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Abstract. We study stochastic games with energy-parity objectives,
which combine quantitative rewards with a qualitative ω-regular condition:
The maximizer aims to avoid running out of energy while simultaneously
satisfying a parity condition. We show that the corresponding almost-sure
problem, i.e., checking whether there exists a maximizer strategy that
achieves the energy-parity objective with probability 1 when starting at
a given energy level k, is decidable and in NP ∩ coNP. The same holds
for checking if such a k exists and if a given k is minimal.
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1 Introduction

Simple stochastic games (SSGs), also called competitive Markov decision processes
[30], or 2 1

2 -player games [23,22] are turn-based games of perfect information
played on finite graphs. Each state is either random or belongs to one of the
players (maximizer or minimizer). A game is played successively moving a pebble
along the game graph, where the next state is chosen by the player who owns
the current one or, in the case of random states, according to a predefined
distribution. This way, an infinite run is produced. The maximizer tries to achieve
an objective (in our case almost surely), while the minimizer tries to prevent this.
The maximizer can be seen as a controller trying to ensure an objective in the
face of both known random failure modes (encoded by the random states) and
an unknown or hostile environment (encoded by the minimizer player).

Stochastic games were first introduced in Shapley’s seminal work [48] in 1953
and have since then played a central role in the solution of many problems
in computer science, including synthesis of reactive systems [46,42]; checking
interface compatibility [27]; well-formedness of specifications [28]; verification of
open systems [4]; and many others.

A huge variety of objectives for such games was already studied in the
literature. We will mainly focus on three of them in this paper: parity; mean-
payoff; and energy objectives. In order to define them we assume that numeric
rewards are assigned to transitions, and priorities (encoded by bounded non-
negative numbers) are assigned to states.
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The parity objective simply asks that the minimal priority that appears
infinitely often in a run is even. Such a condition is a canonical way to define
desired behaviors of systems, such as safety, liveness, fairness, etc.; it subsumes
all ω-regular objectives. The algorithmic problem of deciding the winner in non-
stochastic parity games is polynomial-time equivalent to the model checking of
the modal µ-calculus [51] and is at the center of the algorithmic solutions to the
Church’s synthesis problem [45]. But the impact of parity games goes well beyond
automata theory and logic: They facilitated the solution of two long-standing
open problems in stochastic planning [29] and in linear programming [32], which
was done by careful adaptation of the parity game examples on which the strategy
improvement algorithm [31] requires exponentially many iterations.

The parity objective can be seen as a special case of the mean-payoff ob-
jective that asks for the limit average reward per transition along the run to
be non-negative. Mean-payoff objectives are among the first objectives studied
for stochastic games and go back to a 1957 paper by Gillette [33]. They allow
for reasoning about the efficiency of a system, e.g., how fast it operates once
optimally controlled.

The energy objective [14] can be seen as a refinement of the mean-payoff
objective. It asks for the accumulated reward at any point of a run not to be
lower than some finite threshold. As the name suggests, it is useful when reasoning
about systems with a finite initial energy level that should never become depleted.
Note that the accumulated reward is not bounded a-priori, which essentially
turns a finite-state game into an infinitely-state one.

In this paper we consider SSGs with energy-parity objectives, which requires
runs to satisfy both an energy and a parity objective. It is natural to consider
such an objective for systems that should not only be correct, but also energy
efficient. For instance, consider a robot maintaining a nuclear power plant. We
not only require the robot to correctly react to all possible chains of events
(parity objective for functional correctness), but also never to run out of energy
as charging it manually would be risky (energy objective).

While the complexity of games with single objectives is often in NP ∩ coNP,
asking for multiple objectives often makes solving games harder. Parity games
are commonly viewed as the simplest of these objectives, and some traditional
solutions for non-stochastic games go through simple reductions to mean-payoff or
energy conditions (which are quite similar in non-stochastic games) to discounted
payoff games that establishes the membership of those problems in UP and coUP
[36]. However, asking for two parity objectives to be satisfied at the same time
leads to coNP completeness [21].

We study the almost sure satisfaction of the energy-parity objective, i.e.,
with probability 1. Such qualitative analysis is important as there are many
applications where we need to know whether the correct behavior arises almost-
surely, e.g., in the analysis of randomized distributed algorithms (see, e.g, [43,49])
and safety-critical examples like the one from above. Moreover, the algorithms
for quantitative analysis, i.e., computing the optimal probability of satisfaction,
typically start by performing the qualitative analysis first and then solving a
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game with a simpler objective (see, e.g., [23,15]). Finally, there are stochastic
models for which qualitative analysis is decidable but quantitative one is not
(e.g., probabilistic finite automata [6]). This may also be the case for our model.

Our contributions. We consider stochastic games with energy-parity winning
conditions and show that deciding whether maximizer can win almost-surely for
a given initial energy level k is in NP ∩ coNP. We show the same for checking if
such k exists at all and checking if a given k is the smallest possible for which this
holds. The proofs are considerably harder than the corresponding result for MDPs
[41] (on which they are partly based), because the attainable mean-payoff value
is no longer a valid criterion in the analysis (via combinations of sub-objectives).
E.g., even though the stored energy might be inexorably drifting towards +∞
(resp. −∞), the mean-payoff value might still be zero because the minimizer
(resp. maximizer) can delay payoffs for longer and longer (though not indefinitely,
due to the parity condition). Moreover, the minimizer might be able to choose
between different ways of losing and never commit to any particular way after
any finite prefix of the play (see Example 1).

Our proof characterizes almost-sure energy-parity via a recursive combination
of complex sub-objectives called Gain and Bailout, which can each eventually be
solved in NP ∩ coNP.

Our proof of the coNP membership is based on a result on the strategy
complexity of a natural class of objectives, which is of independent interest. We
show (cf. Theorem 6; based on previous work in [35]) that, if an objective O is
such that its complement is both shift-invariant and submixing, and that every
MDP admits optimal finite-memory deterministic maximizer strategies for O,
then the same is true in turn-based stochastic games.

Example 1. Figure 1 shows an energy-parity game that the maximizer can win
almost surely when starting with an energy level of ≥ 2 from the middle left
node. Whenever the game is at that node with an energy level ≥ 3, then the
maximizer can turn left and has at least 1

2 chance that the energy level will
never drop to 2 while wining the game with priority 2. This is because we can
view this process as a random walk on a half line. If xn is the probability of

2 2 2 1

2
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Fig. 1: A SSG with two maximizer states (2), one minimizer state (3) and one
probabilistic state (#). Each state is annotated with its priority and each edge
with a reward by which it increases the energy level (respectively, decreases if the
reward is negative). The maximizer wins if the lowest priority visited infinitely
often is even and the energy level never drops below 0.
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reaching energy level 2 when starting at n then these probabilities are the least
point-wise positive solution of the following system of linear equations: x2 = 1,
xn = 2

3xn+1 + 1
3xn−1 for all n ≥ 3. We then get that xn = 1

2n−2 so the probability
of not reaching energy 2 is ≥ 1

2 for all n ≥ 3. Always turning left guarantees that,
almost surely, the parity condition holds and the limes inferior of the energy
level is not −∞. We call this condition Gain. Strategies for Gain can be used
when the energy level is sufficiently high (at least 3 in our example) to win with
a positive probability.

However, if maximizer plays for Gain and always moves left, then for every
initial energy level the chance of eventually dropping the energy down to level 2
is positive, due to the negative cycle. When that happens, the only other option
for the maximizer is to move right. There minimizer can ‘choose how to lose’,
via a disjunction of two conditions that we later formalize as Bailout. Either
minimizer goes back to the start state without changing the energy level (thus
maximizer wins as the energy stays at level 2 and only the good priority 2 is
seen), or minimizer turns right. In the latter case, the play visits a dominating
odd priority (which is bad for maximizer) but also increases the energy by 1,
which allows maximizer to switch back to playing left for the Gain condition
until energy level 2 is reached again.

Our maximizer strategies are a complex interplay between Bailout and Gain.
In the example, it is easy to see that the probability of seeing priority 1 infinitely
often is zero if maximizer follows the just described strategy (the probability
of requiring to go right more than n times is at most ( 1

2 )n), so maximizer wins
this energy-parity game almost surely. Note that maximizer does not win almost
surely when the initial energy level is 0 or 1.

Previous work on combined objectives. Non-stochastic energy-parity games
have been studied in [16]. They can be solved in NP ∩ coNP and maximizer
strategies require only finite (but exponential) memory, a property that also
allowed to show P-time inter-reducibility with mean-payoff parity games. More
recently they were also shown to be solvable in pseudo-quasi-polynomial time [26].
Related results on non-stochastic games (e.g., mean-payoff parity) are summarized
in [18].

Most existing work on combined objectives for stochastic systems [17,18,9,41]
is restricted to Markov decision processes (MDPs; aka 1 1

2 -player games). Almost-
sure energy-parity objectives for MDPs were first considered in [17,18], where a
direct reduction to ordinary energy games was proposed. This reduction relies on
the assumption that maximizer can win using finite memory if at all. Unfortu-
nately, this assumption does not necessarily hold: it was shown in [41] that an
almost sure winning strategy for energy-parity in finite MDPs may require infinite
memory. Nevertheless, it was possible to recover the original result, that deciding
the existence of a.s. winning strategies is in NP ∩ coNP (and pseudo-polynomial
time), by showing that the existence of an a.s. winning strategy can be witnessed
by the existence of two compatible, and finite-memory, winning strategies for
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two simpler objectives. We generalize this approach from MDPs to full stochastic
games.

Stochastic mean-payoff parity games were studied in [20], where it was shown
that they can be solved in NP∩ coNP. However, this does not imply a solution for
stochastic energy-parity games, since, unlike in the non-stochastic case [16], there
is no known reduction from energy-parity to mean-payoff parity in stochastic
games. (The reduction in [16] relies on the fact that maximizer has a winning finite-
memory strategy for energy-parity, which does not generally hold for stochastic
games or MDPs; see above.)

A related model are the 1-counter MDPs (and stochastic games) studied in
[12,11,8], since the value of the counter can be interpreted as the stored energy.
These papers consider the objective of reaching counter value zero (which is
dual to the energy objective of staying above zero), thus the roles of minimizer
and maximizer are swapped. However, unlike in this paper, these works do not
combine termination objectives with extra parity conditions.

Structure of the paper. The rest of the paper is organized as follows. We
start by introducing the notation and formal definitions of games and objectives
in the next section. In Section 3 we show how checking almost-sure energy-parity
objectives can be characterized in terms of two newly defined auxiliary objectives:
Gain and Bailout. In Sections 4 and 5, we show that almost-sure Bailout and
Gain objectives, respectively, can be checked in NP and coNP. Section 6 contains
our main result: NP and coNP algorithms for checking almost-sure energy-parity
games with a known and unknown initial energy, as well as checking if a given
initial energy is the minimal one. We conclude and point out some open problems
in Section 7. Due to page restrictions, most proofs in the main body of the paper
were replaced by sketches. The detailed proofs can be found in the appendix.

2 Preliminaries

A probability distribution over a set X is a function f : X → [0, 1] such that∑
x∈X f(x) = 1. We write D(X) for the set of distributions over X.

