
The Formal Speci�cation in Z of Task Migration on

the Testbed Multicomputer

Paul Martin

ECS-CSG-2-94

Department of Computer Science

Edinburgh University

Edinburgh EH9 3JZ, Scotland

June 1, 1994

Abstract

This report introduces a message-passing multicomputer called the `Test-

bed' and describes its facilities for transparent task migration between

processors. A speci�cation in the formal language Z is given for the key operat-

ing system components which support migration. Finally, rigorous arguments

are presented which verify that task migration is correct and safe. The contri-

butions of this report are an extended speci�cation showing the application of

Z to a real system and a detailed demonstration of the veri�cation of safety

and correctness properties. Conclusions are drawn about the utility of formal

methods in general.

Contents

1 Introduction 3

2 The Testbed Multicomputer 3

2.1 Conventional Features : 3

2.1.1 The parallel processor boards : : : : : : : : : : : : : : : : : 5

2.1.2 The Testbed operating system : : : : : : : : : : : : : : : : 6

2.1.3 Programming environment : : : : : : : : : : : : : : : : : : 7

2.2 Support for Task Migration : 8

2.2.1 Special data structures : 8

2.2.2 Migration protocols : 10

1

3 A Short Introduction to the Z Language 11

3.1 Schemas : 11

3.2 Sets : 13

3.3 Relations and functions : 13

3.4 Miscellaneous Z notation : 14

3.5 Checking the speci�cation : 14

4 Speci�cation of Testbed Basics 15

4.1 Thread Design : 15

4.1.1 Basic objects : 15

4.1.2 State : 17

4.1.3 State-changing operations : : : : : : : : : : : : : : : : : : : 18

4.1.4 Model of execution : 22

4.2 Channel Design : 26

4.2.1 Basic objects and state : 26

4.2.2 State-changing operations : : : : : : : : : : : : : : : : : : : 27

4.2.3 Model of execution : 32

4.3 Relating Design and Implementation : : : : : : : : : : : : : : : : : 36

4.3.1 Basic entities : 37

4.3.2 Functions and relations : 37

4.3.3 Initial states : 37

4.3.4 Operation schemas : 37

5 Speci�cation of Testbed Migration 38

5.1 Migration Protocol : 38

5.2 Migration Operations : 40

6 Veri�cation of Speci�cation 42

6.1 Thread Synchronisation : 42

6.1.1 Assumptions and lemmas : : : : : : : : : : : : : : : : : : : 43

6.1.2 Synchronisation proof : 44

6.2 Channel Synchronisation : 47

6.2.1 Assumptions and lemmas : : : : : : : : : : : : : : : : : : : 47

6.2.2 Communication proof : 57

6.3 Transparency of Thread Migration : : : : : : : : : : : : : : : : : : 59

6.3.1 The receiver location problem : : : : : : : : : : : : : : : : : 59

6.3.2 Lemmas : 61

6.3.3 Migration proof : 63

7 Conclusions 65

Bibliography 66

A Index of Z Terms 68

2

1 Introduction

This report introduces an experimental message-passing multicomputer called the

`Testbed' which was developed at Edinburgh University. The Testbed supports the

migration of user tasks between processors for the purposes of load balancing. A

key property of the migration is that it is automatic and transparent, i.e. migration

occurs without user intervention and does not a�ect the �nal outcome of the

computation.

The protocols necessary to control and coordinate the migration and sharing

between processors of objects such as user tasks, inter-task communication chan-

nels and user memory areas are complicated. This complication arises from the

strict requirement that migration be transparent and the practical requirement

that the migration overheads be as small as possible. The use of formal methods

was deemed to be the best way to cope with the complexity of the protocols.

Formal speci�cation is bene�cial to the protocol designer in two ways. Firstly,

the creation of the speci�cation itself forces the designer to consider the protocols

in some depth, both in order to select the correct level of abstraction and, later

on, in order to ensure that the speci�cation is complete. Secondly, once the initial

drafts of the speci�cation have been produced the veri�cation phase can begin.

Veri�cation forces the designer to state precisely the properties that the protocols

must exhibit and to state any assumptions which the protocols make about their

environment. A good deal of interaction between the veri�cation and speci�cation

phases is to be expected.

The report is organised as follows. In the next section the Testbed computer is

introduced in terms of its hardware and software components. This provides the

reader with an understanding of the real system which is modelled in the speci�c-

ation. In Section 3 a brief description of the Z language is presented. Section 4

contains the bulk of the speci�cation, formally de�ning the Testbed protocols for

task synchronisation and inter-task communication. A short Section 5 builds on

this work and speci�es the task migration protocols. The rigorous proofs which

verify the safety and correctness of the task migration follow in Section 6. The

�nal section concludes the report by discussing the utility of formal methods.

2 The Testbed Multicomputer

This section introduces the Testbed and is in two parts: a description of the

conventional aspects of the Testbed is followed by a description of the special

operating system functions which support task migration.

2.1 Conventional Features

The Testbed (also described in Imre [6]) is an experimental, distributed memory,

message-passing multicomputer constructed at the University of Edinburgh

3

Operator’s

Terminal
Power Supply and Cooling Fans

Centrenet Bus

(Connects to all

Processors)

(Six) Monitoring

Interfaces

Boards

(Six) Processor

(To LAN)

Performance Monitoring Bus

Figure 1: An overview of the Testbed hardware.

between 1988 and 1991. A free-standing cabinet about �ve feet high contains

a power supply, cooling fans, six processor boards, a bus-based processor inter-

connect called Centrenet (a detailed description of which can be found in Ibbett

et al [5]) and special hardware for dynamic performance monitoring. A single-user

machine, the Testbed has one RS-232 link to a terminal for operator control and a

second serial link to the local area network and hence access to a �lestore. Figure 1

gives an overview of the Testbed hardware.

The Testbed operating system (TOS) is written in C and provides a time-

sliced, multi-tasking environment. TOS has a built-in shell which o�ers a typical

Unix interface to the user. TOS is replicated over all processor boards and the

console may be switched (in software) to communicate with any of the six shells.

Tasks may be invoked on any operating system and migrated between operating

systems transparently to the user. Figure 2 gives an overview of the Testbed

system software.

Some small utility programs have been implemented on the Testbed o�ering

similar features to the Unix programs more, grep, compress and wc. A disas-

sembler and a version of the editor ue have also been ported. However, as no

compiler has been implemented, all new programs must be cross-compiled on

another machine and then up-loaded to the Testbed via the LAN connection. A

typical experimental session might be as follows: edit and compile the test program

on a Unix workstation; up-load the binary to the Testbed; execute the program on

the Testbed collecting the results in a �le; down-load the �le to the workstation;

and analyse and display the results with, for example, perl and gnuplot.

4

Operator’s

Terminal

Local Filestore

Utilities,

Data files, ...

Multi−Tasking

Environment

File Transfer

Utilities

Unix Shell

Unix Filestore

Networked
Unix

Programming

Environment

Local Filestore

Utilities,

Data files, ...

Multi−Tasking

Environment

Message Passing

TOS Master Shell TOS Slave Shells

Figure 2: An overview of the Testbed software.

2.1.1 The parallel processor boards

Each processor board has a Motorola 68010 processor, several megabytes of RAM,

support for virtual memory, a Centrenet controller (including a Direct Memory

Access capability) and a connection to the performance monitoring bus. The board

designated as `master' also has drivers for two serial links and reads event data

from the performance monitoring bus|the other, `slave' boards may only write

to the bus. The performance monitoring bus is used by the master processor to

gather information about the current load as a basis for controlling task migration.

The number of processors and their 1.2 MIPS performance put the Testbed

in the MIMD, medium granularity class, somewhere between the Cray-XMP

approach, which uses a small number of very high performance processors, and

the DAP approach, which uses a large number of simple processors.

The Testbed is designed as a message passing architecture rather than a shared

memory architecture for several reasons. Firstly, the occam model of program-

ming supported by the Testbed explicitly communicates sequences of bytes over

channels and only shares variables if they are read but not written. Secondly,

the interconnection network required for message passing is generally simpler to

implement (and more scalable) than that required for shared memory since global

memory updates are avoided.

The Centrenet interconnection network has a hierarchical design: nodes, which

comprise up to sixteen processors sharing a bus, are connected by �bre optic

cable into a tree. Communication time is minimal if the source and destina-

tion processors are part of the same node; otherwise the communication time is

5

proportional to the number of nodes traversed. Since the Testbed has just six

processors, its communication network requires only a single Centrenet node. The

communication speed is approximately 10Mbytes/second.

2.1.2 The Testbed operating system

Each replication of TOS on each processor may host up to sixteen processes at

any one time. In this context, a `process' is created every time a new program is

invoked by the user. Each process has a code and a data segment of up to half

a megabyte. Strict rules prevent one process from modifying the data of another

process, although multiple invocations of the same program may share a code

segment and trusted programs (such as debuggers) may have read-only access to

other processes' memory. Processes may be marked as `foreground', `background'

or `suspended' (for debugging purposes). The command ps lists the processes,

their `threads' (described next) and optionally the thread contexts, kill may be

used to remove processes and the commands fg and bg move processes between

the foreground and background.

In TOS terminology, it is not processes which execute but `threads'. Each thread

has its own program counter and stack but shares code and global data with the

other threads in the same process. Each process may own up to sixty-four threads,

the threads being multi-tasked on an equal priority, round-robin basis.

Threads have a maximum time-slice of 20ms, although they may be pre-empted

if they call certain operating system services. TOS has been made pre-emptive so

that interactive programs will operate correctly, but the time-slice has been set

relatively high in order to reduce the number of context switches per unit time.

This is necessary because the context switch takes a long time, as much as �fty

times as long as a Transputer context switch. Threads communicate over occam-

style channels (as described in Subsection 2.1.3) and each process may own up to

128 channels.

The Testbed does not have backing store on which to keep parts of the virtual

memory that have been `paged out' so Testbed programs must be conservative

in their use of memory. Practical experience, however, shows that the available

RAM is almost always su�cient.

Each replication of TOS maintains its own �lestore in local memory. The

�lestore is e�ectively a one-level directory and holds program �les, scripts, data

�les and con�guration �les. Up to sixty-four �les are allowed, a maximum size of

half a megabyte per �le being imposed. Files may be copied between processor

boards by the user (versions of the Unix commands ls, cp, rm and mv are avail-

able) and executables are automatically mounted as needed. File permissions may

be set with chmod to specify execute, read or write.

Other assorted features include a real-time clock, simple script interpretation,

a form of environment variables, redirection of stdout and some terminal control

via stty.

6

2.1.3 Programming environment

Programs to be executed on the Testbed are written in C, compiled and linked

with Testbed-speci�c libraries. Most of these libraries are implementations of the

standard C library functions described in Kernighan and Ritchie [7, Appendix B]

and the rest are new extensions to the C programming language to allow control of

multiple threads and channel communication. Here is a summary of the standard

functions available on the Testbed.

� The stdio functions for opening,
ushing, closing, seeking and unlinking �les,

formatted printing (fprintf), character reading and writing, block reading

and writing.

� The string functions for copying, concatenating, comparing and searching

strings and memory block copying.

� Some of the stdlib functions for string-to-integer conversion, memory alloc-

ation, exit and environment variable search operations.

