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Overview of the Chapter

Sample spaces, events, and probability distributions.

Independence, conditional probability

Bayes’ Theorem and applications

Random variables and expectation; linearity of expectation;
variance

Markov’s and Chebyshev’s inequalites.

Examples from important probability distributions

Today’s Lecture:

Introduction to Discrete Probability ( sections 7.1 and 7.2).
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The “sample space” of a probabilistic experiment

Consider the following probabilistic (random) experiment:

“Flip a fair coin 7 times in a row, and see what happens”

Question: What are the possible outcomes of this experiment?

Answer: The possible outcomes are all the sequences of
“Heads” and “Tails”, of length 7. In other words, they are the set
of strings Ω = {H,T}7.

The set Ω = {H,T}7 of possible outcomes is called the sample
space associated with this probabilistic experiment.
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Sample Spaces

For any probabilistic experiment or process, the set Ω of all its
possible outcomes is called its sample space.

In general, sample spaces need not be finite, and they need not
even be countable. In “Discrete Probability”, we focus on finite
and countable sample spaces. This simplifies the axiomatic
treatment needed to do probability theory. We only consider
discrete probability (and mainly finite sample spaces).

Question: What is the sample space, Ω, for the following
probabilistic experiment:
“Flip a fair coin repeatedly until in comes up heads.”

Answer: Ω = {H,TH,TTH,TTTH,TTTTH, . . .} = T ∗H.
Note: This set is not finite. So, even for simple random
experiments we do have to consider countable sample spaces.
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Probability distributions

A probability distribution over a finite or countable set Ω, is a
function:

P : Ω→ [0,1]

such that
∑

s∈Ω P(s) = 1.

In other words, to each outcome s ∈ Ω, P(s) assigns a
probability, such that 0 ≤ P(s) ≤ 1, and of course such that the
probabilities of all outcomes sum to 1, so

∑
s∈Ω P(s) = 1.
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Simple examples of probability distributions

Example 1: Suppose a fair coin is tossed 7 times consecutively.
This random experiment defines a probability distribution
P : Ω→ [0,1], on Ω = {H,T}7, where, for all s ∈ Ω, P(s) = 1/27.
and |Ω| = 27, so

∑
s∈Ω P(s) = 27 · (1/27) = 1.

Example 2: Suppose a fair coin is tossed repeatedly until it
lands heads. This random experiment defines a probability
distribution P : Ω→ [0,1], on Ω = T ∗H, such that, for all k ≥ 0,

P(T kH) =
1

2k+1

Note that∑
s∈Ω P(s) = P(H) + P(TH) + P(TTH) + . . . =

∑∞
k=1

1
2k = 1.
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Events
For a countable sample space Ω, an event, E, is simply a
subset E ⊆ Ω of the set of possible outcomes.
Given a probability distribution P : Ω→ [0,1], we define the
probability of the event E ⊆ Ω to be P(E)

.
=
∑

s∈E P(s).

Example: For Ω = {H,T}7, the following are events:

“The third coin toss came up heads”.
This is event E1 = {H,T}2H{H,T}4; P(E1) = (1/2).
“the fourth and fifth coin tosses did not both come up tails”.
This is E2 = Ω−{H,T}3TT{H,T}2; P(E2) = 1− 1/4 = 3/4.

Example: For Ω = T ∗H, the following are events:

“The first time the coin comes up heads is after an even
number of coin tosses.”
This is E3 = {T kH | k is odd}; P(E3) =

∑∞
k=1(1/22k ) = 1/3.
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Basic facts about probabilities of events
For event E ⊆ Ω, define the complement event to be E .

= Ω− E .

Theorem: Suppose E0,E1,E2, . . . are a (finite or countable)
sequence of pairwise disjoint events from the sample space Ω.
In other words, Ei ∈ Ω, and Ei ∩ Ej = ∅ for all i , j ∈ N. Then

P(
⋃

i

Ei) =
∑

i

P(Ei)

Furthermore, for each event E ⊆ Ω, P(E) = 1− P(E).

Proof: Follows easily from definitions:
for each Ei , P(Ei) =

∑
s∈Ei

P(s), thus, since the sets Ei are
disjoint, P(

⋃
i Ei) =

∑
s∈

S
i Ei

P(s) =
∑

i

∑
s∈Ei

P(s) =
∑

i P(Ei).

Likewise, since P(Ω) =
∑

s∈Ω P(s) = 1, P(E) = P(Ω− E) =∑
s∈Ω−E P(s) =

∑
s∈Ω P(s)−

∑
s∈E P(s) = 1− P(E).
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Brief comment about non-discrete probability theory

In general (non-discrete) probability theory, with uncountable
sample space Ω, the conditions of the prior theorem are actually
taken as axioms about a “probability measure”, P, that maps
events to probabilities, and events are not arbitrary subsets of Ω.
Rather, the axioms say: Ω is an event; If E0,E1, . . . , are events,
then so is

⋃
i Ei ; and If E is an event, then so is E = Ω− E .

A set of events F ⊆ 2Ω with these properties is called a
σ-algebra. General probability theory studies probability spaces
consisting of a triple (Ω,F ,P), where Ω is a set, F ⊆ 2Ω is a
σ-algebra of events over Ω, and P : F → [0,1] is a probability
measure, defined to have the properties in the prior theorem.