Games, Strategies, Measures. A Simple Stochastic Game (SSG) is a directed

graph G def
= (V,E, λ), where all states have an outgoing edge and the set of

states is partitioned into states owned by maximizer (V2), minimizer (V3) and
probabilistic states (V#). The set of edges is E ⊆ V × V and λ : V# → D(E)
assigns each probabilistic state a probability distribution over its outgoing edges.
W.l.o.g., we assume that each probabilistic state has at most two successors,
because one can introduce a new probabilistic state for each excess successor. We

let λ(ws)
def
= λ(s) for all ws ∈ (V E)∗V#.

A path is a finite or infinite sequence ρ
def
= s0e0s1e1 . . . such that ei =

(si, si+1) ∈ E holds for all indices i. A run is an infinite path and we write

Runs
def
= (V E)ω for the set of all runs.
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A strategy for maximizer is a function σ : (V E)∗V2 → D(E) that assigns
to each path ws ∈ (V E)∗V2 a probability distribution over the outgoing edges
of its target node s. That is, σ(ws)(e) > 0 implies e = (s, t) ∈ E for some
t ∈ V . A strategy is called memoryless if σ(xs) = σ(ys) for all x, y ∈ (V E)∗

and s ∈ V2, deterministic if σ(w) is Dirac for all w ∈ (V E)∗V2, and finite-state
if there exists an equivalence relation ∼ on (V E)∗V2 with a finite index, such
that σ(ρ1) = σ(ρ2) if ρ1 ∼ ρ2. Of particular interest to us will be the class
of memoryless deterministic strategies (MD) and the class of finite-memory
deterministic strategies (FD). Strategies for minimizer are defined analogously
and will usually be denoted by τ : (V E)∗V3 → D(E).

A maximizing (minimizing) Markov Decision Process (MDP) is a game in
which minimizer (maximizer) has no choices, i.e., all her states have exactly one
successor. We will write G[τ ] for the MDP resulting from fixing the strategy τ . A
Markov chain is a game where neither player has a choice. In particular, G[σ, τ ] is
a Markov chain obtained by setting, in the game G, the strategies for maximizer
and minimizer to σ and τ , respectively.

Given an initial state s ∈ V and strategies σ and τ for maximizer and
minimizer, respectively, the set of runs starting in s naturally extends to a
probability space as follows. We write RunsGw for the w-cylinder, i.e., the set of all
runs with prefix w ∈ (V E)∗V . We let FG be the σ-algebra generated by all these
cylinders. We inductively define a probability function PG,σ,τs on all cylinders,
which then uniquely extends to FG by Carathéodory’s extension theorem [5], by

setting PG,σ,τs (RunsGs )
def
= 1 and PG,σ,τs (RunsGw)

def
=
∏n−1
i=0 dist i(s0e0s1e1 . . . si)(ei)

for w = s0e0s1e1 . . . en−1sn, where s0 = s, ei = (si, si+1) and dist i is σ(·), τ(·)
or λ(·), for si ∈ V2,V3 or V#, respectively.

Objective Functions. A (Borel) objective is a set Obj ∈ FG of runs. We write

Obj
def
= Runs \Obj for its complement. Borel objectives Obj are weakly determined

[40,39], which means that

sup
σ

inf
τ
Pσ,τs (Obj) = inf

τ
sup
σ

Pσ,τs (Obj).

This quantity is called the value of Obj in state s, and written as ValGs (Obj). We
say that Obj holds almost-surely (abbreviated as a.s.) at state s iff there exists
σ such that ∀τ,PG,σ,τs (Obj) = 1. Let ASG (Obj) denote the set of states at which
Obj holds almost surely. We will drop the superscript G and simply write Runs,
Pσ,τs and AS (Obj), if the game is clear from the context.

We use the syntax and semantics of operators F (eventually) and G (always)
from the temporal logic LTL [25] to specify some conditions on runs.

A reachability condition is defined by a set of target states T ⊆ V . A run
ρ = s0e0s1 . . . satisfies the reachability condition iff there exists an i ∈ N s.t.
si ∈ T . We write FT ⊆ Runs for the set of runs that satisfy this reachability
condition. Given a set of states W ⊆ V , we lift this to a safety condition on runs
and write GW ⊆ Runs for the set of runs ρ = s0e0s1 . . . where ∀i. si ∈W .
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A parity condition is given by a bounded function parity : V → N that assigns
a priority (a non-negative integer) to each state. A run ρ ∈ Runs satisfies the
parity condition iff the minimal priority that appears infinitely often on the run
is even. The parity objective is the subset PAR ⊆ Runs of runs that satisfy the
parity condition.

Energy conditions are given by a function r : E → Z, that assigns a reward
value to each edge. For a given initial energy value k ∈ N, a run s0e0s1e1 . . .
satisfies the k-energy condition if, for every finite prefix of length n, the energy
level k +

∑n
i=0 r(ei) is greater or equal to 0. Let EN(k) ⊆ Runs denote the

k-energy objective, consisting of those runs that satisfy the k-energy condition.
The l-storage condition holds for a run s0e0s1e1 . . . if l+

∑n−1
i=m r(si, si+1) ≥ 0

holds for every infix smemsm+1 . . . sn. Let ST(k, l) ⊆ Runs denote the k-energy
l-storage objective, consisting of those runs that satisfy both the k-energy and
the l-storage condition. We write ST(k) for

⋃
l ST(k, l). Clearly, ST(k) ⊆ EN(k).

Mean-payoff and limit-payoff conditions are defined w.r.t. the same reward
function as the energy conditions. The mean-payoff value of a run ρ = s0e0s1e1 . . .

is MP(ρ)
def
= lim infn→∞

1
n

∑n−1
i=0 r(ei). For 4 ∈ {>,≥,=,≤, <} and c ∈ R ∪

{−∞,∞}, the set MP(4c) ⊆ Runs consists of all runs ρ with MP(ρ)4c. Let
LimInf(4c) ⊆ Runs contain all runs ρ with (lim infn→∞

∑n
i=0 r(ei))4c, and

likewise for LimSup(4c).
The combined energy-parity objective EN(k) ∩ PAR is Borel and therefore

weakly determined, meaning that it has a well-defined (inf sup = sup inf) value
for every game [40,39]. Moreover, the almost-sure energy-parity objective (asking
to win with probability 1) is even strongly determined [38]: either maximizer has
a strategy to enforce the condition with probability 1 or minimizer has a strategy
to prevent this.

3 Characterizing Energy-Parity via Gain and Bailout

The main theorem of this section (Theorem 5) characterizes almost sure energy-
parity objectives in terms of two intermediate objectives called Gain and k-Bailout
for parameters k ≥ 0. This will form the basis of all computability results: we
will show (as Theorems 14, 17 and 18) how to compute almost-sure sets for these
intermediate objectives.

Definition 2. Consider a finite SSG G = (V,E, λ), as well as reward and parity
functions defining the objectives PAR, LimInf(> ∞), LimSup(= ∞) as well as
ST(k, l) and EN(k) for every k, l ∈ N. We define combined objectives Gain and

k-Bailout
def
= ∪lBailout(k, l) where

Gain
def
= LimInf(> −∞) ∩ PAR

Bailout(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (EN(k) ∩ LimSup(=∞)).

The main idea behind these two objectives is a special witness property for
energy-parity. We argue that, if maximizer has an almost-sure winning strategy
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for energy-parity then he also has one that combines two almost-sure winning
strategies, one for Gain and one for k-Bailout.

Notice that playing an almost-sure winning strategy for Gain implies a uni-
formly lower-bounded strictly positive chance that the energy level never drops
below zero (assuming it is sufficiently high to begin with). This fact uses the
finiteness of the set of control-states and does not hold for infinite-state MDPs. In
the unlikely event that the energy level does get close to zero, maximizer switches
to playing an almost sure winning strategy for k-Bailout. This is a disjunction of
two scenarios, and the balance might be influenced by minimizer’s choices. In the
first scenario (ST(k, l)∩ PAR) the energy never drops much and stays above zero
(thus satisfying energy-parity). In the second scenario, (EN(k) ∩ LimSup(=∞)),
the parity objective is temporarily suspended in favor of boosting (while always
staying above zero) the energy to a sufficiently high level to switch back to the
strategy for Gain and thus try again from the beginning. The probability of
infinitely often switching between these modes is zero due to the lower-bounded
chance of success in the Gain phase. Therefore, maximizer eventually wins by
playing for Gain. Note that maximizer needs to remember the current energy
level in order to know when to switch and consequently, this strategy uses infinite
memory.

Example 3. Consider again the game in Fig. 1. The middle left state satisfies
both Gain and k-Bailout objectives for all k ≥ 2 almost-surely. The respective
winning strategies are to always go left for Gain or always go right for k-Bailout
when at that state. Note that it neither satisfies 0-Bailout nor 1-Bailout objectives.

We define the subset W ⊆ V of states from which maximizer can almost
surely win both Gain and k-Bailout (assuming sufficiently high initial energy),
while at the same time ensuring that the play remains within this set of states.
These are the states from which maximizer can win by freely combining individual
strategies for the Gain and Bailout objectives.

Definition 4. Given a finite SSG G = (V,E, λ), let W ⊆ V be the largest subset
of states satisfying the following condition

W ⊆ AS (Gain ∩GW ) ∩
⋃
k

AS (k-Bailout ∩GW )

This condition describes a fixed-point, and as it is easy to see that if two
sets W1 and W2 are such fixed-points, then so is W1 ∪W2. Thus, the maximal
fixed-point W is well-defined.

Our main characterization of almost-sure energy-parity objectives is the
following Theorem 5. It states that maximizer can almost surely win an EN(k) ∩
PAR objective if, and only if, he can win the easier k-Bailout objective while
always staying in the safe set W .

Theorem 5. For every k ∈ N, AS (EN(k) ∩ PAR) = AS (k-Bailout ∩GW ).
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Our proof of this characterization theorem relies on the following claim, which
allows to lift the existence of finite-memory deterministic optimal strategies from
MDPs to SSGs. It applies to a fairly general class of objectives and, we believe,
is of independent interest.

Recall that Obj
def
= Runs \Obj denotes the complement of objective Obj. For

runs a, b, c ∈ Runs we say that a is a shuffle of b and c if there exist factorizations
b = b0b1 . . . and c = c0c1 . . . such that a = b0c0b1c1 . . . . An objective Obj is
called submixing if, for every run a ∈ Obj that is a shuffle of runs b and c, either
b ∈ Obj or c ∈ Obj. Obj is shift-invariant if, for every run s1e1s2e2 . . ., it holds
that s1e1s2e2 . . . ∈ Obj ⇐⇒ s2e2 . . . ∈ Obj. Shift-invariance slightly generalizes
the better-known tail condition (see [35] for a discussion).

Theorem 6. Let O be an objective such that O is both shift-invariant and
submixing. If maximizer has optimal FD strategies (from any state s) for O for
every finite MDP then maximizer has optimal FD strategies (from any state s)
for O for every finite SSG.