� Some of the time functions for reading the real time clock.

The ctype, assert, stdarg, setjmp, signal, limits, float and math functions

have not been implemented.

The thread model The �rst area in which new extensions to the C program-

ming language have been made is that of thread control. Thread control is based

on the simple yet powerful process model of occam, as embodied by the PAR

statement: a parent spawns a number of children and is blocked until the chil-

dren complete. Details of the occam language can be found in Pountain [13] and

INMOS [8] and a discussion of the unique bene�ts of occam in Welch [16]. Thread

control is an operating system function, accessed by means of the following library

routines:

int create(id, n pages, processor, entry, stack) A child thread with ID

number derived from id is created; the child is allocated n pages of stack

space; its initial program counter and stack pointer are loaded from entry

and stack; the child is queued for execution on the processor board speci�ed

by processor or chosen randomly if processor has a negative value. The

value returned by create is zero if the child cannot be created, otherwise the

ID number of the child.

wait Once the parent has called create for each new child, it calls the wait

function and is suspended until its children have terminated.

exit(err) Threads terminate by calling the exit routine and passing an error

code. Two of these codes are reserved for the occam HALT and STOP conditions.

7

occam is a static language in terms of process creation and channel comm-

unication. In occam the identity of all processes and channels can be known

at compile time. This has the advantage for architectures without large virtual

address spaces (such as the Transputer) that all memory requirements are known

before the program is executed and memory can be allocated statically. Fully

dynamic process creation is possible on the Testbed but passing the thread id

value is more in keeping with the occam philosophy and simpli�es the use of

debugging programs, such as that designed by Woods [18].

The communication model The second area in which new extensions to the

C programming language have been made is that of inter-thread communication.

The model of communication is based on occam: a pair of threads wishing to

communicate reserve (for the entire program execution) a unique, unidirectional

channel. One thread performs send operations on the channel, the other receive

operations. Both threads are blocked while communication completes.

Communication on the Testbed is implemented in the operating system and

accessed through the following library routines:

send block(chan, buffer, length) A thread requests to send a message of

length bytes beginning at the address given by buffer on channel chan.

int receive(chan, buffer, length) A thread requests to receive at most

length bytes of data beginning at the address given by buffer on channel

chan. The return value speci�es the actual number of bytes received.

2.2 Support for Task Migration

In addition to the functionality of conventional parallel computers, the Testbed

o�ers task migration. This advanced feature require special operating system

data structures for representing tasks and protocols for migrating tasks and their

resources. The extensions made in both of these areas are described below.

2.2.1 Special data structures

The unit of migration on the Testbed is the thread. To make the migration of

a thread t from source processor sp to destination processor dp as e�cient as

possible it must be easy to `disconnect' the data structure that represents t from

its environment at sp, pack t into a message and transmit the message to dp.

At dp, the reverse process of unpacking and reconnecting t must also be made

simple. Migration is complicated by the fact that threads use local resources,

such as communication channels and pages of memory, and for transparent thread

migration these must be moved or copied in a consistent way.

Experience with the Testbed shows that in addition to the usual considerations

when designing data structures|i.e. minimal size, simplicity for ease of imple-

8

Migration Message

Process

Process

Page Table

Page Table

Channel Control Blocks

Ready Queue of Thread Control Blocks

Ready Queue of Thread Control Blocks

Channel Control Blocks

Figure 3: A processor with two executing processes and a migrating thread

waiting for transmission.

mentation and maintenance, and e�ciency of access|the data structures used in

TOS to represent threads and their resources must have the following properties.

1. All the relevant data structures must be kept near each other, both to assist

allocation and release, and in order that they may be located speedily during

migration.

2. The number of dependencies or links between data structures must be minim-

ised to speed and simplify `disconnection' and `reconnection'. Data structures

such as doubly-linked lists are necessary.

In TOS, a single record called the Thread Control Block (TCB) is used to

represent a thread. Unused TCBs are stored on a free list and allocated when a

thread is created or arrives during migration from another processor. TCBs are

destroyed when a thread terminates or when it is migrated away. When a thread

is to be migrated, the information to be transmitted is localised in three areas: the

TCB which holds register context and other control values; the Channel Control

Blocks (CCBs) which store the status of channels used by the thread; and the

virtual memory page table which stores information on memory pages owned or

shared by the thread. The `disconnection' of a thread simply requires that it be

unlinked from the process ready queue.

An example migration is illustrated in Figure 3. On one of the Testbed

processors two processes are executing. Each process has a virtual memory page

9

table, an array of CCBs and a doubly-linked list of ready threads. In addition, a

message containing a migrating thread awaits transmission. This message contains

the TCB and copies of the relevant CCBs and memory page table entries.

2.2.2 Migration protocols

The migration protocols de�ne the rules for moving and copying threads, memory

pages and channel information between processors. These rules are needed

to ensure migration transparency and to prevent, for example, the creation of

multiple copies of a thread occurring, updates to the same memory page at di�er-

ent sites happening or the loss of messages on channels used by a migrating thread.

The migration protocols are complicated, principally because they have to deal

with concurrent interactions between multiple processors, and their design was

greatly assisted by the development of the formal speci�cation. In fact, several

major alterations to the initial implementation were made when the speci�cation

showed that problems might arise in certain unusual sets of circumstances.

Any thread may be migrated as many times as desired, it is possible for several

migrations to occur at the same time and no destination processor may refuse

to accept a migrating thread. However, a source processor can refuse to send a

thread if the thread is in the wrong state. Threads may be in only one state

at a time and examples of possible states are: in the ready queue, waiting to

communicate, waiting for a page of virtual memory or, indeed, in the act of being

migrated. The TOS protocol states that only threads currently in the ready queue

may be migrated. Without this restriction, di�erent `disconnection' (and `recon-

nection') procedures would be needed for threads in each state. The motivation

for distinguishing the ready state is that ready threads are the most likely to

consume valuable system resources in the near future, and hence are likely to be

good candidates for migration.

The protocol for moving and copying pages of memory between processors is

too complicated to state in full here, although the following demands are placed

upon the protocol. For e�ciency reasons, pages from the read-only code segment

of a process may be freely copied around the system whenever a migrating thread

requires them. Following the semantics of occam, if a parent thread pt creates a

child thread ct then ct may read (but not modify) variables in pt 's stack area|

such pages are copied if necessary. Pages holding the stack area of a thread that

has just migrated may be copied if the thread uses them again. Finally, the

memory page protocol also has to know when to
ush out-of-date copies of pages.

The third protocol, for communication, is the most complicated of all. For

e�ciency reasons, CCBs are distributed and changes due to thread migration

are not made globally|much care was taken in protocol design to ensure that

all copies of a process' CCBs stay in a consistent state. Without presenting the

complete protocol here, the following remarks are made. Suppose that threads t

1

and t

2

communicate over channel c. When they are on the same processor then a

single CCB is used to represent c. When they are on di�erent processors then two

10

CCBs are needed. If t

1

migrates away from t

2

then information must be extracted

from the shared CCB and used to create a new CCB. If t

1

migrates onto the same

processor as t

2

then the information from two CCBs needs to be combined in a

shared CCB.

3 A Short Introduction to the Z Language

In this section I introduce enough Z notation and semantics for readers unfamiliar

with the language but with some mathematical background to gain an under-

standing of the formal speci�cation in Sections 4 and 5. The speci�cation style

that I have used is fairly restricted, so it is by no means necessary to understand

the whole of Z in order to understand this report.

Z is a formal speci�cation language developed by Oxford University's Program-

ming Research Group. Z is based on �rst-order logic and set theory and this

makes it possible to express mathematical proofs in the language. Objects at

the disposal of the Z speci�er include sets, relations, functions, sequences and

bags. Three good introductory articles on speci�cation are: Meyer [11] in which

a charming illustration is given of why formal methods are preferred to natural

language for speci�cation; Hall [2] in which some common myths about speci�ca-

tions are exploded; and Wing [17] in which the range of available formal methods

is surveyed. A detailed description of the Z language can be found in the reference

manual by Spivey [15] and a good tutorials in Diller [1].

3.1 Schemas

A Z speci�cation is primarily a collection of schemas. Each schema is a grouping

of declarations and predicates chosen to represent some part or aspect of the

system being modelled. Declarations introduce new variables and assign types|

variables must be declared before use and declarations are global. Predicates

express relationships between variables. Schemas are generally used either to

express the state associated with the system being modelled or operations on that

state. A typical state schema contains a list of variables and some predicates

expressing constraints or invariants on the state. A typical operation schema

includes a state schema and, using a method for distinguishing the `before' and

`after' state variables, the predicates show how the operation updates the state.

Consider the two example schemas DBState and AddMike which might be part

of a speci�cation modelling a database of employees and their phone numbers.

DBState

employees : PPERSON

extensions : PERSON $ N

dom extensions � employees

11

AddMike

�DBState

employees

0

= employees [fMikeg

extensions

0

= extensions [fMike 7! 1234g

The schema boxes group the declarations (above the horizontal line) and the

predicates (below the horizontal line). The �rst schema speci�es how the state

of the database is represented: the employees variable is a set of persons; the

extensions variable is a set of ordered pairs where each pair contains a person and

a number. The second schema speci�es the state-changing operation of adding a

new employee Mike with extension number 1234 to the database.

The �DBState schema declares the variables of DBState, employees and

extensions and (because of the `�') also the primed (or `decorated') variables

employees

0

and extensions

0

. These variables obey the relevant predicate. It is

the convention that an undecorated variable represents a component of the state

before the operation and a decorated variable represents a component of the state

after the operation.

It is also the convention that an operation schema should de�ne the value of

every decorated state component declared. For reasons of clarity and parsimony

the speci�cation in this report deviates from this convention and readers should

assume that where the value of a decorated state component is not de�ned it retains

the value of the corresponding undecorated state component. A formal treatment

of this issue can be found in Pitt and Byers [12].

Multiple predicates in a schema are implicitly conjoined. Identi�ers in the

predicates must be declared in the upper part of the schema or must be declared

as global variables. When a schema name S2 appears as a declaration in another

schema S1, the declarations of S2 are merged with those of S1 and the predicates

of S2 are conjoined with the predicates of S1. When a schema name S1 appears

as part of a predicate P , the predicate part of S1 may be substituted into P .

AddPerson

�DBState

p? : PERSON

e? : N

employees

0

= employees [fp?g

extensions

0

= extensions [fp? 7! e?g

The AddPerson schema illustrates another feature of schemas: input and output

arguments. The p? and e? variables are not part of the state|they are input

variables to the operation. Output variables de�ned by the operation are also

possible|identi�ers have an exclamation point appended.

12

3.2 Sets

Here is a summary of the Z notation for various sets and operations on sets:

Enumeration: The ::= notation is used when specifying a set by enumeration,

e.g. INSTRUCTION ::= send j receive j stop. (When a set is to be used as a

new type, it is usually given an identi�er in upper case.)

Comprehension: Set comprehension uses the fsignature j predicate � termg

notation, e.g. fn : N j n 6= 0 ^ n mod 2 = 0 � ng speci�es the set of positive,

even numbers as does fn : N j n 6= 0 � 2 � ng.

