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Frank Ramsey (1903-1930)
A brilliant logician/mathematician.

He studied and lectured at Cambridge University.
He died tragically young, at age 26.
Despite his early death,
he did hugely influential work in several fields:
logic, combinatorics, and economics.
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Friends and Enemies

Theorem: Suppose that in a group of 6 people every pair are
either friends or enemies.

Then, there are either 3 mutual friends or 3 mutual enemies.

Proof: Let {A, B, C, D, E, F} be the 6 people.

Consider A’s friends & enemies. A has 5 relationships,
so A must either have 3 friends or 3 enemies.

Suppose, for example, that {B, C, D} are all friends of A.

If some pair in {B, C, D} are friends, for example {B, C}, then
{A, B, C} are 3 mutual friends. Otherwise, {B, C, D} are 3
mutual enemies.

The same argument clearly works if A had 3 enemies instead of
3 friends. u
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Remarks on “Friends and Enemies”: 6 is the smallest
number possible for finding 3 friends or 3 enemies

Note that it is possible to have 5 people, where every pair of
them are either friends or enemies, such that there does not
exist 3 of them who are all mutual friends or all mutual enemies:
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Graphs and Ramsey’s Theorem

Ramsey’s Theorem (a special case, for graphs)

Theorem: For any positive integer, k, there is a positive integer,
n, such that in any undirected graph with n or more vertices:

either there are k vertices that are all mutually adjacent,
meaning they form a k-clique,

or, there are k vertices that are all mutually non-adjacent,
meaning they form a k-independent-set.

For each integer k > 1, let R(k) be the smallest integer n > 1
such that every undirected graph with n or more vertices has
either a k-clique or a k-independent-set as an induced
subgraph.

The numbers R(k) are called diagonal Ramsey numbers.
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Proof of Ramsey’s Theorem: Consider any integer kK > 1, and
any graph, Gy = (V4, Ey) with at least 22¢ vertices.

Initialize: SFriends = {}s SEnemies = {}:
fori:-=1to2k —1do
Pick any vertex v; € V;
if (v; has at least 22~/ friends in G;) then
Skriends := Skrienas U {Vi}; Vi1 := {friends of v;};
else (*in this case v; has at least 22~/ enemies in G; *)
Sknemies := SEnemies U {Vi}; Vip1 := {enemies of v;};
end if

Let Gi+1 = (Viy1, Eiz1) be the subgraph of G; induced by Vj,+;
end for

At the end, all vertices in Sgengs are mutual friends,
and all vertices in Sgemies are mutual enemies. Since

|SFriends U SEnemies| =2k — 1, either |SFriends| Z k or |SEnemies| Z K.
Done. Il
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Remarks on the proof, and on Ramsey numbers

@ The proof establishes that R(k) < 22k = 4k,

(A more careful look at this proof shows that R(k) < 22k-1))
@ Question: Can we give a better upper bound on R(k)?

@ Question: Can we give a good lower bound on R(k)?
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Paul Erdds (1913-1996)

Immensely prolific mathematician,
eccentric nomad,

father of the probabilistic method in combinatorics.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7)

8/16



Lower bounds on Ramsey numbers,
and the Probabilistic Method

Theorem (Erdds,1947)

For all kK > 3,
R(k) > 2k/2

The proof uses the probabilistic method:

General idea of “the probabilistic method”: To show the
existence of a hard-to-find object with a desired property, Q, try
to construct a probability distribution over a sample space {2 of
objects, and show that with positive probability a randomly
chosen object in Q has the property Q.
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Proof that R(k) > 2/2 using the probabilistic method:
Let Q be the set of all graphs on the vertex set V = {vy,..., v,}.
(We will later determine that n < 2/2 suffices.)

There are 2(2) such graphs. Let P : Q — [0, 1], be the uniform
probability distribution on such graphs.

So, every graph on V is equally likely. This implies that:
Foralli#j P({v,v}is an edge of the graph) =1/2. (1)

We could also define the distribution P by saying it satisfies (1).