This applies in particular to the Gain objective, but not to k-Bailout objectives,
as these are not shift-invariant. A proof of Theorem 6 can be found in Appendix A.
It uses a recursive argument based on the notion of reset strategies from [35].

The remainder of this section is dedicated to proving Theorem 5. We will
first collect the remaining technical claims about Gain, Bailout, and reachability
objectives. Most notably, as Lemma 8, we show that if maximizer can almost
surely win Gain in a SSG, then he can do so using a FD strategy which moreover
satisfies an energy-parity objective with strictly positive (and lower-bounded)
probability. This is shown in part based on Theorem 6 applied to the Gain
objective. We will also need the following fact about reachability objectives in
finite MDPs.

Lemma 7 ([8, Lemma 3.9]). Let M be a finite MDP and ReachT be the

reachability objective with target T
def
= {s′ | Vals′(LimInf(= −∞)) = 1}. One can

compute a rational constant c < 1 and an integer h ≥ 0 such that for all states s

and i ≥ h we have ∀τ.Pτs (EN(i) ∩ ReachT ) ≤ ci

1−c .

Lemma 8. Consider a finite SSG G = (V,E, λ) where Gain holds a.s. for every

state s ∈ V . Then, for every δ ∈ [0, 1) and s ∈ V , there exists a k̂ ∈ N and an
FD strategy σ̂ s.t.

1. ∀τ.Pσ̂,τs (Gain) = 1, and

2. ∀τ.Pσ̂,τs (EN(k̂) ∩ PAR) ≥ δ.

Proof. Fix a δ ∈ [0, 1) and a state s ∈ V . Both LimInf(= −∞), as well as PAR
objectives are shift-invariant and submixing, and therefore also the union has
both these properties. It follows that Gain = LimInf(> −∞) ∩ PAR = LimInf(=
−∞) ∪ PAR is both shift-invariant and submixing, since the complement of a
parity objective is also a parity objective. By Lemma 16 and Theorem 6, there
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exists an almost-sure winning FD strategy σ̂ for maximizer for the objective Gain
from s, i.e., ∀τ.Pσ̂,τs (Gain) = 1, thus yielding Item 1.

Let M be the MDP obtained from G by fixing the strategy σ̂ for maximizer
from s. Since G is finite and σ̂ is FD, alsoM is finite. InM we have ∀τ.Pτs (Gain) =

1. In particular, in M, the set T
def
= {s′ | Vals′(LimInf(= −∞)) = 1} is not

reachable, i.e., ∀τ.Pτs (ReachT ) = 0.
By Lemma 7, inM there exists a horizon h ∈ N and a constant c < 1 such that

for all i ≥ h we have ∀τ.Pτs (EN(i) ∩ ReachT ) ≤ ci

1−c . Since T cannot be reached

in M, the condition ReachT evaluates to true and we have ∀τ.Pτs (EN(i)) ≥
1 − ci

1−c . Since c < 1 and δ < 1, we can pick a sufficiently large k̂ ≥ h such

that 1 − ck̂

1−c ≥ δ and obtain ∀τ.Pτs (EN(k̂)) ≥ δ in M. Moreover, the above
property ∀τ.Pτs (Gain) = 1 in particular implies ∀τ.Pτs (PAR) = 1. Thus we obtain

∀τ.Pτs (EN(k̂) ∩ PAR) ≥ δ in M.

Back in the SSG G, we have ∀τ.Pσ̂,τs (EN(k̂) ∩ PAR) ≥ δ as required for
Item 2.

Lemma 9. EN(k) ∩ PAR ⊆ k-Bailout.

Proof. Let ρ be a run in EN(k) ∩ PAR. There are two cases. In the first case
we have ρ ∈ ∪lST(k, l) ∩ PAR and thus directly ρ ∈ k-Bailout. Otherwise, ρ /∈
∪lST(k, l)∩PAR. Since ρ ∈ PAR, we must have ρ /∈ ∪lST(k, l). Since ρ ∈ EN(k), it
follows that ρ does not satisfy the l-storage condition for any l ∈ N. So, for every
l ∈ N, there exists an infix ρ′ of ρ s.t. l+r(ρ′) < 0. Let ρ′′ be the prefix of ρ before
ρ′. Since ρ ∈ EN(k) we have k+r(ρ′′ρ′) ≥ 0 and thus r(ρ′′) ≥ −k−r(ρ′) > −k+ l.
To summarize, if ρ /∈ ∪lST(k, l) ∩ PAR then, for every l, it has a prefix ρ′′ with
r(ρ′′) > −k + l. Thus ρ ∈ LimSup(=∞). Thus ρ ∈ k-Bailout.

We now define W ′ as the set of states that are almost-sure winning for
energy-parity with some sufficiently high initial energy level. (W ′ is also called
the winning set for the unknown initial credit problem.)

Definition 10. W ′
def
=
⋃
k AS (EN(k) ∩ PAR).

Lemma 11.

1. AS (EN(k) ∩ PAR) ⊆ AS (Gain ∩GW ′)
2. AS (EN(k) ∩ PAR) ⊆ AS (k-Bailout ∩GW ′)

Proof. Let s ∈ AS (EN(k) ∩ PAR) and σ a strategy that witnesses this property.
Except for a null-set, all runs ρ = se0s1e1 . . . en−1sn . . . from s induced by σ
satisfy EN(k) ∩ PAR.

Let ρ′ = se0s1e1 . . . sm be a finite prefix of ρ. For every n ≥ 0 we have
k +

∑n−1
i=0 r(ei) ≥ 0, since ρ ∈ EN(k). In particular this holds for all n ≥ m.

So, for every n ≥ m, we have k +
∑m−1
i=0 r(ei) +

∑n−1
i=m r(ei) ≥ 0. Therefore

sm ∈ AS (EN(k′) ∩ PAR), where k′ = k +
∑m−1
i=0 r(ei), as witnessed by playing

σ with history se0s1e1 . . . sm from sm. Thus sm ∈
⋃
k AS (EN(k) ∩ PAR) = W ′,

i.e., almost all σ-induced runs ρ satisfy GW ′.
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Towards Item 1, we have EN(k) ⊆ LimInf(> −∞) and thus EN(k) ∩ PAR ⊆
LimInf(> −∞) ∩ PAR = Gain. Therefore σ witnesses s ∈ AS (Gain ∩GW ′).

Towards Item 2, we have EN(k) ∩ PAR ⊆ k-Bailout by Lemma 9. Thus σ
witnesses s ∈ AS (k-Bailout ∩GW ′).

Lemma 12. W ′ ⊆W .

Proof. It suffices to show that W ′ satisfies the monotone condition imposed on
W (cf. Definition 4), since W is defined as the largest set satisfying this condition.

Let s ∈ W ′ =
⋃
k AS (EN(k) ∩ PAR). Then s ∈ AS

(
EN(k̂) ∩ PAR

)
for some

fixed k̂. By Lemma 11(1) we have s ∈ AS (Gain ∩GW ′). By Lemma 11(2) we

have s ∈ AS
(
k̂-Bailout ∩GW ′

)
⊆ ⋃k AS (k-Bailout ∩GW ′).

Proof of Theorem 5. Towards the ⊆ inclusion, we have

AS (EN(k) ∩ PAR) ⊆ AS (k-Bailout ∩GW ′) ⊆ AS (k-Bailout ∩GW )

by Lemma 11(2) and Lemma 12.
Towards the ⊇ inclusion, let s ∈ AS (k-Bailout ∩GW ) and σ1 be a strategy

that witnesses this. We show that s ∈ AS (EN(k) ∩ PAR). We now consider the
modified SSG G′ = (W,E, λ) with the state set restricted to W . In particular,
s ∈W and σ1 witnesses s ∈ AS (k-Bailout) in G′. We now construct a strategy σ
that witnesses s ∈ AS (EN(k) ∩ PAR) in G′, and thus also in G. The strategy σ
will use infinite memory to keep track of the current energy level of the run.

Apart from σ1, we require several more strategies as building blocks for the
construction of σ.

First, in G we had ∀s′ ∈ W. s′ ∈ AS (Gain ∩GW ), and thus in G′ we have
∀s′ ∈ W. s′ ∈ AS (Gain). For every s′ ∈ W we instantiate Lemma 8 for G′ with

δ = 1/2 and obtain a number k̂s′ and a strategy σ̂s′ with

1. ∀τ.Pσ̂s′ ,τ
s′ (Gain) = 1, and

2. ∀τ.Pσ̂s′ ,τ
s′ (EN(k̂s′) ∩ PAR) ≥ 1/2.

Let k1
def
= max{k̂s′ | s′ ∈W}. The strategies σ̂s′ are called gain strategies.

Second, by the finiteness of V , there is a minimal number k2 such that⋃
k AS (k-Bailout ∩GW ) =

⋃
k≤k2 AS (k-Bailout ∩GW ) in G. Therefore, in G′ we

have that

W ⊆
⋃
k

AS (k-Bailout) =
⋃
k≤k2

AS (k-Bailout) = AS (k2-Bailout) .

Thus in G′ for every s′ ∈W there exists a strategy σ̃s′ with ∀τ.Pσ̃s′ ,τ
s′ (k2-Bailout) =

1. The strategies σ̃s′ are called bailout strategies. Let k′
def
= k1 + k2 − k + 1. We

now define the strategy σ.

Start: First σ plays like σ1 from s. Since σ1 witnesses s ∈ AS (k-Bailout) against
every minimizer strategy τ , almost all induced runs ρ = se0s1e1 . . . satisfy
either
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(A) (∪lST(k, l) ∩ PAR), or

(B) (EN(k) ∩ LimSup(=∞)).

Almost all runs ρ of the latter type (B) (and potentially also some runs of

type (A)) satisfy EN(k) and
∑l
i=0 r(ei) ≥ k′ eventually for some l. If we

observe
∑l
i=0 r(ei) ≥ k′ for some prefix se0s1e1 . . . els

′ of the run ρ then our
strategy σ plays from s′ as described in the Gain part below. Otherwise, if
we never observe this condition, then our run ρ is of type (A) and σ continues
playing like σ1. Since property (A) implies (EN(k) ∩ PAR), this is sufficient.

Gain: In this case we are in the situation where we have reached some state s′

after some finite prefix ρ′ of the run, where r(ρ′) ≥ k′. Our strategy σ now
plays like the gain strategy σ̂s′ , as long as r(ρ′) ≥ k′−k1 holds for the current

prefix ρ′ of the run. By Item 2, this will satisfy ∀τ.Pσ̂s′ ,τ
s′ (EN(k̂s′)∩PAR) ≥ 1/2

and thus ∀τ.Pσ̂s′ ,τ
s′ (EN(k1) ∩ PAR) ≥ 1/2. It follows that with probability

≥ 1/2 we will keep playing σ̂s′ forever and satisfy PAR and always r(ρ′) ≥
k′ − k1 and thus EN(k), since k + r(ρ′) ≥ k + k′ − k1 = k2 + 1 ≥ 0.

Otherwise, if eventually r(ρ′) = k′ − k1 − 1 then we have k + r(ρ′) = k2. In
this case (which happens with probability < 1/2) we continue playing as
described in the Bailout part below.