Equality: The = symbol is used to express equality as in f1; 2; 3g = f3; 2; 1g.

Empty set: The symbol ? is the preferred way to denote the empty set.

Power set: The declaration x : N declares x to be a natural number but the

declaration X : PN declares X to be a set of natural numbers.

Operators: Set di�erence is denoted by n, domain anti-restriction by �C, e.g.

fag �C fa 7! 1; a 7! 2; b 7! 2; b 7! 3g = fb 7! 2; b 7! 3g, and function

overriding by �.

Domains and ranges: The dom operation takes a relation and delivers the

domain, ran delivers the range.

Sequences: The sequence is just a particular kind of function. There are

some prede�ned operations on sequences: head yields the �rst element in

a sequence, tail everything but the head, and

a

joins sequences. When a

sequence is listed it should appear between sequence brackets hi.

3.3 Relations and functions

Relations and functions are a convenient way of associating di�erent bits of data

with each other:

Relations: If R is a relation between sets X and Y then R is a subset of the

Cartesian product X � Y and this is denoted in Z by R : X $ Y . If,

for example, the ordered pair (x ; y) is a member of R then the Z notation

x 7! y 2 R can be used.

Total functions: If F is a total function from X to Y then F : X ! Y is written

meaning every member of X maps to (exactly) one member of Y .

Partial functions: If F is a partial function from X to Y F : X 7! Y is written

to mean that a member of X either does not map at all or maps to exactly

one member of Y .

13

3.4 Miscellaneous Z notation

Abbreviated de�nition: The == symbol is used to de�ne the left hand side as

an abbreviation for the right hand side, e.g. small evens == f2; 4; 6; 8g.

De�ning types: Z has a few built-in types (N, the set of natural numbers, is the

only one of these used in the speci�cation), the ability to de�ne new types

based on existing types, by using � or ! for example, and the ability to

de�ne types without saying exactly what they are. For example, the nota-

tion [PERSON ;PHONE] de�nes two `given types' representing, presumably,

people and telephones.

De�ning operators: Z contains many operators for manipulating relations,

sequences, and other kinds of sets but it also has the ability to de�ne new

operators using `axiomatic de�nitions', e.g.

square : N! N

8n : N � square(n) = n � n

Quanti�cation: An example of existential quanti�cation is 9 x : N j x � 5 � x =

x � x meaning that there exists a natural number x (which has the property

of being less than 5) such that x is its own square. An example of universal

quanti�cation is 8 x : N � x � x .

Tuples: An example pair could be written (1; x 7! y) and the �rst member of the

tuple can be extracted with �rst(1; x 7! y) = 1.

3.5 Checking the speci�cation

The Z speci�cation presented in this report has been checked in six di�erent ways.

1. The fuzz software package by Spivey [14] has been used to check that the

speci�cation complies with the Z rules for syntax, typing and scoping.

2. Simple indexing tools were used to help with locating declarations and

dependencies.

3. Informal walk-throughs of the speci�cation and the accompanying document-

ation helped to identify areas in which the model being proposed was incon-

sistent.

4. Informal comparison of the speci�cation with the implementation code was

used to justify the claim that the speci�cation models the implementation.

5. The formulation and proof of statements about the speci�cation enhanced

con�dence.

14

6. Executing the implementation (real-world testing) gave some con�dence that

gross errors had been eliminated, although the e�ort required to test under

all possible conditions was prohibitively expensive.

It is worth noting that the use of fuzz, which requires declaration-before-use, in

conjunction with the lack of modularity in Z (when compared, for instance, to

VDM as in Hayes [3]) strongly in
uences the order of presentation in Sections 4

and 5 and produces a distinctly bottom-up style.

4 Speci�cation of Testbed Basics

The main part of this section is concerned with the speci�cation of the task control

and channel communication modules of the Testbed's operating system (TOS).

The following section contains the speci�cation of the migration protocols. The

latter part of this section explains in detail how the Z speci�cation schemas are

related to C functions in the implementation.

The speci�cation was carried out with three aims in mind. Firstly, it should

explain (at a suitable level of abstraction) the inner workings of the operating

system. Secondly, it should form the basis for the proofs of correctness. Thirdly,

it should help deal with the enormous complexity of adding task migration to

a multicomputer. Speci�cation is often used for re�nement purposes but this,

unfortunately, is outside the scope of the report.

The speci�cation does not attempt to model all parts of the operating system as

this would require a considerable amount of time to complete. Instead, it concen-

trates on the functions related to tread synchronisation, channel communication

and thread migration because these are the most di�cult to implement correctly.

4.1 Thread Design

I begin this section by introducing the basic objects in the speci�cation such

as threads, processors, counters and the message types exchanged between the

processors. I de�ne that part of the Testbed state to do with thread control in

terms of the relationships between parent and child threads, threads and counters,

processors and threads and so on. The state changing schemas are introduced,

�rst at a lower level showing the mechanisms for the task control and then at a

higher level showing in what circumstances each state change may occur.

Appendix A contains an index of all globally declared schemas, relations and

types used in the speci�cation.

4.1.1 Basic objects

I declare the existence of two given sets, THREAD and PE , which the type-checker

interprets as user-de�ned types and the reader should interpret as the set of all

15

threads that execute on the Testbed and the set of Testbed processing elements

(processors).

[THREAD ;PE]

Later on in the speci�cation I will want to be able to use the idea of `no

thread' and to do this I distinguish a member of the set THREAD by naming

it null thread .

null thread : THREAD

I now model TOS `counters' which are used to implement thread synchronisa-

tion. Parent threads have a counter associated with them which is incremented

every time they create a child and decremented every time one of their children

terminates. The parent can request to be suspended on the completion of its chil-

dren, i.e. it can ask to be blocked until its counter has reached zero. The following

piece of notation declares COUNTER to be an abbreviation for the set of pairs of

natural numbers and threads.

COUNTER == N�THREAD

The natural number part of variables of the COUNTER type will be used to

represent the number of children not yet terminated and the THREAD part will

be used to represent the parent thread blocked on the counter|where no parent

is blocked the value null thread will be used instead.

The Testbed processors synchronise their actions by communicating various

kinds of control message over Centrenet. The type CNETMSG is de�ned for

these messages.

CNETMSG ::= focusmhhPE �CHANNEL� PE ii

j adverthhPE � CHANNEL� PE ii

j rtrhhPE � CHANNEL� PE ii

j msghhPE �CHANNEL � PE �MEM BLOCK ii

j termhhPE � THREADii

j thrdhhPE � THREAD � (P(CHANNEL� PE))�

(P(CHANNEL� PE � N))ii

focusm The focus message is the �rst of four kinds of message used during channel

communication. When a thread requests to send and �nds that the receiver

thread is known to be on another processor it (the sender) sends a focus

message to tell the receiver that it is waiting.

16

advert The advert message is used only during the �rst communication on a chan-

nel. When a thread requests to send and has no information about where

the receiver is located it (the sender) sends an advertisement to each of the

processors to tell them of its existence.

rtr The `ready to receive' message is returned by receiver threads when they

receive a focus or advert message.

msg The `message' message contains the actual data to be transferred during a

remote channel communication.

term The `termination' message is not used in channel communication but in

task synchronisation. If a parent thread creates children which subsequently

migrate to a remote processor then when the children terminate a term

message is sent over Centrenet to the parent's processor to inform the parent.

thrd The thrd message is used during thread migration. It contains various register

values and control information.

The speci�cation of the Testbed is primarily concerned with modelling the state

and operations of TOS. In order to assist with the proofs, however, the speci�cation

de�nes a trace sequence which is built up as each state-changing operation is

applied. The trace contains a concise summary of the operations applied (and

their parameters) encoded as values of the type OP .

OP ::= sendhhPE � THREAD � CHANNELii

j receivehhPE �THREAD �CHANNELii

j adverthhPE � CHANNEL� PE ii

j focushhPE �CHANNELii

j rtrhhPE � CHANNELii

j msghhPE � CHANNELii

j createhhTHREAD � THREADii

j synchhTHREADii

j terminatehhTHREADii

j term msghhTHREADii

Some of the OP values have similar identi�ers to those used in TState compon-

ents (de�ned next) and CNETMSG types so the OP values are printed in a sans

serif font so that they can be distinguished. The use of the OP types are not

explained in detail but, for instance, the send OP is used to extend the trace

during the application of the channel send operation.

4.1.2 State

I declare a schema calledTState which represents part of the state that the Testbed

may be in at any given moment. Formally, parent , cntr and par bd are partial

17

functions, e.g. cntr is a partial function from threads to counters, ready is a relation

(between processors and threads) and cnet is a set (of Centrenet messages).

TState

parent : THREAD 7! THREAD

cntr : THREAD 7! COUNTER

par bd : THREAD 7! PE

ready : PE $ THREAD

cnet : PCNETMSG

Informally, parent gives for executing threads the parent thread that created

them, cntr gives for each executing parent thread its counter, par bd gives for

every child the processor on which its parent is executing, ready associates with

each processor the set of threads that are ready to execute on it and cnet models

the processor interconnect (sending a message is modelled by adding the message

to cnet and receiving a message is modelled by removing a message from cnet).

It is a convention in Z that each state schema should be followed by another

schema which de�nes the initial value of the state schema, and this is what TInit

does.

TInit

TState

t? : THREAD

p? : PE

ready = fp? 7! t?g

par bd = ft? 7! p?g

parent = ft? 7! null threadg

cntr = fnull thread 7! (1;null thread)g

cnet = ?

The reader may like to interpret this as follows. In the initial state execution

of a user's program has just begun and there is just one thread t? in the ready

queue of one of the processors p?. The processor p? is recorded as the location

of t?'s parent. For convenience, the null thread is allocated the only counter and

recorded as being the parent for t?. Centrenet has no messages to deliver.

4.1.3 State-changing operations

Now that the basic entities have been de�ned (threads, processors and counters)

and I have declared the relationships (parent , cntr , par bd and so on) between

entities that are to be recorded in the state TState, the next part of the speci�c-

ation de�nes the operations which modify the state. The operations available to

18

threads allow occam-like task control (as described in Section 2.1.3) to be imple-

mented. Figure 4 shows an example where a parent thread creates three children

and is suspended until they all terminate.

TTerminate

parent

suspended

TTerminate

TTerminate

TTerminate

TCreate

TCreate

TCreate

TSync

(Compute)

(Compute)

(Compute)

(Compute)

(Compute)

Figure 4: An example of the occam-like task control on the Testbed.

The �rst operation speci�ed is called TCreate and models what happens when

a parent thread calls the operating system and requests that a new child thread

be created. The schema declaration �TState indicates that this schema changes

that part of the Testbed state modelled by TState. The declarations pt?; ct? :

THREAD and p? : PE are inputs to the operation and the reader should think of

pt? as the parent thread requesting the create service; ct? as identifying the child

thread to be created and p? as being the processor on which the request is being

made.