There are (}) subsets of V of size k.

Let 54, S, ..., S(Z) be an enumeration of these subsets of V.

Fori=1,...,(}), let E; be the event that S; forms either a

k-clique or a k-independent-set in the graph. Note that:

P(E) =2.27(6) = o-(&)+
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Proof of R(k) > 2%/2 (continued):

Note that E = U,.(Q E; is the event that there exists either a
k-clique or a k-independent-set in the graph. But:

(?) ®) o
P(E)=P(UE) < P(E) = (k) o-(8)+

Question: How small must n be so that () o+ <19

Fork>2: (n _n(n—1)...(n—k+1)< n*
k)~ k(k—1)...1 k1

Thus, if n < 2k/2, then

k1 2k—1
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Completion of the proof that R(k) > 2/2:
For k > 4, 22-(k/2) < 1,
So, for k > 4, P(E) < 1, and thus P(Q — E) =1 — P(E) > 0.

But note that P(Q2 — E) is the probability that in a random graph
of size n < 2/2 there is no k-clique and no k-independent-set.

Thus, since P(Q2 — E) > 0, such a graph must exist for any
n < 2k/2

Note that we earlier argued that R(3) = 6, and clearly
6>2%2=2828...

Thus, we have established that for all kK > 3,

R(k) > 2k/2. O
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A Remark

In the proof, we used the following trivial but often useful fact:

Union bound

Theorem: For any (finite or countable) sequence of events
E17 E27 E37' t

P(U E) < Z P(E))

Proof (trivial):

P(UE,-): 3 P(S)SZZP(S):ZP(E,-). 0

SGUI- E; i s€E;
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Remarks on Ramsey numbers
@ We have shown that

2K/2 = (V2)F < R(k) < 4k=2%

See [Conlon,2009] for state-of-the-art upper bounds.
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Remarks on Ramsey numbers
@ We have shown that

2k/2 = (V2)F < R(k) < 4k =2%
@ Despite decades of research by many combinatorists,
nothing significantly better is known!! In particular:

no constant ¢ > /2 is known such that c¥ < R(k), and
no constant ¢’ < 4 is known such that R(k) < (¢')*.

@ For specific small k, more is known:
R(1)=1 ; R(2)=2 ; R(@3)=6 ; R(4)=18
43 < R(5) < 49
102 < R(6) < 165

See [Conlon,2009] for state-of-the-art upper bounds.
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Why can’t we just compute R(k) exactly, for small k?

For each k, we know that 2¢/2 < R(k) < 22k,

So, we could try to check, exhaustively, for each r such that
2k/2 <« r < 22k whether there is a graph G with r vertices such
that G has no k-clique and no k-independent set.

Question: How many graphs on r vertices are there?
There are 2(2) = 27-1)/2 (jabeled) graphs on r vertices.
So, for r = 2, we would have to check 22"2“~1/2 graphs!!

So for k = 5, just for r = 2°, we have to check 2%°6 graphs !!
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful
than us, landed on Earth demanding to know
the value of R(5), or else they would destroy
our planet.
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful
than us, landed on Earth demanding to know
the value of R(5), or else they would destroy
our planet.

In that case, | believe we should marshal all
our computers, and all our mathematicians, in
an attempt to find the value.
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful
than us, landed on Earth demanding to know
the value of R(5), or else they would destroy
our planet.

In that case, | believe we should marshal all
our computers, and all our mathematicians, in
an attempt to find the value.

But suppose instead they asked us for R(6).
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Quote attributed to Paul Erdos:

Suppose an alien force, vastly more powerful
than us, landed on Earth demanding to know
the value of R(5), or else they would destroy
our planet.

In that case, | believe we should marshal all
our computers, and all our mathematicians, in
an attempt to find the value.

But suppose instead they asked us for R(6).

In that case, | believe we should attempt to
destroy the aliens.
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