We only discuss discrete probabability, and will not assume
you know definitions for general (non-discrete) probability.
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Conditional probability
Definition: Let P : Ω→ [0,1] be a probability distribution, and
let E ,F ⊆ Ω be two events, such that P(F ) > 0.
The conditional probability of E given F , denoted P(E | F ), is
defined by:

P(E | F ) =
P(E ∩ F )

P(F )

Example: A fair coin is flipped three times. Suppose we know
that the event F = “heads came up exactly once” occurs.
what is the probability that of the event E = “the first coin flip
came up heads” occurs?

Answer: There are 8 flip sequences {H,T}3, all with probability
1/8. The event that “heads came up exactly once” is
F = {HTT ,THT ,TTH}. The event E ∩ F = {HTT}.
So, P(E | F ) = P(E∩F )

P(F )
= 1/8

3/8 = 1
3 .
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Independence of two events
Intuitively, two events are independent if knowing whether one
occurred does not alter the probability of the other. Formally:

Definition: Events A and B are called independent if
P(A ∩ B) = P(A)P(B).

Note that if P(B) > 0 then A and B are independent if and only if

P(A | B) =
P(A ∩ B)

P(B)
= P(A)

Thus, the probability of A is not altered by knowing B occurs.

Example: A fair coin is flipped three times. Are the events A =
“the first coin toss came up heads” and B = “an even number of
coin tosses came up head”, independent?

Answer: Yes. P(A ∩ B) = 1/4, P(A) = 1/2, and P(B) = 1/2, so
P(A ∩ B) = P(A)P(B).
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Pairwise and mutual independence
What if we have more than two events: E1,E2, . . . ,En.
When should we consider them “independent”?

Definition: Events E1, . . . ,En are called pairwise independent,
if for every pair i , j ∈ {1, . . . ,n}, i 6= j , Ei and Ej are independent
(i.e., P(Ei ∩ Ej) = P(Ei)P(Ej)).

Events E1, . . . ,En are called mutually independent, if for every
subset J ⊆ {1, . . . ,n}, P(

⋂
j∈J

Ej) =
∏
j∈J

P(Ej).

Clearly, mutual independence implies pairwise independent.
But... Warning: pairwise independence does not imply mutual
independence. (A tutorial sheet exercise asks you to prove this.)
Typically, when we refer to > 2 events as “independent”, we
mean they are “mutually independent”.
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Biased coins and Bernoulli trials

In probability theory there are a number of fundamental
probability distributions that one should study and understand in
detail.
One of these distributions arises from (repeatedly) flipping a
biased coin.
A Bernoulli trial is a probabilistic experiment that has two
outcomes: success or failure (e.g., heads or tails).
We suppose that p is the probability of success, and q = (1− p)
is the probability of failure.

We can of course have repeated Bernoulli trials. We typically
assume the different trials are mutually independent.
Question: A biased coin, which comes up heads with
probability p = 2/3, is flipped 7 times consecutively. What is the
probability that it comes up heads exactly 4 times?
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The Binomial Distribution
Theorem: The probability of exactly k successes in n (mutually)
independent Bernoulli trials, with probability p of success and
q = (1− p) of failure in each trial, is(

n
k

)
pkqn−k

Proof: We can associate n Bernoulli trials with outcomes
Ω = {H,T}n. Each sequence s = (s1, . . . , sn) with exactly k
heads and n − k tails occurs with probability pkqn−k . There are(n

k

)
such sequences with exactly k heads.

Definition: The binomial distribution, with parameters n and
p, denoted b(k ; n,p), defines a probability distribution on
k ∈ {0, . . . ,n}, given by

b(k ; n,p)
.

=

(
n
k

)
· pkqn−k
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Random variables
Definition: A random variable, is a function X : Ω→ R, that
assigns a real value to each outcome in a sample space Ω.

Example: Suppose a biased coin is flipped n times. The sample
space is Ω = {H,T}n. The function X : Ω→ N that assigns to
each outcome s ∈ Ω the number X (s) ∈ N of coin tosses that
came up heads is one random variable.

For a random variable X : Ω→ R, we write P(X = r) as
shorthand for the probability P({s ∈ Ω | X (s) = r}). The
distribution of a random variable X is given by the set of pairs
{(r ,P(X = r)) | r is in the range of X}.

Note: These definitions of a random variable and its distribution
are only adequate in the context of discrete probability
distributions. For general probability theory we need more
elaborate definitions.
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Biased coins and the Geometric Distribution

Question: Suppose a biased coin, comes up heads with
probability p, 0 < p < 1, each time it is tossed. Suppose we
repeatedly flip this coin until it comes up heads.
What is the probability that we flip the coin k times, for k ≥ 1?

Answer: The sample space is Ω = {H,TH,TTH, . . .}.
Assuming mutual independence of coin flips, the probability of
T k−1H is (1− p)k−1p. Note: this does define a probability
distribution on k ≥ 1, because∑∞

k=1(1− p)k−1p = p
∑∞

k=0(1− p)k = p(1/p) = 1.

A random variable X : Ω→ N, is said to have a geometric
distribution with parameter p, 0 ≤ p ≤ 1, if for all positive
integers k ≥ 1, P(X = k) = (1− p)k−1p.
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