TCreate

�TState

pt?; ct? : THREAD

p? : PE

(let p == if pt? 2 dom(cntr) then �rst(cntr pt?) else 0 �

cntr

0

= (fct?g �C cntr) � fpt? 7! (p + 1;null thread)g)

parent

0

= parent [fct? 7! pt?g

ready

0

= ready [fp? 7! ct?g

par bd

0

= par bd [fct? 7! p?g

The �rst part of the schema predicate speci�es how the counter part of TState

is modi�ed: if the parent does not have a counter (pt? =2 dom(cntr)) then a

new counter (1;null thread) is associated with the parent thread; if the parent

19

thread already has a counter (pt? 2 dom(cntr)) then the counter is incremented

to (�rst(cntr pt?) + 1;null thread). The fct?g �C cntr ensures that initially no

counter is associated with the new child. The identity of the parent is recorded

by parent

0

= parent [fct? 7! pt?g. The new child is made ready to execute by

adding it to the ready queue with ready

0

= ready [fp? 7! ct?g and the parent's

processor board is recorded for the child by par bd

0

= par bd [fct? 7! p?g.

The next operation, TSync, models what happens once a parent has created

some children and wants to be blocked until its children have �nished executing.

The inputs to the schema are pt?, the parent thread requesting to be blocked and

p?, the processor on which the request is made. The schema predicates specify

that cntr and ready are updated if the counter associated with the parent has a

value greater than zero (�rst(cntr pt?) > 0); otherwise all the children must have

terminated and no action is taken.

TSync

�TState

pt? : THREAD

p? : PE

�rst(cntr pt?) > 0)

cntr

0

= cntr � fpt? 7! (�rst(cntr pt?); pt?)g ^

ready

0

= ready n fp? 7! pt?g

If there are still children executing then the cntr function is updated by setting

the parent's counter to the value (�rst(cntr pt?); pt?) showing that the number of

children is unchanged but that the parent thread pt? is blocked on the counter.

Simultaneously, the parent is removed from the ready queue by updating ready

0

to ready n fp? 7! pt?g.

The next schema, TTerminate, models a child thread requesting to terminate.

The inputs are ct? and p? representing the child thread and the processor on which

the child is executing. This time, there is also an output argument, msgs! which

is de�ned as the messages to be sent over Centrenet (or the empty set if none).

This output argument allows the lower-level schema TTerminate to pass values

back to the higher-level schema FTerminate (de�ned later on in Section 4.1.4).

The �rst two predicates delete any mappings involving the terminating thread

from the parent and par bd functions. The rest of the predicates are in two parts:

the �rst part is applied when parent and child are executing on di�erent processor

boards (par bd ct? 6= p?) and the second part is applied when they are on the same

processor board (par bd ct? = p?). If the threads are on di�erent processor boards

then the output argument is set to inform the parent on the remote processor of its

child's termination. The child is removed from the ready queue for the processor

p? and any counters which might be owned by the child are deleted (so that they

can be reused by other threads).

20

TTerminate

�TState

ct? : THREAD

p? : PE

msgs! : PCNETMSG

parent

0

= fct?g �C parent

par bd

0

= fct?g �C par bd

(let pt == parent ct? �

par bd ct? 6= p?)

msgs! = fterm(par bd ct?; pt)g ^

ready

0

= ready n fp? 7! ct?g ^

cntr

0

= fct?g �C cntr ^

par bd ct? = p?)

msgs! = ? ^

(let c == cntr pt ;

r == ready n fp? 7! ct?g �

�rst c = 1)

(ready

0

= if second c = pt then r � fp? 7! ptg else r ^

cntr

0

= (fct?g �C cntr)� fpt 7! (0;null thread)g) ^

�rst c > 1)

(ready

0

= r ^

cntr

0

= (fct?g �C cntr)� fpt 7! (�rst c � 1; second c)g)))

If the threads are on the same processor board then the output argumentmsgs! is

set to? to indicate that no messages need to be transmitted to remote parents. For

convenience the `temporary variable' c is created and set to the parent's counter

and the variable r is created and set to the contents of the ready queue with

the child removed. There are then two possible cases: �rst c = 1 meaning that

the last child is terminating and �rst c > 1 meaning that there are still children

executing. If the last child is terminating then it is removed from the ready queue,

any counters owned by it are deleted and the parent's counter is set to zero. If

there was a parent waiting for the counter then the parent is returned to the ready

queue. If the terminating child is not the last child then it is removed from the

ready queue and the parent's counter is decremented.

Finally, here is the TTerm msg schema which is responsible for receiving a

`termination message'. Termination messages are sent from terminating children

to parents when the parents are executing on di�erent processors. The input

arguments are pt?, which indicates the parent, and p? which gives the location of

the parent. In the predicate part of TTerm msg a temporary variable is created

and set to the parent's counter. The value of this counter is tested and, as in

the TTerminate schema, if the counter indicates that the last child is terminating

then the parent is returned to the ready queue and its counter reset; otherwise the

21

parent's counter is decremented. Despite the convention that state components

not mentioned in an operation schema are assumed to retain their original value,

the predicate ready

0

= ready is stated here for reasons of clarity.

TTerm msg

�TState

pt? : THREAD

p? : PE

let c == cntr pt? �

�rst c = 1)

(ready

0

= if second c = pt? then ready � fp? 7! pt?g else ready ^

cntr

0

= cntr � fpt? 7! (0;null thread)g) ^

�rst c > 1) (ready

0

= ready ^

cntr

0

= cntr � fpt? 7! (�rst c � 1; second c)g)

4.1.4 Model of execution

So far in this section I have declared some basic entities for the model, de�ned

a representation for the state and presented four operations which update the

state. I now present four, higher-level `framing schemas' which build on top of the

preceding de�nitions and give an explanation of when, rather than what, operations

on TState are performed.

The life-cycle of Testbed threads is depicted in Figure 5. All threads begin in

the unborn state and remain there until the create operation moves them into the

ready state. In accordance with the scheduling procedure, threads are taken from

the ready state one-by-one and allowed to execute on the CPU until: an error or

termination request occurs; or the time-slice ends; or a request for an operating

system service occurs. Terminating or erroneous threads make no further state

changes, threads at the end of their time-slice return immediately to the ready

state and threads requesting system services return to the ready state once the

service has completed.

For simplicity, not all states and transitions are modelled. For the purposes

of the occam task model I am concerned only with the ready and waiting-to-

synchronise states and with the create, request-service, service-completed and

terminate transitions.

The speci�cation models the programs executed by threads as sequences of

instructions where each instruction has a �xed type and, sometimes, parameters.

The Z construct for free types is used to de�ne INSTRUCTION as either: a create

instruction parameterised on the child to be created; a synchronise instruction; a

terminate instruction; or a send or receive parameterised by channel and memory

block for the message. (The send and receive instructions will be used later on in

Section 4.2.3 when I specify the schemas for channel communication operations.)

22

Waiting to

SYNCHRONISE

with child threads

COMMUNICATIONS

Blocked on channel

Waiting for a memory

PAGE

to arrive

In the process of

being MIGRATED

Waiting in the

READY queue

for cpu

EXECUTING

on the cpu

UNBORN

(waiting to be created)

HALTED

after error

DEAD after

successful termination

or

or

or

or

Create

Schedule

Terminate

Service Completed

Request

Service

Figure 5: The life-cycle of threads on the Testbed.

INSTRUCTION ::= createhhTHREADii

j sync

j terminate

j sendhhCHANNEL �MEM BLOCK ii

j receivehhCHANNEL�MEM BLOCK ii

I model more of the state of the Testbed by de�ning the schema FState as

everything in TState plus a set of program counters (one per thread), programs

(one per thread) and operation traces (one trace for all threads).

FState

TState

pc : THREAD 7! N

program : THREAD 7! seq INSTRUCTION

trace : seqOP

The operation schemas de�ned in this section will modify FState by executing

instructions from these programs. The function pc gives for each executing thread

23

the number of the next instruction to be executed in its program and the trace is

the sequence of all operations performed so far by the Testbed processors.

The FInit schema de�nes the initial value of FState as all the predicates in

TInit plus the condition that the initial thread's program counter is set to 1

plus the condition that the null thread does not have a program. It is assumed

that the programs associated with the other threads include sensible combinations

of instructions|the proofs in Section 6 state exactly what is meant by a `well-

behaved program'. The creation of t? is the only thing recorded in the trace. The

application of TInit [t=t?; p=p?] illustrates the use of substitution which is typical

in framing schemas: the new variable t declared in FInit is to be substituted for

the old t? declared in TInit and the new p substituted for p?.

FInit

FState

9

1

t : THREAD n fnull threadg; p : PE �

TInit [t=t?; p=p?] ^

pc = ft 7! 1g ^ trace = hcreate(null thread ; t)i

null thread =2 dom(program)

The framing schema, FCreate, for the create operation states that if a parent pt

is in the ready list of processor p and the current instruction in its program is to

create a child thread ct , then the TCreate operation should be applied. Assuming

that the preconditions of TCreate are satis�ed and that TCreate updates TState,

then the FState is modi�ed by incrementing the program counter for the parent,

initialising the program counter for the child and augmenting the trace.

FCreate

�FState

9 pt ; ct : THREAD ; p : PE �

(p; pt) 2 ready ^

create(ct) = program pt(pc pt) ^

TCreate[pt=pt?; ct=ct?; p=p?] ^

pc

0

= pc � fpt 7! pc pt + 1; ct 7! 1g ^

trace

0

= trace

a

hcreate(pt ; ct)i

The FSync schema follows a similar format to FCreate. A parent thread pt

in the ready state executes the instruction to synchronise with its children thus

causing the TSync schema to be applied, its program counter to be incremented

and the trace to be augmented to record the synchronisation.

24

FSync

�FState

9 pt : THREAD ; p : PE �

(p; pt) 2 ready ^

sync = program pt(pc pt) ^

TSync[pt=pt?; p=p?] ^

pc

0

= pc � fpt 7! pc pt + 1g ^

trace

0

= trace

a

hsync(pt)i

In FTerminate the TTerminate schema de�nes the output argument msgs!. If

the parent of the terminating child is on the same processor thenmsgs! is the empty

set and the trace is augmented, otherwise the parent is on a di�erent processor, a

term is transmitted and the trace is not changed.

FTerminate

�FState

9 ct : THREAD ; p : PE ; msgs : PCNETMSG �

(p; ct) 2 ready ^

terminate = program ct(pc ct) ^

TTerminate[ct=ct?; p=p?;msgs=msgs!] ^

cnet

0

= cnet [msgs ^

pc

0

= pc � fct 7! pc ct + 1g ^

trace

0

= if msgs = ? then trace

a

hterminate(ct)i else trace

The �nal schema FTerm msg shows what happens at the remote site when

the FTerminate schema sends a term message over Centrenet: 9 pp : PE ; pt :

THREAD � term(pp; pt) 2 cnet represents the situation where Centrenet delivers

a terminate message for parent thread pt to processor pp. The e�ect of the schema

is to apply the TTerm msg schema and delete the term message from cnet to

indicate that it has been obeyed. The trace is updated to record the termination.

FTerm msg

�FState

9 pp : PE ; pt : THREAD �

term(pp; pt) 2 cnet ^

TTerm msg[pp=p?; pt=pt?] ^

cnet

0

= cnet n fterm(pp; pt)g ^

trace

0

= trace

a

hterm msg(pt)i

25

4.2 Channel Design

This section introduces two new objects (channels and memory blocks) which it

uses to de�ne that part of the Testbed state concerned with communication. Six

channel operations are presented and six higher-level framing schemas.

