoiler
takes transitions q1

a−→ q0
a−→ q1, then Duplicator does r1

a−→
r1

a−→ r1, and if Spoiler does q1
a−→ q0

b−→ q1, then Duplicator
does r1

a−→ r2
b−→ r1. The other cases are similar.

• p0 6vk r0, for any k > 0. From r0, Duplicator can play a trace for
any word w of length k > 0, but in order to extend it to a trace of
length k+1 for any w′ = wa or wb, she needs to know whether
the last (k+ 1)-th symbol is a or b. Thus, no finite lookahead
suffices for Duplicator.

Incidentally, notice that r0 simulates p0 with k-continuous simula-
tion, and k = 2 suffices.

As shown in Section 4, non-transitivity of lookahead simula-
tion is not an obstacle to its applications. Since it is only used to
compute good under-approximations of certain preorders, one can
simply consider its transitive closure (which is easily computed).

14 2012/10/24

C. Fixpoint Logic Characterization of
Lookahead Simulation

In this section we give a fixpoint logic characterization of looka-
head simulation, using the modal µ-calculus. Basically it follows
from the following preservation property enjoyed by lookahead
simulation: Let x∈{di,de, f,bw} and k > 0. When Duplicator plays
according to a winning strategy, in any configuration (pi,qi) of the
resulting play, pi vk-x qi. Thus, k-lookahead simulation (without
acceptance condition) can be characterized as the largest X ⊆Q×Q
which is closed under a certain monotone predecessor operator. For
convenience, we take the point of view of Spoiler, and compute the
complement relation W x = (Q×Q)\ vk-x instead. This is partic-
ularly useful for delayed simulation, since we can avoid recording
the obligation bit (see [14]) by using the technique of [24].

Direct and backward simulation. Consider the following prede-
cessor operator CPredi(X), for any set X ⊆ Q×Q:

CPredi(X) = {(p0,q0) | ∃(p0
a0−→ p1

a1−→ ·· · ak−1−→ pk)

∀(q0
a0−→ q1

a1−→ ·· · am−1−→ qm),0 < m≤ k,

either ∃(0≤ j ≤ m) · p j ∈ F and q j 6∈ F,

or (pm,qm) ∈ X}

Intuitively, (p,q) ∈ CPredi(X) iff, from position (p,q), in one
round of the game Spoiler can either force the game in X , or violate
the winning condition for direct simulation. For backward simula-
tion, CPrebw(X) is defined analogously, except that transitions are
reversed and also initial states are taken into account:

CPrebw(X) = {(p0,q0) | ∃(p0
a0←− p1

a1←− ·· · ak−1←− pk)

∀(q0
a0←− q1

a1←− ·· · am−1←− qm),0 < m≤ k,

either ∃(0≤ j ≤ m) · p j ∈ F and q j 6∈ F,

or ∃(0≤ j ≤ m) · p j ∈ I and q j 6∈ I,

or (pm,qm) ∈ X}

Remark The definition of CPrex(X) requires that the automaton
has no deadlocks; otherwise, Spoiler would incorrectly lose if she
can only perform at most k′ < k transitions. We assumed that
the automaton is complete to keep the definition simple, but our
implementation works with general automata.

Intuitively, the generalization to incomplete automata works as
follows. If Spoiler’s move reaches a deadlocked state after k′ steps,
where 1 ≤ k′ < k then Spoiler does not immediately lose. Instead
Duplicator needs to reply to this move of length k′. In other words,
if Spoiler’s move ends in a deadlocked state then the lookahead
requirements are weakened, because one simply cannot demand
any more steps from Spoiler.

For X = /0, CPrex(X) is the set of states from which Spoiler wins
in at most one step. Thus, Spoiler wins iff she can eventually reach
CPrex(/0). Formally, for x ∈ {di,bw},

W x = µW ·CPrex(W)

Delayed and fair simulation. We introduce a more elaborate
three-arguments predecessor operator CPre(X ,Y,Z). Intuitively,
a configuration belongs to CPre(X ,Y,Z) iff Spoiler can make a
move s.t., for any Duplicator’s reply, at least one of the following
conditions holds:

1. Spoiler visits an accepting state, while Duplicator never does
so; then, the game goes to X .

2. Duplicator never visits an accepting state; the game goes to Y .

3. The game goes to Z (without any further condition).

CPre(X ,Y,Z) = {(p0,q0) | ∃(p0
a0−→ p1

a1−→ ·· · ak−1−→ pk)

∀(q0
a0−→ q1

a1−→ ·· · am−1−→ qm) · ∀(0 < m≤ k)·
either ∃(0≤ i≤ m) · pi ∈ F,∀(0≤ j ≤ m) ·q j 6∈ F,(pm,qm) ∈ X

or ∀(0≤ j ≤ m) ·q j 6∈ F,(pm,qm) ∈ Y

or (pm,qm) ∈ Z}
For fair simulation, Spoiler wins iff, except for finitely many

rounds, she visits accepting states infinitely often while Duplicator
does not visit any accepting state at all. Thus,

W f = µZ ·νX ·µY ·CPre(X ,Y,Z)

For delayed simulation, Spoiler wins if, after finitely many
rounds, the following conditions are both satisfied: 1) She can visit
an accepting state, and 2) She can prevent Duplicator from visiting
accepting states in the future. For condition 1), let CPre1(X ,Y) :=
CPre(X ,Y,Y), and, for 2), CPre2(X ,Y) := CPre(X ,X ,Y). Then,

W de = µW ·CPre1(νX ·CPre2(X ,W),W)

15 2012/10/24