Bailout: In this case we are in the situation where we have reached some
state s′′ ∈ W after some finite prefix ρ′ of the run, where k + r(ρ′) = k2.
Since s′′ ∈W , we can now let our strategy σ play like the bailout strategy
σ̃s′′ and obtain ∀τ.Pσ̃s′′ ,τ

s′′ (k2-Bailout) = 1. Thus almost all induced runs
ρ′′ = s′′e0s1e1 . . . from s′′ satisfy either

(A) (∪lST(k2, l) ∩ PAR), or

(B) (EN(k2) ∩ LimSup(=∞)).

As long as r(ρ′) < k′ holds for the current prefix ρ′ of the run, we keep
playing σ̃s′′ . Otherwise, if eventually r(ρ′) ≥ k′ holds, then we switch back
to playing the Gain strategy above. All the runs that never switch back to
playing the Gain strategy must be of type (A) and thus satisfy PAR. Since
we have k2-Bailout ⊆ EN(k2), it follows that, for every prefix ρ′′ of the run
from s′′, according to σ̃s′′ we have k2 + r(ρ′′) ≥ 0. Thus, for every prefix ρ′′′

of ρ, we have k + r(ρ′′′) = k + r(ρ′) + r(ρ′′) = k2 + r(ρ′′) ≥ 0. Therefore, the
EN(k) objective is satisfied by all runs.

As shown above, almost all runs induced by σ that eventually stop switching
between the three modes satisfy EN(k) ∩ PAR. Switching from Gain/Bailout to
Start is impossible, but switching from Gain to Bailout and back is possible.
However, the set of runs that infinitely often switch between Gain and Bailout is
a null-set, because the probability of switching from Gain to Bailout is ≤ 1/2.
Thus, σ witnesses s ∈ AS (EN(k) ∩ PAR).
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Remark 13. It follows from the results above that W ′ = W . The ⊆ inclusion
holds by Lemma 12. For the reverse inclusion we have

W ⊆
⋃
k

AS (k-Bailout ∩GW ) by Definition 4

=
⋃
k

AS (EN(k) ∩ PAR) by Theorem 5

= W ′ by Definition 10.

4 Bailout

In this section we will argue that it is possible decide, in NP and coNP, whether
the bailout objective can be satisfied almost surely. More precisely, we show the
existence of procedures to decide if, for a given k ∈ N and state s, there exists
an l ∈ N such that s almost-surely satisfies the Bailout(k, l) objective

Bailout(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (EN(k) ∩ LimSup(=∞)).

Recall that the idea behind the Bailout objective is that, during a game
for energy-parity, maximizer is temporarily abandoning the parity (but not the
energy) condition in order to increase the energy to a sufficient level (which
will then allow him to try an a.s. strategy for Gain once more). However, in a
stochastic game – as opposed to an MDP [41] – an opponent could possibly
prevent this increase in energy level at the expense of satisfying the original
energy-parity objective in the first place (cf. Example 1). The Bailout objective
is designed to capture the disjunction of both outcomes, as both are favorable
for the maximizer. The parameter k is the acceptable total energy drop (i.e., the
initial value), and the parameter l is the acceptable energy drop on any infix of
a play, which translates to the upper bound on the energy level in the second
outcome.

The question can be phrased equivalently as membership of a control state s
in the almost-sure set for the k-Bailout objective for a given game G and energy
level k ∈ N.

Theorem 14. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG G def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy k-Bailout from s.
Moreover, there are K,L ∈ N, polynomial in |V | and the largest absolute

transition reward, so that
⋃
k≥0 AS

G (k-Bailout) = ASG (Bailout(K,L)). And so,

checking whether state s belongs to
⋃
k≥0 AS

G (k-Bailout) is in NP and coNP.

Proof (sketch). This is shown by a sequence of transformations of the game
and ultimately reduced to a finding the winner of a non-stochastic game with
an energy-parity objective, which is known to be solvable in NP, coNP and
pseudo-polynomial time [19]. One important observation is that it is possible
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to replace, without changing the outcome, the energy EN(k) condition in the
Bailout(k, l) objective by the more restrictive energy-storage ST(k, l) condition.
See Appendix B for further details.

5 Gain

In this section we will argue that it is possible to decide, in NP and coNP, whether
the Gain objective (i.e., LimInf(> −∞) ∩ PAR) can be satisfied almost surely.

We start by investigating the strategy complexity of winning strategies for
the Gain objective.

Lemma 15. In every finite SSG, minimizer has optimal MD strategies for
objective Gain.

Proof. We show that maximizer has MD optimal strategies for LimInf(= −∞) ∪
PAR. This is equivalent to the claim of the lemma because LimInf(> −∞) ∩ PAR =
LimInf(= −∞) ∪ PAR and the complement of a parity condition is itself a parity
condition (with all priorities incremented by one).

We note that both LimInf(= −∞), as well as parity objectives PAR are shift-
invariant and submixing and therefore also that the union LimInf(= −∞) ∪ PAR
has both these properties. The claim now follows from the fact that SSGs
with objectives that are both submixing and shift-invariant admit MD optimal
strategies for maximizer [35, Theorem 5.2].

Based on the results in [41] one can show a similar claim for maximizer strategies
in MDPs.

Lemma 16. For finite MDPs, almost-sure winning maximizer strategies for Gain
can be chosen FD.

Using the existence of MD optimal minimizer strategies (Lemma 15) and a coNP
upper bound for checking almost sure Gain in MDPs established in [41], we can
derive a coNP procedure. See Appendix C.2 for full details.

Theorem 17. Checking whether a state s ∈ V of a SSG satisfies Gain almost-
surely is in coNP.

The rest of this section will deal with the NP upper bound, which is the most
challenging part of this paper. The crux of our proof is the observation that
if maximizer has a strategy that wins almost surely against all MD minimizer
strategies, then he wins almost surely. This is because one of these MD strategies is
optimal due to Lemma 15. We show that, in order to witness such an almost-sure
winning strategy for maximizer in SSG G, it suffices to provide a polynomially
larger SSG G3, together with an almost-sure winning strategy for the storage-
parity objective (see Theorem 21 in Section 6) in G3. This will give us an NP
algorithm, because G3, along with its winning strategy, can be guessed and verified
in polynomial time. Formally we claim that:
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Theorem 18. Checking whether a state s ∈ V of G satisfies Gain almost-surely
is in NP.

Proof. (sketch) For technical convenience, we will assume w.l.o.g. that every
SSG henceforth is in a normal form, where every random state has only one
predecessor, which is owned by the maximizer. To show the existence of G3, we
are going to introduce two intermediate games: G1 and G2. These games are never
constructed by our NP algorithm, but are just defined to break down the complex
construction of G3 into more manageable steps.

Intuitively, G1 is just G where all rewards on edges are multiplied by a large
enough factor, f , to turn strategies with a mean-payoff > 0 into ones with
mean-payoff > 2. G2 is an extension of G1 where the maximizer is given a choice
before every visit to a probabilistic node. He can either let the game proceed
as before, or sacrifice part of his one-step reward in exchange for a more evenly
balanced reward outcome, so the energy can no longer drop arbitrarily low
when a probabilistic cycle is reached. As a result, in G2 it suffices to consider
a storage-parity objective (see Theorem 21 in Section 6) instead of Gain. The
number of choices maximizer is given is the number of MD minimizer strategies,
which clearly can be exponential. That would not suffice for an NP algorithm.
Therefore, we show that most of these choices are redundant and can be removed
without impairing the almost sure wining region. As the result of that pruning,
we obtain G3 of polynomial size.

For the the technical details of the G → G1 → G2 → G3 constructions please
see Appendix C.3. Figure 2 shows how these transformations may look like.

6 The Main Results

In this section, we prove the main results of the paper, namely that almost-sure
energy parity stochastic games can be decided in NP and coNP. The proofs
are straightforward and follow from the much more involved characterization of
almost sure energy parity objective in terms of the Bailout and Gain objectives
established in Section 3 and their computational complexity analysis in Sections
4 and 5, respectively.

Theorem 19. Given an SSG, energy level k∗, checking if a state s is almost-sure
winning for EN(k∗) ∩ PAR is in NP ∩ coNP.

Proof. Recall that we can compute the set W from Definition 4 by iterating

Wi
def
= AS (Gain ∩GWi−1) ∩

⋃
k

AS (k-Bailout ∩GWi−1)

starting with W0
def
= V , until we reach the greatest fixed point W . Note that

at step i we need to solve almost sure Gain and almost sure
⋃
k AS (k-Bailout),

where the states of the game are restricted to Wi−1. There can be at most |V |
steps, because at least one state is removed in each iteration.
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(b) The game G2
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(c) The game G3

Fig. 2: An example game G (left) and the derived games. The strategy that
always loops in the right-most state of G ensures a mean-payoff of 3. As this
is the only MD strategy for maximizer that ensures a positive mean-payoff, a
factor f = 1 is sufficient here and we have G1 = G. In the derived game G2 in
Fig. 2b there are as many trade-in options for the random state as there are MD
minimizer’s strategies in G1 (just two in this example). The blue one (top left)
corresponds to minimizer going left and the red one (top right) to going up in G1.
Maximizer almost-surely wins Gain in G iff he almost-surely wins a storage-parity
condition (see Theorem 21) in G3.

It then suffices to check AS (k-Bailout ∩GW) (i.e., AS (k-Bailout) for the
subgame that consists only of the states of the fixed point W for k = k∗. Note
that this step can be skipped if k∗ ≥ K, the bound from Theorem 14.

Before we discuss how to use NP and coNP procedures to construct these sets
and to conduct the final test on the fixed point W , we note that the ‘∩GWi−1’ does
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not add anything substantial, as these are simply the same tests and procedures
conducted on the subgame that only consist of the states of Wi−1.

To obtain an NP procedure for constructing AS (Gain)—or, as remarked
above, AS (Gain ∩GWi−1)—we can guess and validate its membership for each
state s in this set, using the NP result from Theorem 18, and we can guess
and validate its non-membership for each state s not in this set in NP, using
the coNP result from Theorem 17. Similarly, we can guess and validate both
the membership and the non-membership in

⋃
k AS (k-Bailout ∩GWi−1)—and

of
⋃
k AS (k-Bailout ∩GWi−1) by analysing the subgame with only the states in

Wi−1—by using the NP and coNP result, respectively, from Theorem 14.
Once we can construct these sets, we can also intersect them and check if a

fixed point has been reached. (One can, of course, stop when s /∈Wi.)
We can now conduct the final check in NP using Theorem 18.
A coNP algorithm that constructs W can be designed analogously: once Wi−1

is known, membership and non-membership of a state s in AS (Gain ∩GWi−1) can
be guessed and validated in coNP by Theorem 17 and by Theorem 18, respectively;
and membership or non-membership of a state in

⋃
k AS (k-Bailout ∩GWi−1) can

be guessed and validated in coNP using the coNP and NP part, respectively, of
Theorem 14.

Once W is constructed, we can conduct the final check in coNP using Theo-
rem 17.