4.2.1 Basic objects and state

I declare two more given sets, CHANNEL the set of all Testbed communication

channels, and MEM BLOCK the set of memory blocks. The memory blocks are

used when modelling communications to give the idea of message transfer being

e�ected by a memory-to-memory block copy.

[CHANNEL;MEM BLOCK]

Here is the schema CState which models the part of the Testbed state to do

with channel communications. Actually, CState includes everything in TState as

well, so it also models thread state.

CState

TState

scontrol ; rcontrol ; sender ; receiver : PE 7! (CHANNEL 7! THREAD)

sloc; rloc : PE 7! (CHANNEL 7! PE)

focus; used : PE $ CHANNEL

bu�er : PE 7! (CHANNEL 7!MEM BLOCK)

The functions used to model the channel state have quite complicated semantics,

but at a reasonably abstract level they can be described as follows:

scontrol : The maplet p 7! fc 7! tg exists in scontrol if and only if the processor p

has a thread t blocked, waiting to send on c. The scontrol function has two

uses: it provides a place to store the thread while not in the ready queue and

it can be checked to see if the channel is in use.

rcontrol : This function is used in the same way as scontrol but for storing blocked

receiver threads.

sender : The maplet p 7! fc 7! tg is present here if and only if the thread t has,

since the beginning of the program execution, requested to send on channel c

while executing on p (or if it has communicated on c and then been migrated

to p). The sender function is used during thread migration to check which

channels a thread has sent on.

receiver : This function is similar to sender , except that it records the channels a

thread has received on.

26

sloc: The maplet p

1

7! fc 7! p

2

g is de�ned in this function if and only if the

processor p

1

is storing p

2

as the last known location for the sender for channel

c. If unde�ned, then p

1

knows nothing about the sender's location.

rloc: This function is used in the same way as sloc, except that where de�ned it

indicates the location of the receiver.

focus: Synchronisation during communication is enforced by having the sender

produce a `focus' (essentially, just a token) when it requests to send and

requiring the receiver to consume that same focus before completing the

communication. The focus for a channel c is able to travel between processors

(so that senders can synchronise with remote receivers) but when and only

when it stops at a particular processor p is the function focus de�ned for the

maplet p 7! c.

used : The function de�nes the maplet p 7! c if and only if a sender or receiver

executing on processor p has, since the beginning of the program execution,

requested to communicate on channel c. The function is needed to distinguish

the �rst communication over a channel when the sender and receiver still need

to locate each other, from subsequent communications when they know where

each other are.

bu�er : This is a place for blocked threads to store their message or empty bu�er

while they wait for communication to complete.

The initial channel state CInit is de�ned as the initial thread state extended to

model the situation where no channel communication has occurred yet|hence all

functions are unde�ned.

CInit

CState

9 t : THREAD ; p : PE � TInit [t=t?; p=p?]

scontrol = rcontrol = sender = receiver = ?

sloc = rloc = ? ^ focus = used = ? ^ bu�er = ?

4.2.2 State-changing operations

There are six channel operation schemas. The �rst two are applied when threads

request to send or receive on a channel, the other four are applied on reception of

various kinds of Centrenet message involved in remote channel communication.

The CSend schema models the situation where a sender thread st? executing

on `sender processor' sp? requests to send the message in its message bu�er m?

27

over channel c?. The schema also has an output argument msgs! which is set to

a (possibly empty) set of messages to be transmitted over Centrenet.

CSend

�CState

st? : THREAD

c? : CHANNEL

sp? : PE

m? :MEM BLOCK

msgs! : PCNETMSG

sloc

0

= sloc � fsp? 7! fc? 7! sp?gg

sender

0

= sender � fsp? 7! fc? 7! st?gg

c? 2 dom(rcontrol sp?))

(let rt == rcontrol sp? c? �

(let b == bu�er sp? c? � MEM COPY [m?=from?; b=to?]) ^

ready

0

= ready [fsp? 7! rtg ^

rcontrol

0

= rcontrol n fsp? 7! fc? 7! rtgg ^

used

0

= used [fsp? 7! c?g ^

msgs! = ?)

c? =2 dom(rcontrol sp?))

(bu�er

0

= bu�er � fsp? 7! fc? 7! m?gg ^

ready

0

= ready n fsp? 7! st?g ^

scontrol

0

= scontrol � fsp? 7! fc? 7! st?gg ^

c? 2 dom(rloc sp?))

(focus

0

;msgs!) = if rloc sp? c? = sp? then (focus [fsp? 7! c?g;?)

else (focus; ffocusm(rloc sp? c?; c?; sp?)g)) ^

(c? =2 dom(rloc sp?))

(focus

0

= focus [fsp? 7! c?g ^

msgs! = fp : PE n fsp?g � advert(p; c?; sp?)g))

The location of the sender is stored in sloc for the use of the receiver (if it is

local). The identity of the sender is stored in sender so that during migration

the Testbed can tell which channels a given thread has sent on. The rest of

the predicates are in two parts depending on whether there is a local, receiver

thread already waiting to receive on the channel (c? 2 dom(rcontrol sp?)) or not

(c? =2 dom(rcontrol sp?)).

If there is a local, waiting receiver then a temporary variable rt is de�ned to be

the receiver thread and a variable b to be the receiver's bu�er. The detail of the

transfer of the message is hidden inside the MEM COPY schema (not de�ned in

the speci�cation). The receiver thread is unblocked (rcontrol

0

= rcontrol n fsp? 7!

fc? 7! rtgg) and returned to the ready queue (ready

0

= ready [fsp? 7! rtg). The

channel is marked as having been used. It is to be understood that a channel

focus has been produced and immediately consumed.

28

If there is no local, waiting receiver then the sender's bu�er is recorded in

bu�er for ease of retrieval later and the sender is deleted from the ready queue

and blocked on the channel. There are now two, alternative cases depending on

whether there is a last known location for the receiver. If c? 2 dom(rloc sp?)

then the receiver was last at rloc sp? c? so the focus is sent there by putting

focusm(rloc sp? c?; c?; sp?) in msgs! or the state component focus is updated

locally if the receiver was last known on sp?.

If nothing is known about the location of the receiver (c? =2 dom(rloc sp?)) then

the focus is stored locally by focus

0

= focus [fsp? 7! c?g and a series of messages

are sent advertising the presence of the waiting sender. These messages are sent

to all processors except the one where the sender is waiting (p : PE n fsp?g).

CReceive

�CState

rt? : THREAD

c? : CHANNEL

rp? : PE

b? : MEM BLOCK

msgs! : PCNETMSG

rloc

0

= rloc � frp? 7! fc? 7! rp?gg

receiver

0

= receiver � frp? 7! fc? 7! rt?gg

c? 2 dom(scontrol rp?))

(let st == scontrol rp? c? �

(letm == bu�er rp? c? � MEM COPY [m=from?; b?=to?]) ^

ready

0

= ready [frp? 7! stg ^

scontrol

0

= scontrol n frp? 7! fc? 7! stgg ^

used

0

= used [frp? 7! c?g ^

focus

0

= focus n frp? 7! c?g ^

msgs! = ?)

c? =2 dom(scontrol rp?))

(bu�er

0

= bu�er � frp? 7! fc? 7! b?gg ^

ready

0

= ready n frp? 7! rt?g ^

rcontrol

0

= rcontrol � frp? 7! fc? 7! rt?gg ^

(focus

0

;msgs!) = if rp? 7! c? 2 focus

then (focus n frp? 7! c?g; frtr(sloc rp? c?; c?; rp?)g)

else (focus;

if c? 2 dom(sloc rp?) ^ sloc rp? c? 6= rp? ^ rp? 7! c? =2 used

then frtr(sloc rp? c?; c?; rp?)g else ?))

The CReceive schema models the situation where a receiver thread rt? execut-

ing on `receiver processor' rp? requests to receive a message into its bu�er b?. The

29

send and receive schemas are similar in the case where a thread requesting comm-

unication �nds the other thread already waiting. In the case that the sender �nds

no receiver waiting, its actions are based on whether it knows the receiver's loca-

tion and, if so, whether the receiver is local or remote. In the case that the receiver

�nds no waiting sender, it bases its actions on whether there is an indication of a

waiting sender's focus or advertisement, or no such indication.

The location of the receiver is stored in rloc and the identity of the receiver in

receiver . The predicates are then in two parts, depending on whether there is a

local, waiting sender. If there is a waiting sender then a temporary variable st is

de�ned to be the sender and a variablem to be the sender's message. The message

transfer is e�ected by MEM COPY , the sender unblocked from the channel and

returned to the ready queue. The used
ag is set for the channel and the focus

ag is forced to unde�ned regardless of its previous state. Again, it is to be

understood that a focus was produced by the sender and immediately consumed

by the receiver.

If there is no local, waiting sender then the receiver's bu�er is recorded, the

receiver is deleted from the ready queue and blocked on the channel. There are

now two cases depending on whether a focus for the channel is present. If a focus

is present then an rtr message is sent to the sender at the location speci�ed in

sloc rp? c? (I will prove later that this is indeed an appropriate destination for the

message). The focus is consumed by the receiver.

If no focus is found then a decision is made whether to send an rtr or not.

Initially, all channels have unde�ned sender location values and unde�ned used

ags. A channel that has received an advertisement from a remote sender but has

not been used, has a de�ned sloc but an unde�ned used
ag|a receiver should

send an rtr in this case. A channel that has not received an advertisement, has

been used already, or which has a local sender, should not send an rtr .

The CAdvert schema models the situation on the Testbed where an advert-

isement for a channel sent by a sender on processor sp? arrives at a processor

rp?. The predicates simply require that the sender location should be de�ned (or

updated) and that an rtr message be returned if there is a waiting receiver.

CAdvert

�CState

rp?; sp? : PE

c? : CHANNEL

msgs! : PCNETMSG

sloc

0

= sloc � frp? 7! fc? 7! sp?gg

msgs! = if c? 2 dom(rcontrol rp?) then frtr(sp?; c?; rp?)g else ?

The CFocus schema models the situation where a focus for a channel, originally

from the sp? processor, arrives at a new processor rp?.

30

CFocus

�CState

rp?; sp? : PE

c? : CHANNEL

msgs! : PCNETMSG

sloc

0

= sloc � frp? 7! fc? 7! sp?gg

c? 2 dom(rloc rp?) ^ rloc rp? c? 6= rp?)

msgs! = ffocusm(rloc rp? c?; c?; sp?)g

(c? =2 dom(rloc rp?) _ rloc rp? c? = rp?) ^ c? =2 dom(rcontrol rp?))

(focus

0

= focus [frp? 7! c?g ^

msgs! = ?)

(c? =2 dom(rloc rp?) _ rloc rp? c? = rp?) ^ c? 2 dom(rcontrol rp?))

msgs! = frtr(sp?; c?; rp?)g

The predicates specify that the sender location is updated and that the focus

is either forwarded, stored, or consumed. Forwarding of the focus occurs if the

channel's rloc points to another site|this would occur if the receiver had migrated

away from rp?. The focus is stored if rloc is unde�ned (or points to rp?) and there

is no waiting receiver. Otherwise, if rloc does not point to another site and there is

a waiting sender then an rtr is returned to the sender and the focus is consumed.

