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Frank Ramsey (1903-1930)
A brilliant logician/mathematician.

He studied and lectured at Cambridge University.
He died tragically young, at age 26.

Despite his early death,
he did hugely influential work in several fields:

logic, combinatorics, and economics.
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Friends and Enemies

Theorem: Suppose that in a group of 6 people every pair are
either friends or enemies.
Then, there are either 3 mutual friends or 3 mutual enemies.

Proof: Let {A, B, C, D, E , F} be the 6 people.
Consider A’s friends & enemies. A has 5 relationships,
so A must either have 3 friends or 3 enemies.
Suppose, for example, that {B, C, D} are all friends of A.
If some pair in {B, C, D} are friends, for example {B, C}, then
{A, B, C} are 3 mutual friends. Otherwise, {B, C, D} are 3
mutual enemies.
The same argument clearly works if A had 3 enemies instead of
3 friends.
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Remarks on “Friends and Enemies”: 6 is the smallest
number possible for finding 3 friends or 3 enemies

Note that it is possible to have 5 people, where every pair of
them are either friends or enemies, such that there does not
exist 3 of them who are all mutual friends or all mutual enemies:

a b

e

d

c
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Graphs and Ramsey’s Theorem

Ramsey’s Theorem (a special case, for graphs)
Theorem: For any positive integer, k , there is a positive integer,
n, such that in any undirected graph with n or more vertices:

either there are k vertices that are all mutually adjacent,
meaning they form a k -clique,

or, there are k vertices that are all mutually non-adjacent,
meaning they form a k -independent-set.

For each integer k ≥ 1, let R(k) be the smallest integer n ≥ 1
such that every undirected graph with n or more vertices has
either a k -clique or a k -independent-set as an induced
subgraph.

The numbers R(k) are called diagonal Ramsey numbers.
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Proof of Ramsey’s Theorem: Consider any integer k ≥ 1, and
any graph, G1 = (V1, E1) with at least 22k vertices.

Initialize: SFriends := {}; SEnemies := {};
for i := 1 to 2k − 1 do

Pick any vertex vi ∈ Vi ;
if (vi has at least 22k−i friends in Gi) then

SFriends := SFriends ∪ {vi}; Vi+1 := {friends of vi};
else (* in this case vi has at least 22k−i enemies in Gi *)

SEnemies := SEnemies ∪ {vi}; Vi+1 := {enemies of vi};
end if
Let Gi+1 = (Vi+1, Ei+1) be the subgraph of Gi induced by Vi+1;

end for

At the end, all vertices in SFriends are mutual friends,
and all vertices in SEnemies are mutual enemies. Since
|SFriends ∪ SEnemies| = 2k − 1, either |SFriends| ≥ k or |SEnemies| ≥ k .
Done.
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Remarks on the proof, and on Ramsey numbers

The proof establishes that R(k) ≤ 22k = 4k .

(A more careful look at this proof shows that R(k) ≤ 22k−1.)

Question: Can we give a better upper bound on R(k)?

Question: Can we give a good lower bound on R(k)?
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Paul Erdös (1913-1996)

Immensely prolific mathematician,
eccentric nomad,

father of the probabilistic method in combinatorics.
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Lower bounds on Ramsey numbers,
and the Probabilistic Method

Theorem (Erdös,1947)
For all k ≥ 3,

R(k) > 2k/2

The proof uses the probabilistic method:

General idea of “the probabilistic method”: To show the
existence of a hard-to-find object with a desired property, Q, try
to construct a probability distribution over a sample space Ω of
objects, and show that with positive probability a randomly
chosen object in Ω has the property Q.
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Proof that R(k) > 2k/2 using the probabilistic method:
Let Ω be the set of all graphs on the vertex set V = {v1, . . . , vn}.
(We will later determine that n ≤ 2k/2 suffices.)

There are 2(n
2) such graphs. Let P : Ω→ [0, 1], be the uniform

probability distribution on such graphs.
So, every graph on V is equally likely. This implies that:

For all i 6= j P({vi , vj} is an edge of the graph) = 1/2. (1)

We could also define the distribution P by saying it satisfies (1).

There are
(n

k

)
subsets of V of size k .

Let S1, S2, . . . , S(n
k)

be an enumeration of these subsets of V .