This result, together with the upper bound on the energy needed to win
energy-parity objective, allows us to solve the “unknown initial energy problem”
[7], which is to compute the minimal initial energy level required.

Corollary 20. For any state s, checking if there is k such that AS (EN(k) ∩ PAR)
holds is in NP ∩ coNP. Also, for a given k∗, checking if k∗ is the minimal energy
level required to win almost surely is in NP ∩ coNP as well.

Proof. Due to Theorem 14, if there is an energy level k for which AS (EN(k) ∩ PAR)
holds, then it also holds for the bound K whose size is polynomial in the size of
the game. We can then simply calculate K and then use NP and coNP algorithms
from Theorem 19 for AS (EN(K) ∩ PAR).

As for the second claim, note that checking whether maximizer cannot win
almost surely EN(k) ∩ PAR is also in NP and coNP as a complement of a coNP
and an NP set, respectively. Therefore, for an NP/coNP upper bound it suffices to
simultaneously guess certificates for almost surely EN(k∗) ∩ PAR and not almost
surely EN(k∗ − 1) ∩ PAR and verify them in polynomial time.

Finally, let us mention that the slightly more restrictive storage-parity objec-
tives can also be solved in NP∩ coNP. These are almost identical to energy-parity
except that, in addition, there must exist some bound l ∈ N such that the energy
level never drops by more than l during a run. This extra condition ensures
that, if the storage-parity objective holds almost-surely, then there must exist a
finite-memory winning strategy for maximizer.
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Theorem 21. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG H def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy ST(k) ∩ PAR from s.
Moreover, there is a bound L ∈ N, polynomial in the number of states and

the largest absolute transition reward, so that ST(k) ∩ PAR = ST(k, L) ∩ PAR.

Proof. (sketch) This result follows by a simple adaptation of the proofs showing
the same computational complexity of the Bailout objective (Section 4). See the
end of Appendix B for further details.

Example 22. In the game in Fig. 1, maximizer cannot ensure the storage-parity
condition ST(k)∩PAR for any initial energy level k. This is because it would imply
the existence of a finite-memory almost-surely winning strategy, which as we
have already argued, cannot be true. More intuitively, to prevent an intermediate
energy drop by l units, a winning maximizer strategy for storage-parity would
need to stop moving left after observing the negative cycle in the leftmost state l
successive times. However, when maximizer moves right, this gives minimizer the
chance to visit the rightmost bad state (with dominating odd priority 1). The
chance of that happening is (1/3)l > 0. In particular, this probability is > 0 for
any value of the intermediate energy drop l. Therefore, for any fixed l, maximizer
would need to move right infinitely often to satisfy storage and lose (against an
optimal minimizer strategy that moves to the rightmost state).

7 Conclusion and Outlook

We showed that several almost-sure problems for combined energy-parity ob-
jectives in simple stochastic games are in NP ∩ coNP. No pseudo-polynomial
algorithm is known (just like for stochastic mean-payoff parity games [20]). All
these problems subsume (stochastic) parity games, by setting all rewards to 0.
Thus the existence of a pseudo-polynomial algorithm would imply that (stochastic
and non-stochastic) parity games are in P, which is a long-standing open problem.

It is known that maximizer already needs infinite memory to win almost-
surely a combined energy-parity objective in MDPs [41]. Our results do not imply
anything about the memory requirement for optimal minimizer strategies in SSGs
for this objective. We conjecture that memoryless minimizer strategies suffice. If
this conjecture holds (and is proven), this would greatly simplify the coNP upper
bound that we established for this problem.

A natural question is whether results on mean-payoff/energy/parity games
can be generalized to a setting with multi-dimensional payoffs. Non-stochastic
multi-mean-payoff and multi-energy games have been studied in [50,37,1]. To
the best of our knowledge, the techniques used there, e.g. upper bounds on
the necessary energy levels as in [37], do not generalize to stochastic games (or
MDPs).

Multiple mean-payoff objectives in MDPs have been studied in [10,24], but
the corresponding multi-energy (resp. multi-energy-parity) objective has extra
difficulties due to the 0-boundary condition on the energy. I.e., even on Markov
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chains, and without any parity condition, it subsumes problems about multi-
dimensional random walks. Some partial results on Markov chains and MDPs
have been obtained in [13,2,3], but the decidability of the almost-sure problem
for stochastic multi-energy-parity games (and MDPs) remains open.
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A Lifting Almost-sure Strategies from MDPs to SSGs

This section contains a proof of Theorem 6, that shows how to conclude lift the
existence of memoryless determined almost-sure winning strategies from MDPs
to SSGs.

Definition 23 ([35], Sec. 2.C). Let G = (V,E, λ) be an SSG and σ a maxi-
mizer strategy.

For every finite play p = s0 . . . sn we denote by σ[p] the shift of strategy σ by
p as the strategy defined by

σ[p](t0e1t1 . . . emtm)
def
=

{
σ(pe1t1 . . . emtm), if sn = t0

σ(t0e1t1 . . . emtm), otherwise

Then σ is said to be ε-subgame-perfect if for every finite play p the strategy σ[p]
is ε-optimal.

Definition 24 ([35], Sec. 5.C). Let G = (V,E, λ) be an SSG from initial state
s and O an objective that is both shift-invariant and submixing and π ∈ V a state
owned by maximizer. We assume w.l.o.g., that π has two successors left (l) and
right (r). Let Gl and Gr be the SSGs resulting from G by removing the edge from
π to r and l, respectively. Moreover, assume that τl and τr are ε-subgame-perfect
strategies for minimizer in Gl and Gr, respectively.

The trigger strategy τlr for minimizer in the original game G (starting at s)
is defined as follows:

– start by playing according to τl
– play according to τr (initially with empty memory) once maximizer moves

from π to r for the first time.
– every time maximizer moves from π to l (or to r), maximizer resumes the

previous play in Gl (or Gr).

The trigger strategy τlr allocates the memory used by τl, τr, and one extra bit to
remember maximizer’s last choice at π.

Lemma 25 ([35], Eq. (19),(20),(21)). Assume the definitions of Defini-
tion 24. Then

∀σ.Pσ,τlrs (O) ≤ max{ValGls (O),ValGrs (O)}+ ε

Theorem 6. Let O be an objective such that O is both shift-invariant and
submixing. If maximizer has optimal FD strategies (from any state s) for O for
every finite MDP then maximizer has optimal FD strategies (from any state s)
for O for every finite SSG.

Proof. We assume w.l.o.g., that all minimizer’s states have at most two successors.
The proof is done by induction on the number of minimizer’s states with choice

(two successors) in G. The base case holds by the assumption that maximizer has
FD optimal strategies in MDPs.



24

For the induction step, we will use Definition 24 and Lemma 25, instantiated
with O instead of O. Since O is both shift-invariant and submixing, this satisfies
the conditions of Definition 24, but (relative to O) the roles of the players
minimizer/maximizer are swapped.

Pick some initial state s and a minimizer’s state π for O (i.e., a maximizer’s
state for O) and let Gl, Gr be defined as in Definition 24. By induction hypothesis,
in both these games Gl and Gr, maximizer has an FD optimal strategy for
objective O from s. Call these strategies σl and σr, respectively. In particular,
since σl and σr are optimal and O and O are shift-invariant, the strategies σl
and σr are subgame-perfect, and thus ε-subgame-perfect for ε = 0. Thus we
can instantiate Definition 24 with objective O and reversed roles of players
minimizer/maximizer. I.e., we take σl for τl and σr for τr, which are subgame-
perfect for player minimizer for objective O. We obtain the trigger-strategy σlr
for maximizer for O (i.e., the τlr for minimizer for O from Definition 24). Since
σl and σr are FD, so is σlr.

We now argue that this trigger strategy σlr must be optimal. The shift-
invariance and submixing conditions on O imply ([35], Theorem 5.2) that mini-
mizer has MD optimal strategies in every SSG with winning condition O. Let τ∗

be some MD optimal strategy for minimizer in G from s. W.l.o.g. assume that
τ∗(π) = l (otherwise rename left/right).

We show that σlr and τ∗ are best responses to each other, and thus both are
optimal. That is, in order to finish the induction step, we prove that the following
two claims hold for the game G.

1. Pσlr,τ
∗

s (O) ≥ supσ Pσ,τ
∗

s (O), and
2. Pσlr,τ

∗

s (O) ≤ infτ Pσlr,τ
s (O).

Together these imply the claim that σlr is optimal, and hence the induction step,
because

Vals(O) = sup
σ

inf
τ
Pσ,τs (O)

(opt.)
= sup

σ
Pσ,τ

∗

s (O)
(1)
= Pσlr,τ

∗

s (O)
(2)
= inf

τ
Pσlr,τ
s (O) (1)

where the second equation uses the optimality of τ∗. It remains to prove the two
claims above.

Item 1). Since τ∗(π) = l we have Pσlr,τ
∗

G,s (O) = Pσl,τ
∗

Gl,s (O) ≥ supσ P
σ,τ∗

Gl,s (O) =

supσ P
σ,τ∗

G,s (O), where the equalities hold by τ∗(π) = l and the inequality holds
by the assumed optimality of σl in Gl.

Item 2). From Lemma 25, instantiated with O, we obtain that

∀τ.Pσlr,τ
s (O) ≤ max{ValGls (O),ValGrs (O)}.+ ε

Since in our case ε = 0 we obtain

∀τ. 1−Pσlr,τ
s (O) ≤ max{1−ValGls (O), 1−ValGrs (O)} = 1−min{ValGls (O),ValGrs (O)}

and thus
∀τ.Pσlr,τ

s (O) ≥ min{ValGls (O),ValGrs (O)}.
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In particular, for τ = τ∗ we obtain Pσlr,τ
∗

s (O) ≥ min{ValGls (O),ValGrs (O)}. How-
ever, since τ∗ is an MD optimal strategy for minimizer, we also have

Pσlr,τ
∗

s (O) ≤ min{ValGls (O),ValGrs (O)}

By combining the above we get

∀τ.Pσlr,τ
s (O) ≥ min{ValGls (O),ValGrs (O)} = Pσlr,τ

∗

s (O)

and thus infτ Pσlr,τ
s (O) ≥ Pσlr,τ

∗

s (O). This concludes the proof of Item 2 and
thus the induction step.
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B Bailout

We will proceed in several reduction steps, ultimately reducing to checking the
winner of a non-stochastic game for energy-parity objectives.

Assume from now on a fixed SSG G with associated reward and parity
functions.

Lemma 26. Let Bailout′(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (ST(k, l) ∩ LimSup(=∞)).

There exists L ∈ N so that AS (
⋃
l Bailout(k, l)) = AS

(
Bailout′(k, L)

)
.

Proof. Pick L larger than |V | · R · c, the number of control states in the game
times the largest absolute reward R times the largest priority c used in the parity
condition.

We claim that every a.s. winning strategy can be turned into one that avoids
sub-runs of the form s

π1−→ s
π2−→ s where 1) both π1 and π2 have strictly negative

total effect on the energy level, 2) neither π1 nor π2 visit state s internally, 3)
the dominant priority on π1 and π2 is the same. If a strategy allows such a
path, then one can safely “cut out” π2 and the resulting strategy will still be
a.s. winning. Taken to the limit, such transformations will result in a strategy
that is a.s. winning for AS

(
Bailout′(k, L)

)
.