The CRtr schema models the situation where an rtr message for channel c?

arrives at a sender's processor sp? from the receiver's processor rp?. The receiver's

location is updated by overwriting rloc with fsp? 7! fc? 7! rp?g and the output

variable msgs! is set to contain the message data which was stored in bu�er during

the preceding application of CSend . The output argument st ! is de�ned and the

sender thread is unblocked by moving it from scontrol to ready. Regardless of

their previous values, the
ag focus is forced to be unde�ned for channel c? at

processor sp? and the
ag used is forced to be de�ned for c? at sp?.

CRtr

�CState

sp?; rp? : PE

c? : CHANNEL

st ! : THREAD

msgs! : PCNETMSG

rloc

0

= rloc � fsp? 7! fc? 7! rp?gg

msgs! = fmsg(rp?; c?; sp?; bu�er sp? c?)g

st ! = scontrol sp? c?

ready

0

= ready [fsp? 7! st !g

scontrol

0

= scontrol n fsp? 7! fc? 7! st !gg

focus

0

= focus n fsp? 7! c?g

used

0

= used [fsp? 7! c?g

31

The CMsg schema models the situation where a receiver on processor rp?

receives a data message from sp?. The copying of the message into the receiver's

memory area is suggested byMEM COPY and the receiver, de�ned by the output

argument rt !, is unblocked and returned to the ready queue. The location of

the sender is updated and the used
ag set for the channel c? on the receiver's

processor.

CMsg

�CState

rp?; sp? : PE

c? : CHANNEL

m? :MEM BLOCK

rt ! : THREAD

(let b == bu�er rp? c? � MEM COPY [m?=from?; b=to?])

sloc

0

= sloc � frp? 7! fc? 7! sp?gg

rt ! = rcontrol rp? c?

ready

0

= ready [frp? 7! rt !g

rcontrol

0

= rcontrol n frp? 7! fc? 7! rt !gg

used

0

= used [frp? 7! c?g

4.2.3 Model of execution

I have now declared the basic channel communication entities, de�ned a represent-

ation for the channel state and presented six operations which update this state.

In this section I present framing schemas for the operations to specify when (rather

than how) the channel state is changed.

Figures 6 and 7 summarise the sequences of channel operations allowed. The

transitions are labelled with the names of framing schemas presented later in this

section and indexed by the number of the processor at which they are applied (i

and j are two arbitrarily selected processors such that i 6= j). The two vertices

in bold indicate states where there is no ongoing communication. The eight cases

may be interpreted as follows:

Case 1: Two threads executing on the same processor (number i) share a local

channel. The sender communicates �rst (the FSend :i transition).

Case 2: This case is the same as Case 1, except that it is the receiver which

communicates �rst (the FReceive:i transition).

Case 3: Two threads share a channel but the sender is executing on processor i

and the receiver on processor j . The sender communicates �rst.

32

FReceive.i

Case 6

Case 5

FSend.i

FSend.i

FSend.i

Case 1

Case 2 FReceive.i

FReceive.j FReceive.j

FSend.i

Figure 6: Allowed sequences of local channel operations.

Case 7

Case 8

FReceive.j

FRtr.i FMsg.j FReceive.j

FSend.i

FSend.i

FFocus.j

FFocus.j

FReceive.j

Case 3

Case 4 FReceive.j

FSend.i
FAdvert.j

FAdvert.j
FRtr.i

FSend.i

FReceive.j

FReceive.j

Figure 7: Allowed sequences of remote channel operations.

Case 4: This case is the same as Case 3 except that it is the receiver which

communicates �rst.

Case 5: Two threads communicate for a second or subsequent time over a local

channel. The sender communicates �rst.

Case 6: As Case 5 except that the receiver communicates �rst.

33

Case 7: Two threads on di�erent processors communicate for the second or

subsequent time. The sender communicates �rst.

Case 8: As Case 7 except that the receiver communicates �rst.

The FState and FInit schemas given next extend and replace FState and FInit

previously de�ned in Section 4.1.4, on pages 23 and 24. The new FState schema

includes the channel state CState and the new FInit schema speci�es the initial

channel state CInit .

FState

TState

program : THREAD 7! seq INSTRUCTION

CState

FInit

FState

TInit

null thread =2 dom(program)

CInit

The framing schema for the send operation, FSend , states that if sender st

is in the ready queue of processor sp and the �rst instruction in its program

is to send a message m over channel c, then the CSend operation should be

applied. Assuming that CSend updates CState, FState is modi�ed by adding any

messages in msgs to cnet , by incrementing the sender's program counter if the

communication completes and by adding the tuple (send; st ; sp) to the end of the

trace.

FSend

�FState

9 c : CHANNEL; m :MEM BLOCK ; st : THREAD ; sp : PE ;

msgs : PCNETMSG �

(sp; st) 2 ready ^ send(c;m) = program st(pc st) ^

CSend [st=st?; c=c?; sp=sp?;m=m?;msgs=msgs!] ^

cnet

0

= cnet [msgs ^

pc

0

= if (sp; st) 2 ready

0

then pc � fst 7! pc st + 1g else pc ^

trace

0

= trace

a

hsend(sp; st ; c)i

34

The framing schema FReceive states that if receiver rt is in the ready queue

of processor rp and the �rst instruction in the program is to receive a message

into bu�er b over channel c, then the CReceive operation should be applied, new

messages submitted to Centrenet, the program counter incremented if the comm-

unication completes and the trace extended.

FReceive

�FState

9 c : CHANNEL; b :MEM BLOCK ; rt : THREAD ; rp : PE ;

msgs : PCNETMSG �

(rp; rt) 2 ready ^ receive(c; b) = program rt(pc rt) ^

CReceive[rt=rt?; c=c?; rp=rp?; b=b?;msgs=msgs!] ^

pc

0

= if (rp; rt) 2 ready

0

then pc � frt 7! pc rt + 1g else pc ^

cnet

0

= cnet [msgs ^ trace

0

= trace

a

hreceive(rp; rt ; c)i

The rest of framing schemas, FAdvert , FFocus, FRtr and FMsg are similar in

format to FReceive except that they require a particular message to be delivered

by Centrenet rather than the next program instruction to be of a particular kind.

FAdvert

�FState

9 c : CHANNEL; sp; rp : PE ; st : THREAD ; msgs : PCNETMSG �

advert(rp; c; sp) 2 cnet ^

CAdvert [rp=rp?; c=c?; sp=sp?;msgs=msgs!] ^

cnet

0

= (cnet n fadvert(rp; c; sp)g) [msgs ^

trace

0

= trace

a

hadvert(rp; c; sp)i

FFocus

�FState

9 c : CHANNEL; sp; rp : PE ; st : THREAD ; msgs : PCNETMSG �

focusm(rp; c; sp) 2 cnet ^

CFocus[rp=rp?; c=c?; sp=sp?;msgs=msgs!] ^

trace

0

= trace

a

hfocus(rp; c)i ^

cnet

0

= (cnet n ffocusm(rp; c; sp)g) [msgs

35

FRtr

�FState

9 c : CHANNEL; sp; rp : PE ; msgs : PCNETMSG; rt ; st : THREAD �

rtr(sp; c; rp) 2 cnet ^

CRtr [sp=sp?; rp=rp?; c=c?;msgs=msgs!; st=st !] ^

cnet

0

= (cnet n frtr(sp; c; rp)g) [msgs ^

pc

0

= pc � fst 7! pc st + 1g ^

trace

0

= trace

a

hrtr(sp; c)i

FMsg

�FState

9 rp; sp : PE ; c : CHANNEL; m :MEM BLOCK ; rt : THREAD �

msg(rp; c; sp;m) 2 cnet ^

CMsg[rp=rp?; sp=sp?; c=c?;m=m?; rt=rt !] ^

cnet

0

= cnet n fmsg(rp; c; sp;m)g ^

pc

0

= pc � frt 7! pc rt + 1g ^

trace

0

= trace

a

hmsg(rp; c)i

Bringing together the framing schemas for thread control and channel comm-

unication and using Z's notation for
at schema de�nition, a computation step

can now be de�ned as a Receive step or a Schedule step:

Receive b= FTerm msg _ FAdvert _ FFocus _ FRtr _ FMsg

Schedule b= FCreate _ FSync _ FTerminate _ FSend _ FReceive

4.3 Relating Design and Implementation

If the speci�cation and correctness proofs about the speci�cation are to give con�d-

ence in the safety of the implementation of the Testbed's operating system, then

a convincing demonstration must be given that the speci�cation is a true repres-

entation of the implementation. In this section I give just such a demonstration

by showing how to relate each component of the speci�cation to a part of the

operating system.

The reader should note that the speci�cation is assumed to operate with correct

input. It is possible to extend speci�cations to deal with erroneous or inconsistent

input but, as Hayes [4] reports, is not easy to model error recovery. Furthermore,

when modelling a system as complex as an operating system to do so would obscure

the real features of interest.

36

4.3.1 Basic entities

The THREAD and CHANNEL objects are implemented as records named tcb

(`thread control block') and ccb (`channel control block'). The COUNTER objects

are also realised as records, of the type counter. The set PE corresponds to the

six processors of the Testbed and values from PE are represented by the natural

numbers 1 : : 6. The MEM BLOCK type is not represented directly because the

speci�cation does not represent the details of the Testbed's memory organisation.

The CNETMSG type is implemented as lists of records of prede�ned sizes.

Certain �xed �elds are used to mark the type of the message as focusm, advert or

whatever and to contain the variable number of parameters associated with each

message type. The OP type is not represented in the implementation because it is

used only for constructing traces and the traces are there only to assist the proofs.

4.3.2 Functions and relations

Functions are represented by records and pointers or records and values. Consider

for example, the scontrol function de�ned in CState with domain PE and range

CHANNEL 7! THREAD . The range is represented in records of the type ccb by

a �eld called sctrl. Each instance of a ccb record represents a particular channel

and the value of sctrl is either NULL|representing a channel for which scontrol

is unde�ned|or it is a pointer to a tcb record|representing a thread blocked on

the channel. The fact that the domain of scontrol is the set PE is represented by

giving each processor its own set of ccb records.

The focus function in CState shows the use of records and values. The range of

focus is represented by a �eld of type unsigned char in the ccb records (although

in practice the only values used are 0 meaning unde�ned or focus not set, and 1

meaning de�ned or focus set). The domain of focus is implemented, as before, by

giving each processor its own set of ccb records.

Relations can be represented in the same way as functions or as sets of records.

The ready relation between processors and threads is, for instance, implemented

by giving each processor a pointer to a list of threads.

4.3.3 Initial states

The initial state TInit is implemented on the Testbed by having the operating

system zero all �elds in the tcb records before creating a new thread. The initial-

isation of ready occurs when the �rst thread of a new program is created. Similarly,

the initial state CInit is implemented by zeroing the ccb records before use.

4.3.4 Operation schemas

The TCreate and TTerminate schemas are typical operation schemas so I shall use

them to illustrate the correspondence between speci�cation and implementation.