For i = 1, . . . ,
(n

k

)
, let Ei be the event that Si forms either a

k -clique or a k -independent-set in the graph. Note that:

P(Ei) = 2 · 2−(k
2) = 2−(k

2)+1
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Proof of R(k) > 2k/2 (continued):

Note that E =
⋃(n

k)
i=1 Ei is the event that there exists either a

k -clique or a k -independent-set in the graph. But:

P(E) = P(

(n
k)⋃

i=1

Ei) ≤
(n

k)∑
i=1

P(Ei) =

(
n
k

)
· 2−(k

2)+1

Question: How small must n be so that
(n

k

)
· 2−(k

2)+1 < 1?

For k ≥ 2:
(

n
k

)
=

n(n − 1) . . . (n − k + 1)

k(k − 1) . . . 1
<

nk

2k−1

Thus, if n ≤ 2k/2, then(
n
k

)
· 2−(k

2)+1 <
(2k/2)k

2k−1 · 2
−(k

2)+1 =
2k2/2

2k−1 · 2
−k(k−1)/2+1 = 22− k

2
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Completion of the proof that R(k) > 2k/2:

For k ≥ 4, 22−(k/2) ≤ 1.

So, for k ≥ 4, P(E) < 1, and thus P(Ω− E) = 1− P(E) > 0.

But note that P(Ω− E) is the probability that in a random graph
of size n ≤ 2k/2, there is no k -clique and no k -independent-set.

Thus, since P(Ω− E) > 0, such a graph must exist for any
n ≤ 2k/2.

Note that we earlier argued that R(3) = 6, and clearly
6 > 23/2 = 2.828 . . ..

Thus, we have established that for all k ≥ 3,

R(k) > 2k/2.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 12 / 16



A Remark

In the proof, we used the following trivial but often useful fact:

Union bound
Theorem: For any (finite or countable) sequence of events
E1, E2, E3, . . .

P(
⋃

i

Ei) ≤
∑

i

P(Ei)

Proof (trivial):

P(
⋃

i

Ei) =
∑

s∈
S

i Ei

P(s) ≤
∑

i

∑
s∈Ei

P(s) =
∑

i

P(Ei).
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Remarks on Ramsey numbers
We have shown that

2k/2 = (
√

2)k < R(k) ≤ 4k = 22k

Despite decades of research by many combinatorists,
nothing significantly better is known!1 In particular:

no constant c >
√

2 is known such that ck ≤ R(k), and
no constant c′ < 4 is known such that R(k) ≤ (c′)k .

For specific small k , more is known:

R(1) = 1 ; R(2) = 2 ; R(3) = 6 ; R(4) = 18

43 ≤ R(5) ≤ 49

102 ≤ R(6) ≤ 165

. . .

1See [Conlon,2009] for state-of-the-art upper bounds.
Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 14 / 16



Remarks on Ramsey numbers
We have shown that

2k/2 = (
√

2)k < R(k) ≤ 4k = 22k

Despite decades of research by many combinatorists,
nothing significantly better is known!1 In particular:

no constant c >
√

2 is known such that ck ≤ R(k), and
no constant c′ < 4 is known such that R(k) ≤ (c′)k .

For specific small k , more is known:

R(1) = 1 ; R(2) = 2 ; R(3) = 6 ; R(4) = 18

43 ≤ R(5) ≤ 49

102 ≤ R(6) ≤ 165

. . .
1See [Conlon,2009] for state-of-the-art upper bounds.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 14 / 16



Why can’t we just compute R(k) exactly, for small k?

For each k , we know that 2k/2 < R(k) < 22k ,

So, we could try to check, exhaustively, for each r such that
2k/2 < r < 22k , whether there is a graph G with r vertices such
that G has no k -clique and no k -independent set.

Question: How many graphs on r vertices are there?

There are 2(r
2) = 2r(r−1)/2 (labeled) graphs on r vertices.

So, for r = 2k , we would have to check 22k (2k−1)/2 graphs!!

So for k = 5, just for r = 25, we have to check 2496 graphs !!
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Quote attributed to Paul Erdös:

Suppose an alien force, vastly more powerful
than us, landed on Earth demanding to know
the value of R(5), or else they would destroy
our planet.

In that case, I believe we should marshal all
our computers, and all our mathematicians, in
an attempt to find the value.

But suppose instead they asked us for R(6).

In that case, I believe we should attempt to
destroy the aliens.
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