Lemma 27. Let Bailout′′(k, l)
def
= (ST(k, l) ∩ PAR) ∪ (ST(k, l) ∩ LimInf(=∞)).

For every k, l ∈ N it holds that Bailout′(k, l) = Bailout′′(k, l).

Proof. Just notice that a run ρ = s0e0s1e1 . . . ∈ ST(k, l) ∩ LimSup(= ∞)
must also satisfy the LimInf(=∞) condition because (lim infn→∞

∑n
i=0 r(ei)) ≥

(lim supn→∞
∑n
i=0 r(ei))− l, by the l-storage assumption.

The idea of the next step is to allow maximizer to witness the LimInf(=∞)
condition by occasionally trading in energy for a good priority, thereby satisfying
a parity condition instead. This results in a stochastic game for a ST(k, l) ∩ PAR
objective.

Let G′ be the SSG derived from G, where maximizer can always trade energy-
increase for visiting the best possible priority 0. That is, G′ results from G by

replacing every edge s
+a−−→ t, with a > 0, by a gadget below, where s′ ∈ V2,

parity(s′) = parity(s) and parity(t′) = 0.

s s’

t’

t
0

0
0

+a

Lemma 28. For every state s of G, and every k, l ∈ N it holds that s ∈
ASG

(
Bailout′′(k, l)

)
if, and only if, s ∈ ASG

′
(ST(k, l) ∩ PAR).



27

Proof. Assume that R ∈ N is the largest absolute transition reward in G (and
hence also G′). Every a.s. winning strategy σ for Bailout′′(k, l) = ST(k, l) ∩
(PAR ∪ LimInf(= ∞)) in G can be turned into an a.s. winning strategy σ′ for
ST(k, l) ∩ PAR in G′ as follows.

The new strategy σ′ behaves just as σ but additionally, keeps track of the
energy levels up to the bound l · R. If in G, σ chooses to increase the energy
level above this bound, σ′ will opt to visit a good priority instead, and continue
from the current energy level. Since σ ensures the l-storage condition on (almost)
all runs, so does σ′. Moreover, plays in G that do not satisfy PAR must instead
satisfy LimInf(=∞). The corresponding runs in G′ according to σ′ will therefore
infinitely often visit the best priority and hence satisfy the parity condition.

For the other direction, notice that one can just as well transform an a.s. win-
ning strategy σ′ for storage-parity in G′ to a winning strategy σ for Bailout′′(k, l)
in G. The strategy σ just increments the energy level and whenever σ′ would visit
a newly introduced priority-0 state. Suppose ρ is a play in G that corresponds to
a play ρ′ in G′. If ρ′ visits new states only finitely often, then after some finite
prefix, the sequence of states visited by ρ′ and ρ′ are the same. Since ρ′ satisfies
the parity condition so must ρ. Otherwise, if ρ′ visits new states infinitely often,
then ρ the difference of energy levels on ρ and ρ′ must grow unboundedly. Since
ρ′ satisfies the l-storage condition this means that ρ satisfies the LimInf(= ∞)
condition, and hence Bailout′′(k, l).

Finally, we use a construction similar to that in [23] for parity objectives,
to replace random states by small “negotiation gadgets”, resulting in a non-
stochastic energy-parity game. Let G′′ be the non-stochastic game derived from
G′, where random states are replaced by gadgets as in [23].

Lemma 29. For every state s of G′ and every k, l ∈ N it holds that s ∈
ASG

′
(ST(k, l) ∩ PAR) if, and only if, s ∈ ASG

′′
(ST(k, l) ∩ PAR).

Proof. The construction in [23] does not affect the transition rewards. Thus the
ST(k, l) condition is trivially preserved. The a.s. PAR condition is preserved by
exactly the same argument as in [23].

Theorem 14. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG G def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy k-Bailout from s.

Moreover, there are K,L ∈ N, polynomial in |V | and the largest absolute
transition reward, so that

⋃
k≥0 AS

G (k-Bailout) = ASG (Bailout(K,L)). And so,

checking whether state s belongs to
⋃
k≥0 AS

G (k-Bailout) is in NP and coNP.
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Proof. By Lemmas 26 to 29, for every k ∈ N it holds that

ASG

(⋃
l

Bailout(k, l)

)
(L. 26)

= ASG
(
Bailout′(k, L)

)
(L. 27)

= ASG
(
Bailout′′(k, L)

)
(L. 28)

= ASG
′
(ST(k, L) ∩ PAR)

(L. 29)
= ASG

′′
(ST(k, L) ∩ PAR)

Since G′′ is a two-player non-stochastic game, the claim now follows from [19],
(Theorem 2 and Lemma 5). For the existence of polynomially bounded number
K,L just notice that G′′ has the same largest absolute transition reward, and
only a polynomially larger set of states compared to G. For non-stochastic
energy-parity games such as G′′ it holds that

⋃
k≥0 AS (ST(k, L) ∩ PAR) =

AS
(⋃

k≥0(ST(k, k) ∩ PAR)
)

= AS (EN(K) ∩ PAR), if K denotes the product

of the number of states, the largest priority and absolute transition rewards in
G′′.

Now, to check if a state s belongs to
⋃
k≥0 AS

G (k-Bailout), we can calculate
K and then simply follow the NP or coNP procedure to check if s belongs
to ASG (K-Bailout) instead. This shows that this problem in NP and coNP as
well.

As a side result, note that neither Lemma 29, nor the complexity argument in
Theorem 14, make use of the structure of G′: they hold for all SSGs with storage
parity condition.

Theorem 21. One can check in NP, coNP and pseudo-polynomial time if, for

a given SSG H def
= (V,E, λ), k ∈ N and control state s ∈ V , maximizer can

almost-surely satisfy ST(k) ∩ PAR from s.
Moreover, there is a bound L ∈ N, polynomial in the number of states and

the largest absolute transition reward, so that ST(k) ∩ PAR = ST(k, L) ∩ PAR.



29

C Gain

C.1 Strategy Complexity for Gain

We prove Lemma 16, i.e., if maximizer can almost-surely win Gain in an MDP,
then he can do so using a finite-memory deterministic strategy.

To do this, we will utilize some results from [41], where we showed how to
compute winning regions for energy-parity objectives in MDPs based on a similar
combination of “gain” and “bailout” objectives as in this paper.

Consider a state s of a finite MDP with energy-parity objective and define

the limit value of state s as LVals
def
= supk Vals(EN(k) ∩ PAR). This is well defined,

because energy conditions are monotone increasing in the initial energy level k.

Lemma 30. For any state s of a finite MDP, we have Vals(Gain) = LVals.

Proof. It follows directly from the definitions that for every k ∈ N

EN(k) ∩ PAR ⊆ LimInf(≥ −k) ∩ PAR ⊆ LimInf(> −∞) ∩ PAR = Gain

and thus ⋃
k

(EN(k) ∩ PAR) ⊆ Gain (2)

Towards the reverse inclusion, consider a run ρ ∈ LimInf(≥ −j) ∩ PAR for some
j ∈ N. Then, except in a finite prefix ρ′ , the energy along ρ stays above −j. Let
k′ be the minimal energy reached in ρ′, which is finite because ρ′ is finite, and

let k
def
= −min(k′,−j). Then ρ ∈ EN(k) ∩ PAR ⊆ ⋃k(EN(k) ∩ PAR). So for every

j ∈ N we have

LimInf(≥ −j) ∩ PAR ⊆
⋃
k

(EN(k) ∩ PAR)

and thus
Gain =

⋃
j

(LimInf(≥ j) ∩ PAR) ⊆
⋃
k

(EN(k) ∩ PAR) (3)

From Eq. (2) and Eq. (3) we obtain

Gain =
⋃
k

(EN(k) ∩ PAR) (4)

Therefore,

Vals(Gain) = Vals(∪k(EN(k) ∩ PAR)) by Eq. (4)

= sup
σ

Pσs (∪k(EN(k) ∩ PAR)) def. of value

= sup
σ

sup
k

Pσs (EN(k) ∩ PAR) continuity of measures from below

= sup
k

sup
σ

Pσs (EN(k) ∩ PAR) commutativity

= sup
k

Vals(EN(k) ∩ PAR) def. of value

= LVals def. of LVals
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Lemma 16. For finite MDPs, almost-sure winning maximizer strategies for Gain
can be chosen FD.

Proof. By Lemma 30 we have Vals(Gain) = LVals. Moreover, the objective Gain
is shift-invariant and therefore there exist optimal strategies [34]. Thus it follows
from [41, Theorem 18] that AS (Gain) = AS (Reach(A ∪B)), for the following sets

of states A
def
=
⋃
k∈N AS (ST(k) ∩ PAR) and B

def
= AS (LimInf(=∞) ∩ PAR). This

means that if an a.s. winning strategy for Gain exists, then there also exists one
that operates in two phases: 1) a.s. reach A∪B. This can be done with memoryless
deterministic strategies. 2a) once in A proceed along an a.s. winning strategy for
ST(k) ∩ PAR, which can be done deterministically with memory O(k · |G|). Or,
2b) once in B, proceed along an a.s. winning strategy for LimInf(= ∞) ∩ PAR.
For MDPs a strategy is almost-sure winning for LimInf(= ∞) ∩ PAR iff it is
almost-sure winning for MP(> 0) ∩ PAR, the combination of a parity condition
together with a strictly positive Mean-Payoff condition. Such strategies can be
chosen FD [17].

C.2 Gain is in coNP

Theorem 17. Checking whether a state s ∈ V of a SSG satisfies Gain almost-
surely is in coNP.

Proof. By Lemma 15, it suffices to show coNP membership only for the MDP
case, as a witnessing MD strategy for minimizer can be guessed as part of the
certificate. To check if maximizer can almost surely win from state s in an MDP
with Gain objective, we can equivalently check if Vals(Gain) = 1. This is because
the objective is shift-invariant and therefore there exist optimal strategies [34].
By Lemma 30, we can alternatively check if LVals = 1, which can be done in
coNP by [41, Lemma 26].

C.3 Gain is in NP

Before we can proceed with the technical details of the G → G1 → G2 → G3
constructions, we first need to introduce the following standard definitions.

Definition 31. LetM = G[τ ] be an MDP induced by game G def
= (V = (V2, V3, V#), E, λ)

and an MD strategy τ for minimizer. An end-component is a strongly connected
set of states C ⊆ V such that, for every state v ∈ C, if v ∈ V2 then some
successor v′ of v is in C, and if v ∈ V# ∪ V3 then all successors v′ of v are in C.
A leaf-component is an end-component of a Markov chain G[σ, τ ].