37

The TCreate schema corresponds to the system function trap6 which can be

called by the user via the processor's exception mechanism. The input variable

pt? corresponds to the current value of curr tcb, a global pointer maintained

by the operating system and pointing to the currently executing thread; ct? is

a parameter passed in a register by the calling thread; p? is stored in a static

variable which simply holds the number of the processor on which the operating

system is running.

The par bd ct? 6= p?) construction (in TTerminate) is implemented using

the C construction if (condition) block1 else block2 where the condition

tests for set membership and the choice of the block to execute duplicates the

implication. The de�nition of after state in terms of before state, e.g. par bd

0

=

par bd [fct? 7! p?g (from the TCreate schema) models assignment in C.

Other operation schemas use the �C and n operators to remove maplets from

sets. In the implementation, this corresponds to assigning a zero or NULL value.

The let pt == parent ct? � construction (found in TTerminate, for example)

corresponds to the declaration and initialisation of a local or automatic stack

variable in a C function.

The framing schemas fall into two groups according to the way that they are

`driven'. Schemas FCreate, FSync, FTerminate, FSend and FReceive depend

upon the current program instruction being of the appropriate type while the

other framing schemas have preconditions such as term(pp; pt) 2 cnet and are

applied, therefore, according to the messages that Centrenet is ready to deliver.

5 Speci�cation of Testbed Migration

In this section I formally specify the non-standard features of the Testbed oper-

ating system that implement the mechanism for task migration. Section 6, which

follows, contains the proofs of correctness based on the speci�cation presented

here and in the preceding section. It is interesting to note that, given the speci�c-

ation of threads and channels in Section 4, the additional speci�cation required

for migration is relatively short.

I model the two operations of disconnecting a thread and reconnecting a thread.

The thread migration protocol takes care of moving the thread register context and

control information and updating the channel control blocks. The protocol which

enables recently migrated threads to retrieve their code and data memory pages

is not modelled in this report because the memory page protocol is independent

of the thread migration protocol and to present it here would add little of new

interest.

5.1 Migration Protocol

This section gives, by means of a simple example, an informal introduction to the

migration protocol implemented in the Testbed operating system.

38

1
p 2

p

3p
3

t

2
c

2
c

2
t

1
c

1
t

1
p

2
p

3p
3

t

2
c

2
c

1
c

1
t

2
c

1
c

t
2

Figure 8: Example thread migration: initial state and state after thread discon-

nection.

With reference to the left half of Figure 8, consider a scenario involving three

processors p

1

, p

2

and p

3

and three threads t

1

, t

2

and t

3

. Two threads are executing

on one of the processors, one on another and the third processor is idle. There are

two communication channels in use: a local channel between t

1

and t

2

implemented

by the shared channel control block (CCB) labelled c

1

on processor p

1

and a remote

channel between t

2

and t

3

implemented by two CCBs on p

1

and p

3

respectively.

Each CCB has two outgoing arcs, the dashed arc represents the rloc value and

points to the last known location for the receiver and the undashed arc represents

the sloc value and points to the last known location for the sender. For example,

the CCB c

2

on processor p

1

thinks its sender is on p

1

and its receiver is on p

3

.

A possible optimisation would be to migrate thread t

2

from processor p

1

to

p

2

. This removes the competition between t

1

and t

2

for CPU cycles on p

1

but

it also changes the local (low latency) channel between t

1

and t

2

into a remote

(high latency) channel. Whether the new con�guration is more e�cient or not is

program dependent, i.e. it depends on the relative amounts of computation and

communication that t

1

and t

2

perform.

The �rst phase of thread migration is modelled by the MDisconnect schema

(presented in the next section) and involves disconnecting thread t

2

from its envir-

onment on processor p

1

. The CCBs used by t

2

are examined, a snapshot is taken

of their current status and they are updated to re
ect the fact that t

2

is soon going

to be at p

2

. Then, the CCB snapshot is put into a Centrenet message along with

t

2

's register context (and some other control information) and the message queued

for transmission to p

2

.

The right half of Figure 8 shows the situation at this point. Thread t

2

is

somewhere in transit between processors p

1

and p

2

, CCB c

1

has been updated

39

1
p

2
p

3p
3

t

2
c

2
c

1
c

1
t

2
c

1
c

t
2

1
p

2
p

3p
3

t

2
c

2
c

1
c

1
t

2
c

1
c

t
2

Figure 9: Example thread migration: state after thread reconnection and �nal

state.

to have the (soon-to-be) correct location for its receiver t

2

and the other CCBs

are unchanged.

Phase two of the migration occurs when the Centrenet message containing t

2

and

its associated information arrives at p

2

and begins to be processed. As modelled

by the MConnect schema, t

2

is unpacked from the message and reconnected in its

new environment. The channel status from the CCB snapshot is integrated with

the local CCBs and the thread is put into the processor ready queue.

The new system state is shown in the left half of Figure 9 | thread t

2

is in

place and its local CCBs have been updated to locate the sender for channel 1 on

processor p

1

and the receiver for channel 2 on p

3

.

Although the CCBs for channel 2 on p

1

and p

2

are not updated with respect

to their sender locations, this is done by the next communication on channel 2:

the CSend operation updates the sender location, sloc, on p

2

and the reception

of the focusm message at p

3

in the CFocus operation will update sloc at p

3

| as

shown in the right half of Figure 9. In general, it is the sender who will initiate

communication and so it is important that the sender have an up-to-date idea of

where the receiver is, but it is not necessary for the receiver to remember where

the sender is until communication is under way.

5.2 Migration Operations

The MDisconnect schema models the disconnecting of a `migrating thread' mt?

from its environment on the `from processor' fp? and the submission of mt?'s

register context and channel snapshot to Centrenet for transmission to the `to

processor' tp?.

40

MDisconnect

�FState

mt? : THREAD

fp?; tp? : PE

(fp?;mt?) 2 ready

mt? 2 dom(cntr)) �rst(cntr mt?) = 0

(let sc == fc : CHANNEL j mt? = sender fp? cg;

rc == fc : CHANNEL j mt? = receiver fp? cg �

(let scl == fc : sc � (c; rloc fp? c)g;

rcl == fc : rc � (c; sloc fp? c; if fp? 7! c 2 focus then 1 else 0)g �

focus

0

= focus n fc : rc � fp? 7! cg ^

rloc

0

= rloc � fc : rc � fp? 7! fc 7! tp?gg ^

cnet

0

= cnet [fthrd(tp?;mt?; scl ; rcl)g))

The schema has the precondition that the migrating thread must be in the ready

queue and not, for instance, blocked on channel communication. It is deemed

too complicated to migrate threads that are part-way through communication or

some other activity. If the precondition holds then the two temporary variables sc

(`sending channels') and rc (`receiving channels') are de�ned holding, respectively,

all the channels which mt? has sent and received over. The sending channels are

then used to construct the `sending channels list' scl which gives for each sending

channel the last known location for its receiver.

The receiving channels are used to construct the `receiving channels list' rcl

which gives for each receiving channel the last known location of the sender and

an indication of whether the channel focus is present. The focus for all receiving

channels is forced to unde�ned. What this is doing, in e�ect, is to migrate the

foci which are present with the thread. Finally, the receiver location is updated

to point to the new site and the migration message is queued for transmission by

Centrenet.

The MConnect schema models the (re)connecting of a thread mt at the destin-

ation site tp?. This involves moving mt from the Centrenet message and putting

it in the ready queue and integrating the channel snapshot with the information

already present in the CCBs.

The precondition for the schema is that a message of the appropriate form is

found in the set cnet . If the precondition holds, then the state component rloc

is updated so that for all mt 's sending channels rloc now points to the processor

speci�ed in scl and for all mt 's receiving channels rloc points to mt 's new location,

tp?.

The state component sloc is also updated for all mt 's receiving channels to point

to the processor p de�ned in rcl . The foci migrated with the thread are unpacked

and attached to the appropriate channel by focus

0

= focus [fc : CHANNEL; p :

PE j (c; p; 1) 2 rcl � tp? 7! cg and the used
ag is set for all mt 's receiving

41

MConnect

�FState

tp? : PE

9mt : THREAD ; scl : P(CHANNEL� PE); rcl : P(CHANNEL� PE � N) �

thrd(tp?;mt ; scl ; rcl) 2 cnet ^

rloc

0

= rloc �

fc : CHANNEL; p : PE j (c; p) 2 scl � tp? 7! fc 7! pgg �

fc : CHANNEL; p : PE ; n : N j (c; p;n) 2 rcl � tp? 7! fc 7! tp?gg ^

sloc

0

= sloc � fc : CHANNEL; p : PE j (c; p; 1) 2 rcl � tp? 7! fc 7! pgg ^

focus

0

= focus [fc : CHANNEL; p : PE j (c; p; 1) 2 rcl � tp? 7! cg ^

used

0

= used [fc : CHANNEL; p : PE ; n : N j (c; p;n) 2 rcl � tp? 7! cg ^

sender

0

= sender �

fc : CHANNEL; p : PE j (c; p) 2 scl � tp? 7! fc 7! mtgg ^

receiver

0

= receiver �

fc : CHANNEL; p : PE ; n : N j (c; p;n) 2 rcl � tp? 7! fc 7! mtgg

channels. Finally, sender is updated to record the channels that mt sends on and

receiver to record the channels mt receives on.

6 Veri�cation of Speci�cation

This section has three subsections and three proofs. The �rst two proofs assume

that thread migration is not allowed and show that the Testbed implements the

occam semantics for, respectively, synchronisation between parent and children

threads and synchronisation between sender and receiver threads during channel

communication. The third proof shows that the semantics for channel comm-

unication are preserved even when one of the threads using a channel undergoes

migration between consecutive communications.

I do not provide any proofs about the unidirectional and point-to-point proper-

ties of Testbed channels because they are best enforced by the programmer and/or

compiler. For practical reasons, the operating system does implement some check-

ing of channels but, because it is very ine�cient to implement complete checking,

the speci�cation and proofs use an assumption that user programs never attempt

to violate these properties.

6.1 Thread Synchronisation

This section begins with three assumptions and a lemma which rule out certain

kinds of erroneous behaviour on the part of threads. The proof that the Test-

42

bed implements correct synchronisation between parent threads and children then

proceeds by induction on the number of synchronisations a given parent thread

has undergone.

6.1.1 Assumptions and lemmas

There are a number of conditions which are necessary for the correct functioning

of the Testbed but which cannot be derived from the speci�cation. The �rst

two assumptions relate to the proper operation of the compiler and the third

assumption to the expected operation of the Centrenet communication system.

The lemma demonstrates that the speci�cation meets the intended semantics for

functions parent and par bd and is stated here to simplify the synchronisation

proof.

Assumption 1 A given thread may not be created more than once: it is not

possible for the create(ct

1

) instruction to belong to two di�erent programs or to

occur at two di�erent places in the same program.

8FState; pt

1

; pt

2

; ct

1

: THREAD ; n

1

;n

2

: N �

program pt

1

n

1

= create(ct

1

) ^

program pt

2

n

2

= create(ct

1

))

pt

1

= pt

2

^ n

1

= n

2

Assumption 2 All programs have a terminate instruction and that instruction

is always the last instruction in the program. All synchronise instructions are

preceded by at least one create instruction. All pairs of synchronise instructions

have at least one intervening create instruction. (These constraints should be

satis�ed by any competent compiler.)