A leaf-component is storage-parity-safe if the dominating priority is even and
it satisfies the storage condition

⋃
k≥0 ST(k), and mean-positive if its mean-payoff

is positive.
An end-component C of G[τ ] is gain-safe if (1) the dominating priority of C

(the smallest priority of any state in C) is even and C contains a mean-positive
leaf-component or (2) there is an MD strategy σ for the maximizer, such that C
is a storage-parity-safe leaf-component in G[σ, τ ].
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Note that any end-component that satisfies a.s. Gain is gain-safe, which
justifies its name. This is because either (1) holds, or else maximizer can reach
again and again a state with a dominating even priority without the need to
pump up the energy level first for which an MD strategy suffices, so (2) would
hold then.

C.3.1 Blow-up Construction (G → G1)

The G → G1 construction just multiplies all the rewards by a “large enough“
factor. Formally, we need G1 to have the following property.

Lemma 32. Let τ be an MD strategy for the minimizer and s ∈ V . If there exists
a strategy σ for the maximizer such that PG,σ,τs (MP(> 0) ∩ PAR) = 1 then there
exists an FD strategy σ′ for the maximizer such that PG1,σ′,τs (MP(> 2)∩PAR) = 1.

We construct a game G1, based on G, in which all edge rewards are multiplied
by a large factor so that if the maximizer can originally ensure the parity condition
and a positive expected mean-payoff in G, then he can ensure parity condition
and expected mean-payoff higher than 2 in G1. It is intuitively clear that such
a factor exists, because multiplying all transition rewards by a positive factor
has no effect on the outcome of the Gain objective. What is less clear that such a
factor can be of polynomial size so that G1 is only polynomially larger than G.
Before we can proceed with the proof of Lemma 32, we need to show an auxiliary
result below.

Recalling that, for the Gain objective, the minimizer has MD optimal strategies,
we consider the effect of multiplying the rewards of all edges by factor f against
every such strategy τ : We show that if maximizer can a.s. obtain MP(> 0)∩PAR
from a state s in the MDP G[τ ], then he can a.s. obtain MP(> 2) ∩ PAR from s
in the MPD G1[τ ].

Lemma 33. Let (1) τ be an MD strategy for minimizer, (2) E be an end
component in the MDP G[τ ], with even minimal priority, (3) σ an MD strategy
for Max, and (4) L ⊆ E a leaf component in G[σ, τ ] with expected payoff p > 0.
Then 2

p is exponential in the size of G.

Moreover, a factor f > 2
p , with a representation polynomial in |G|, can be

computed independent of τ , E, σ, or L.

Proof. For any fixed MD strategies σ and τ , we can write a linear program for
the so-called gain-bias relations3 in L, which is a standard way to solve MDPs
with a mean-payoff objective (see, e.g., [44, Theorem 8.2.6(a), p. 343]). In any
solution, the gain of a state equals its mean-payoff value while, broadly speaking,
the bias compensates for the fluctuation of the payoff, where the gain is only the
expected longterm average.

3 The terms ‘gain’ from the ‘gain-bias relations’ and our ‘Gain objective’ are unrelated
established terms.
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Notice that for a fixed L, we only need a single gain variable g, because all
nodes in a leaf component have the same mean-payoff. For each node u ∈ L, we
introduce a bias variable, bu.

The constraints of the gain-bias linear program for L are:

bu = bτ(u) + r(u, τ(u))− g for all u ∈ V3 ∩ L
bu = bσ(u) + r(u, σ(u))− g for all u ∈ V2 ∩ L
bu =

∑
(u,v)∈E

λ(u, v)(bv + r(u, v))− g for all u ∈ V# ∩ L

and its objective is Maximize g.
It follows from the proof of Corollory 10.2a in [47] that the size of an optimal

finite solution to such this linear program is at most 4m2(m+ 1)(S + 1), where
m is the number of variables and S is the maximum size of any coefficient used.
In our case we can easily estimate that m ≤ |V |+ 1 and S ≤ |G|, so the optimal
solution, p, is of size polynomial in |G|. And, since p > 0, the same holds for 2/p.

Note that the loose upper bound given above on the size of 2/p does not
really depend on τ , σ, E nor L, so if we take the maximum of the size of 2/p
over all possible τ , σ, E and L, we would still get the same upper bound.

Such an f will serve as our sufficiently large (yet sufficiently small) blow-up
factor: G1 is obtained from G by changing the reward function to r1(e) = f · r(e)
for all e ∈ E, i.e., by multiplying all rewards by f . We are now finally ready to
prove Lemma 32.

Proof of Lemma 32. The existence of an FD strategy σ′ that achieves PG,σ′,τs (MP(>
0) ∩ PAR) = 1 follows from [17]. Moreover, σ achieves the same mean-payoff,
denoted by p′, as the original almost-sure winning strategy σ. By Lemma 33, the
mean payoff of σ′ in G1 is ≥ f · p′ > 2.
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(b) The derived game G1 which happens to
be equal to G.

Fig. 3: An example game G (left) and its example derived game G1.
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Example 34 (running example). Consider the game G in Fig. 3 (left). Maximizer
can almost-surely guarantee the Gain condition. The strategy that always loops in
the right-most state ensures a mean-payoff of 3. As this is the only MD strategy
for maximizer that ensures a positive mean-payoff, picking any factor f > 2

3 is
sufficient. In particular we can pick f = 1 which results in G1 = G.

C.3.2 Trade-in Construction (G1 → G2)

We are now going to modify the game G1 into the game G2, where maximizer can
sacrifice part of the reward he would normally get while visiting a probabilistic
node in exchange for rebalancing the values of these rewards.

During the construction of G2 we are going to fix an optimal MD strategy, τ∗,
for minimizer in G1. Game G2 will be the same no matter which optimal strategy
is picked as τ∗.

We start the construction of G2 with identifying the union, U , of all gain-safe
end-components of G1[τ∗], for which there is no maximizer strategy that ensures
MP(> 0) ∩ PAR. Condition (2) of gain-safeness has to hold instead, i.e., there
are MD maximizer strategies that a.s. satisfy storage and parity, and note that
then the mean-payoff has to be 0. We can compose all these strategies into a
single winning maximizer MD strategy σ for all states in U . We now collapse all
states in U into a single gain-safe state ua with an even priority, and a self-loop
with payoff 3, resulting in the SSG GU . Now, if the maximizer can a.s. reach
U in G1[τ∗], then he can enforce MP(> 2) ∩ PAR in GU [τ∗]. All the remaining
gain-safe end-components in GU satisfy MP(> 0) ∩ PAR and so MP(> 2) ∩ PAR
due to Lemma 32.

We therefore fix a winning maximizer MD strategy σ for MP(> 2) and for each
MD strategy τ write a linear program, consisting of the gain-bias inequations
for gain of at least 2 in GU [σ, τ ], and forcing all biases to be non-negative and of
polynomial size. This is a straight-forward adaptation of the gain-bias relations for
solving mean-payoff MDPs (see, e.g., [44, Theorem 8.2.6(a), p. 343]) In particular,
we have

bτ,u < bτ,τ(u) + r1(u, τ(u))− 2 for all u ∈ V3 \ U
bτ,u < bτ,σ(u) + r1(u, σ(u))− 2 for all u ∈ V2 \ U
bτ,u <

∑
(u,v)∈E

λ(u, v)(bτ,v + r1(u, v))− 2 for all u ∈ V# \ U

bτ,u ≥ 0 for all u ∈ {ua} ∪ V \ U

and we pick as the objective

Minimize
∑

u∈{ua}∪V \U

bτ,u

It follows from the proof of Corollory 10.2a in [47] that the size of an optimal
finite solution to such a linear program is at most 4m2(m+ 1)(S + 1), where m
is the number of variables and S is the maximum size of any coefficient used. In
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Fig. 4: The reduction from G1 to G2, in which maximizer can choose to rebalance
the rewards of edges out of probabilistic states at the cost of a reduced expected
payoff where ai = b1 + bτi,s − bτi,t1c, bi = b1 + bτi,s − bτi,t2c and k is the number
of MD minimizer strategies.

our case m ≤ |V | + 1 and S ≤ |G|, so the size of any bτ,u in an optimal finite
solution to such a linear program is of size polynomial in |G1|. Note that this
loose upper bound, B, does not depend on τ , σ nor U .

We now build the SSG G2 = (V2, E2, λ2), where G2 ⊇ GU , and the associated
reward function r2 that we derive from GU by allowing maximizer to redistribute
the rewards of random edges. More precisely, let s be a random state with
two outgoing edges (s, t1), (s, t2) ∈ E and a unique predecessor p ∈ V2. Then,
for every MD minimizer strategy τ , G2 contain an extra random state sτ and
edges (p, sτ ), (sτ , t1), (sτ , t2)—with the same probabilities p1 and p2 for taking
(sτ , t1) and (sτ , t2) as for taking (s, t1) and (s, t2), respectively—and rewards

r2(p, sτ )
def
= r1(p, s), r2(sτ , t1)

def
= b1+bτ,s−bτ,t1c and r2(sτ , t2)

def
= b1+bτ,s−bτ,t2c.

See Fig. 4 for an example. Notice that, due to the inequalities defining the biases
bτ,u, we have p1r2(sτ , t1)+p2r2(sτ , t1)+1 < p1r1(s, t1)+p2r1(s, t2), so maximizer
sacrifices expected reward of at least 1 at s.

This extended arena has the following property for every state u ∈ V2 of G2.

Lemma 35. Let τ be an MD minimizer strategy and u a state. Then u ∈
ASG1[τ ] (Gain) if, and only if, u ∈ ⋃k≥0 ASG2[τ ] (ST(k) ∩ PAR).

Proof. ( ⇐= ). Pick k such that u ∈ ASG2[τ ] (ST(k) ∩ PAR) holds, and let σ be
an a.s. winning FD strategy for the maximizer. Now in G1, we simply follow σ,
but whenever σ picks a trade-in edge to sτ , we pick the original edge to s instead.
Notice that such a strategy ensures parity and the energy level at any point
can only increase. If such a strategy reaches a node in U then it switches to an
optimal strategy for ST(k′) ∩ PAR, where k′ is the minimum energy for which
ST(k′) ∩ PAR holds for all states in U . It is easy to see that while using such a
strategy the energy can never drop more than k+ k′, so it has to satisfy Gain a.s.

( =⇒ ). First of all, note that due to the definition of biases bτ,u we have
that r2(u, u′) > bτ,u − bτ,u′ + 2 for u ∈ V2 ∪ V3, and r2(u, u′) > bτ,u − bτ,u′ for
u ∈ {sτ |s ∈ V#}, because bx+ 1c > x for all x.

Now pick any a.s. winning σ for Gain in G1[τ ]. Let σ′ be σ that always picks
trade-ins sτ when possible. Such a strategy still satisfies parity a.s. Consider
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any play ρ = s0e0s1e1s2e2 . . . of σ′. If ρ reaches a state in U then we switch at
that point to an optimal strategy for ST(k′) ∩ PAR as defined above. Otherwise,
we have that for any infix slel . . . eh−1sh of ρ, the change in the energy level is∑h−1

i=l r2(si, si+1) >
∑h−1
i=l (bτ,si − bτ,si+1

) = bτ,sh − bτ,sl ≥ −B. This shows that
ST(B + k′) ∩ PAR is satisfied a.s. by such a strategy.

Using the existence of MD optimal minimizer strategies for their respective
objectives in both games, we get the following.

Corollary 36. u ∈ ASG (Gain) ⇐⇒ u ∈ ⋃k≥0 ASG2 (ST(k) ∩ PAR).

Proof. First of all, by the way G1 is defined, we have u ∈ ASG (Gain) ⇐⇒ u ∈
ASG1 (Gain).

(⇒) For all MD strategies τ the following has to hold u ∈ ASG1[τ ] (Gain).

Due to Lemma 35 we get u ∈ ⋃k≥0 ASG2[τ ] (ST(k) ∩ PAR), so there exists k such

that u ∈ ASG2[τ ] (ST(k) ∩ PAR). As there are only finitely many MD strategies,
we let k∗ be the maximum value of k corresponding to one of them. Note that
u ∈ ASG2 (ST(k∗) ∩ PAR) has to hold, because u ∈ ASG2[τ ] (ST(k∗) ∩ PAR) for
all MD strategies τ (as ST(k)∩PAR objective is upward-closed) and one of them
has to be an optimal strategy for minimizer.

(⇐) Suppose that u 6∈ ASG1 (Gain) then pick any MD optimal minimizer strat-

egy τ such that u 6∈ ASG1[τ ] (Gain). Due to Lemma 35 we get u 6∈ ⋃k≥0 ASG2[τ ] (ST(k) ∩ PAR);

a contradiction with the fact that u ∈ ⋃k≥0 ASG2 (ST(k) ∩ PAR).
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Fig. 5: An example game G1 (left) and its example derived game G2.
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Example 37 (continuation of Example 34). Consider the game G1 in Fig. 5 (left).
In its derived game G2 there are as many trade-in options for the random state
as there are MD minimizer’s strategies (just two in this example). The blue one
(top left) corresponds to minimizer going left and the red one (top right) to going
up. Example biases that satisfy the inequalities presented in Section C.3.2 are
drawn next to the nodes inside colored boxes. They results in the rewards 4 and
−10 for the blue trade-in and 4 and −9 for the red one.

C.3.3 Concise Witnesses Construction (G2 → G3)

The final step is to show that we can clean up G2 by removing all but a small
number of the new trade-in options for maximizer when entering a random state,
preserving the fact that maximizer wins the ST(·)∩PAR objective. Formally this
whole subsection is dedicated to a proof of the following crucial lemma.

Lemma 38. There exists a game G3 ⊇ G1 that results from G2 by keeping, for
any random state, at most twice the number of states in G1 trade-in options, and
such that for any state s ∈ V maximizer wins the almost-sure k-storage-parity
game in G3 iff he does in G2.

Most of the properties in this subsection hold for an arbitrary energy-parity
game, so we will use H instead of G2 in order to avoid the use of double subscripts.

The main idea of the proof of Lemma 38 is to use the monotonicity of the
ST(k) ∩ PAR objective with respect to the initial energy level k. If maximizer
a.s. wins ST(·) ∩ PAR from state p then there is a least kp ∈ N such that (for
some l), ST(kp, l) ∩ PAR holds a.s. Fix l large enough to work for all minimal kp
for every state p—and for all purposes of the proofs below.

Consider a configuration (p, kp) ∈ AS (ST(kp, l) ∩ PAR) where p has newly
introduced outgoing edges that allow for trade-ins (it has a random successor
node). Let σ be a winning maximiser strategy for this game that depends only
on the state and the energy level in the energy store4, and let σmin denote the
maximiser strategy that maps each maximiser state p to the successor that σ
assigns to (p, kp). Note that this strategy is positional, and therefore uses only
one possible trade-in option.

We first observe that maximiser can ensure by using this strategy that he can
only gain energy distance relative to the minimal energy level of the state (except
where the energy is limited by the capacity of his energy store): For every run
(s0, k0), (s1, k1), (s2, ks), (s3, k3), . . . of H consistent with σmin and all i ∈ ω it
holds that ki+1 − ksi+1

≥ ki − ksi . The following lemma is a direct consequence.

Lemma 39. The strategy σmin almost-surely guarantees that 1) the cumulative
rewards tend to infinity or 2) the parity condition holds. That is, for every
minimizer strategy τ and initial state s of H it holds that PH,σmin,τ

s (LimInf(=
∞) ∪ PAR) = 1.

4 Recall that such a strategy must exist as, once the store limit l is fixed, the game
becomes an ordinary finite parity game.
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Proof. Assume for contradiction that minimizer has a strategy that ensures that
runs with a positive probability weight contain (1) only finitely many transitions
that lead to a true gain in energy (relative to the minimal energy level) and (2) do
not satisfy the parity condition. (1) is a co-Büchi objective, (2) a parity objective,
so (1) and (2) together are a parity objective. Thus, minimizer has a memoryless
strategy τ to obtain this. Thus H[σmin, τ ] has a leaf-component where this holds.
Thus, H[σ, τ ] is not winning on the states of this leaf-component on the minimal
energy level. (contradiction)

We call the property (LimInf(=∞) ∪ PAR) established by this lemma the lift
or win property and will use it for a separation of concerns. For this, we first
show that, when the dominating priority is odd, then the maximizer can win on
a smaller set that he can ensure is never left while winning the energy storage
condition almost surely.

For a set S of states, we write atrHi (S) for the set of states from which player
i ∈ {2,3} (maximizer / minimizer) can force the game to a state in S. In
particular, atrH2 (S) = AS (FS) is the set of states for which maximizer can ensure
to almost-surely reach S. We call a set S of states a (minimizer) trap if all
minimizer states and all random states in S have only successors in S. Naturally,
the union of two traps is also a trap, so there exists a unique ⊆-maximal trap.

Lemma 40. Let H be a game with minimal odd priority o, where the maximiser
wins storage parity from all positions, and let So be the states with priority o.
Then there is a trap St in H \ atrH3 (So), such that the maximiser wins storage
parity from all positions in the subgame H ∩ St, that is, without exiting St.

Proof. Assume for contradiction that no such trap exists. Then the minimiser
has an almost-sure winning strategy—and thus a positional winning strategy
τ—for all positions in H \ atrH3 (So). Then the minimiser can win almost surely
in H by a positional winning strategy that fixes an arbitrary strategy for her
positions in So, uses her attractor strategy in all her other positions in atrH3 (So),
and τ elsewhere. (contradiction)

The minimal energy level for winning from a state in St can, of course, differ
from the minimal sufficient energy level for the same state in the full game H.
We now partition the winning regions using divide and conquer.

Lemma 41. Let H be a game where the maximiser wins storage parity from all
positions. Let o be the minimal odd priority that occurs in H. If o is the minimal
priority in H then let St be defined as the trap St guaranteed by Lemma 40,
otherwise let St be the set of states with smaller priority than o. The following
holds.

1. Maximizer wins storage parity from all positions in the subgame H′ = H \
atrH2 (St).

2. Fix maximizer strategies σ1, σ2 and σ3 that are almost-sure winning for 1)
storage-parity in H′, storage-parity in St, and 3) reachability (FSt), respec-
tively, and let I ⊆ H be the game in which all new trade-in states that are
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never used by those strategies are removed. Maximizer almost-surely wins the
storage-parity objective from all states of I.

Proof. For the first part, one immediately sees that a winning minimizer strategy
for (some) states in H′ would also be winning for these states in H.

For the second part, notice that maximizer can combine the existing strategies
into an overall winning strategy as follows.

Suppose kt ∈ N is large enough so that for all states in St, maximizer wins
the storage-parity objective ST(kt) ∩ PAR. Based on this, we can pick ka ∈ N
large enough so that, in a game that starts in atrH2 (St) with energy ka and where
maximiser plays the attractor strategy towards St, he has a positive chance of
reaching St with energy ≥ kt while remaining in the almost-sure winning region
for storage-parity (in H). Finally, let k > max{ka, kt} be large enough so that
for all states in H′, maximizer wins the storage-parity objective ST(k) ∩ PAR.
W.l.o.g., this is already witnessed by the strategy σ1, by monotonicity of the
objective. Maximizer will play as follows.

As long as the energy level is low (< k), maximizer plays according to σmin.
By the lift or win property (Lemma 32) he can either win or gain an arbitrary
amount of energy. Alternatively, assuming he is in atrH2 (St) and has sufficient
energy, he invests it into an attempt to reach St in atrH2 (St) while complying
with the minimal energy level on the way and, if o is the minimal priority, having
sufficient energy in St to win storage parity in the trap St. Outside of atrH2 (St),
he plays according to σ1, the winning strategy in H′, while maintaining an energy
level of at least k. This combined strategy is winning for the k-storage-parity
because 1) it remains in the almost-sure winning region and 2) either eventually
forever follows a winning strategy in St ∪H′, or (in case the minimal priority is
even) infinitely often tries to reach states with the dominant priority.

As this strategy only combines the existing strategies, it will never use any
trade-in state in H \ I, and therefore works in the smaller subgame I.

This finally allows us to establish our main claim, of which Lemma 38 is a
direct consequence.

Lemma 42. If the maximiser almost surely wins storage parity for G2, he can
win storage parity in G2 with a strategy that does not use more choices for any
state in G2 than twice the number of states of G1 has states.

Proof. The claim follows from a recursive application of Lemma 41. Starting
with H ⊆ G2 defined by the almost-sure winning states, each application will split
the game into disjoint subgames H′, St, and atrH2 (St) \ St, in which maximizer
can be assumed to win according to simpler (wrt. the number of trade-ins used)
strategies. Notice that every new trade-in states sτ ∈ G2 \ G1 will belong to
the same subgame as its accompanying original random state s ∈ G1. In every
decomposition St must be non-empty, so the number of states in G1 bounds the
recursion depth.

The base cases are either empty or games in which maximizer wins only by
combining σmin and an attractor strategy towards the dominating priority. Both
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can be chosen MD. In any further decomposition, any given state will wither
belong to a smaller game (H′ or St), in which case the number of necessary
trade-in options is unchanged, or is in atrH2 (St) \ St, in which case the combined
strategy may need to chose between σmin and an attractor strategy. But notice
that the choice of trade-in state is meaningless for the attractor strategy, because
all such states have the same (distributions over) successors.
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(a) The game G2
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(b) The game G3

Fig. 6: An example game G2 (left) and the derived games.

Example 43 (continuation of Example 37). Consider the game G2 in Fig. 6 (left).
We can prune G2 into a game where all but one new alternative state is removed.
In this game G3, depicted on the right, maximizer can almost-surely guarantee
the Gain condition while simultaneously ensuring that no negative cycle is closed.
This means that ST(k)∩ PAR holds almost-surely in G3, and hence EN(k)∩ PAR
in G.

C.3.4 Proof of Theorem 18

We are now ready to prove the main theorem of Section 5.

Theorem 18. Checking whether a state s ∈ V of G satisfies Gain almost-surely
is in NP.

Proof. Guess a game G3 that uses only the given bound on the number of choices,
i.e., without constructing the exponentially large game G2. Prune the unreachable
random states and verify that maximizer can almost-surely ensure the storage-
parity objective in G3. The correctness of this procedure follows from Lemma 38
and Corollary 36.
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