8FState �

8 p : ran(program) �

(9

1

n : N � p n = terminate ^ n = #p) ^

(8n

1

: N � p n

1

= sync)

(9n

2

: 1 : : n

1

; ct : THREAD � p n

2

= create(ct))) ^

(8n

1

;n

2

: N � p n

1

= sync ^ p n

2

= sync ^ n

2

> n

1

)

(9n

3

: n

1

: : n

2

; ct : THREAD � p n

3

= create(ct)))

Assumption 3 Centrenet does not introduce spurious messages, or duplicate or

lose messages. Additionally, Centrenet will always deliver messages within a �nite

time. The �rst statement need not be represented as it is a direct consequence

of the use of the set cnet to model Centrenet. The second statement cannot be

stated in terms of the speci�cation because I have not formally developed any

notion of time.

43

Lemma 1 Where the functions parent and par bd are de�ned for a child thread

ct , parent ct always gives the thread that created ct and par bd ct always gives

the processor on which the parent resides.

Proof of lemma I note that only TCreate and TTerminate change parent , the

former associates the parent thread with the child upon creation of that child and

the latter removes any mappings from the child upon termination of that child.

Similarly, only TCreate and TTerminate modify par bd , the former associates

the parent's processor with the child upon creation of that child and the latter

removes any mappings from the child upon its termination. The migration schema

MDisconnect prohibits parents with children frommigrating so the child/processor

association remains constant during the child's lifetime.

6.1.2 Synchronisation proof

I prove that when a thread requests to be suspended on completion of its children

it will be removed from the ready queue at least until all of its children have

terminated. The proof proceeds by induction: the base case considers all state

transitions from the creation of the parent thread up to the unblocking of the

parent after its �rst synchronisation and the step case considers an arbitrary,

subsequent synchronisation.

Note that for concision the entire proof is universally quanti�ed over FState and

threads pt and ct.

Synchronisation proof base case:

(9

1

n : N � trace n = sync(pt)) ^ last trace = create(pt ; ct))

(pt 2 ran parent) pt =2 ran ready)

The base case can be stated informally as follows: after the �rst synchronisation

request and before the creation of another child, if the parent still has children

then it cannot be in the ready queue.

last trace = create(pt ; ct)) ct =2 dom cntr

The �rst step in the argument is to show that threads begin with no counter at

all. When the �rst thread of the program is de�ned by TInit , only the null thread

has a counter and for each new thread ct , TCreate ensures ct has no counter.

last trace 2 fsync(pt); terminate(ct); term msg(ct)g) create(pt ; ct) 2 ran(trace)

The �rst counter-modifying operation to befall the parent thread must be its

�rst application of FCreate. None of the other counter-modifying operations

are possible: FSync cannot occur until after the �rst FCreate by Assumption 2;

FTerminate only modi�es the counter belonging to the parent of the terminat-

ing thread as de�ned by parent ct and our thread does not participate in the

44

parent function until after its �rst FCreate; likewise FTerm msg only modi�es

the counter of the thread speci�ed in the term message, the term message must

have been generated by a preceding FTerminate since Assumption 3 prohibits

Centrenet from inventing messages, and that preceding FTerminate again uses

parent to de�ne the thread in the term message.

last trace = create(pt ; ct)) cntr pt = (1;null thread) ^ pt = parent ct

Now that I have argued that threads begin with no counter and the �rst counter-

modifying operation they perform is FCreate, I conclude that the �rst time a

thread becomes a parent it receives a counter with a value of (1;null thread).

create(pt ; ct) 2 ran trace ^ sync(pt) =2 ran trace)

cntr pt = (#ft : THREAD j pt = parent tg+

#fp : PE j term(p; pt) 2 cnet � term(p; pt)g;null thread)

Between creating the �rst thread and requesting to synchronise, our thread has a

counter of value (n;null thread) where n is the number of children yet to termin-

ate plus the number of relevant term messages in Centrenet. To support this

statement, consider all the counter-modifying operations which may be applied

between the �rst thread creation and synchronisation:

FCreate increments the counter because the predicate pt? 2 dom(cntr) is true.

The schema also creates a thread so the �rst part of the counter still correctly

represents the number of threads in the system plus the relevant term

messages.

FTerminate either terminates the child and decrements the counter, or terminates

the child, adds a term message to Centrenet and does not change the counter.

In both cases the �rst part of the counter re
ects the number of children plus

relevant term messages and the second part of the counter is assigned the

null thread or retains its value.

FTerm msg consumes a term message and decrements the counter to give it the

value (0;null thread) or (�rst c � 1; second c)|in both cases the �rst part of

the counter re
ects the number of children plus relevant term messages and

the second part of the counter is assigned the null thread or retains its value.

Hence, I conclude that between creating the �rst thread and requesting to

synchronise our thread has a counter of the appropriate value.

last trace = sync(pt))

(�rst(cntr pt) = 0 ^ pt 2 ran ready) _

(second(cntr pt) = pt ^ pt =2 ran ready)

When our parent thread requests to synchronise it will be returned to the ready

queue immediately if there are no child threads still active or relevant term

45

messages; otherwise it will be suspended. From the argument above, the value of

our thread's counter immediately prior to the application of FSync is the number

of children plus the relevant term messages. From inspection of FSync it is obvious

that if there are no children and no relevant term messages, i.e. �rst(cntr pt?) = 0,

then no action is taken, the counter is unchanged and our parent remains in the

ready queue. Alternatively, if there are children and/or relevant term messages

then the predicate �rst(cntr pt?) > 1 will be true and the counter will be updated

by setting the thread value to our parent pt? and our parent will be deleted from

the ready queue. I note that if our parent is not suspended then its counter is not

changed and has the value (0;null thread).

cntr pt = (n; pt)) n = #ft : THREAD j pt = parent tg+

#fp : PE j term(p; pt) 2 cnet � term(p; pt)g

If our parent thread is blocked on synchronisation then each time one of its chil-

dren terminates our parent's counter will be decremented or an appropriate term

message produced. Additionally, our parent's counter will also be decremented

each time an appropriate term message is consumed. Consider an application

of FTerminate when one of our parent's children terminates: if the child resides

on the same processor (par bd ct = p?) and it is the last child of the parent

(�rst c = 1) then the counter is reduced to zero, if it is not the last child then

the counter is decremented to obtain the value (�rst c � 1; second c). If the child

does not reside on the same processor then a term message is submitted for trans-

mission by Centrenet specifying the parent thread and its processor board (by

Lemma 1 this term message is directed at the appropriate parent at the appropri-

ate processor). Consider an application of FTerm msg and the consumption of a

term message directed at our parent: if the present counter has a numeric value of

1 then the counter is updated to (0;null thread) and if the present numeric value

is greater than 1 then the counter is updated to (�rst c � 1; second c). In both

cases the numeric part of the counter is decremented by 1.

When a counter with a thread blocked on it is decremented to zero the thread

is returned to the ready queue. This is justi�ed by examination of TTerminate

and TTerm msg. When TTerminate decrements a counter of value (1; pt) it

updates ready to the value (ready n fp? 7! ct?g)�fp? 7! ptg. When TTerm msg

decrements a counter of value (1; pt) it updates ready to the value ready � fp? 7!

pt g. Note that in both cases our parent's counter is set to (0;null thread).

This completes the base case of the proof of the correctness of thread synchron-

isation.

Synchronisation proof step case: I noted for the base case that the parent's

counter is set to (0;null thread) when the parent is restarted after being blocked

and I also noted that if the parent requests synchronisation, but is not blocked

because there are no active children or relevant term messages, then its counter

must also have the value (0;null thread). This counter value may therefore be

assumed as the initial counter value for the step case.

46

The same arguments that were given for the base case now apply to the

step case except I note that in the �rst application of FCreate the predic-

ate pt? 2 dom(cntr) is true and our parent's counter is assigned the value

(�rst(cntr pt?) + 1;null thread). Since I have just shown that the initial counter

value may be assumed to be (0;null thread) the value of the counter assigned by

the �rst application of FCreate is therefore (1;null thread), exactly as argued for

the base case. This completes the argument for the step case. �

Corollary Terminating children executing on the same processor as their parent

decrement the parent's counter as part of the TTerminate operation. Terminat-

ing children not sharing a processor with their parent cause a term message to

be submitted to Centrenet as part of the TTerminate operation. By Assump-

tion 3 this message will be delivered within a �nite amount of time to the parent's

processor where the TTerm msg operation will cause the parent's counter to be

decremented. Hence, the suspended parent will be returned to the ready queue

within a �nite time from the termination of the last child.

The theorem and corollary complete the proof that the Testbed implements the

occam semantics for thread control.

6.2 Channel Synchronisation

This subsection is in two parts. An assumption is stated which constrains the

sequences of channel operations allowed and a series of lemmas are presented

which give the detailed working of the proof. The inductive proof for correct

channel synchronisation is based on the lemmas and is given in the latter half of

the subsection.

6.2.1 Assumptions and lemmas

It is, unfortunately, beyond the scope of this report to specify the behaviour of the

Testbed channel communication protocol when subjected to sequences of comm-

unication requests contravening the occam channel semantics. The restrictions on

the sequences of communication requests required here are as follows:

8FState; t

1

: THREAD ; c : CHANNEL; m

1

;m

2

:MEM BLOCK �

send(c;m

1

) 2 ran(program t

1

)) receive(c;m

2

) =2 ran(program t

1

) ^

(8 t

2

: THREAD n ft

1

g �

send(c;m

1

) 2 ran(program t

1

)) send(c;m

2

) =2 ran(program t

2

) ^

receive(c;m

1

) 2 ran(program t

1

)) receive(c;m

2

) =2 ran(program t

2

))

Assumption 4 If a thread t

1

sends on a channel c then it cannot also receive on

c. If t

1

sends on c then no other thread may send on the same channel, and if t

1

receives on c then no other thread may receive on the same channel.

47

Lemmas 2 to 20 all have the same format. A new schema Opn is de�ned in

terms of one or more channel operations applied to a previously de�ned state,

e.g. Op4 is the request-to-receive operation applied to the state which models a

channel that has never been used. Next, a state schema Sn is de�ned in which

the relevant consequences of Opn are shown, e.g. S4 states that Op4 causes the

receiver to be blocked on the channel.

The Sn state schemas all take the same input and output arguments, so the

arguments have been packaged up into a schema called Args. Informally, c? is the

channel being communicated over, st? and rt? are the sender and receiver threads,

sp? and rp? the processors on which the sender and receiver are executing and

msgs! contains any tuples to be submitted to Centrenet for transmission.

Args

c? : CHANNEL

st?; rt? : THREAD

sp?; rp? : PE

msgs! : PCNETMSG

As the lemmas will ultimately be part of a proof-by-induction, they are divided

into those which relate to the proof base case and those which relate to the step

case. The initial state for the base case is characterised by SBase. This initial

state is a subset of FInit and it shows that there is no sender or receiver, at any

processor, blocked on the channel of interest and that there is no focus set.

SBase

FState; Args

8 p : PE � c? =2 dom(scontrol p) ^ c? =2 dom(rcontrol p) ^ c? =2 dom(rloc p)

c? =2 ran focus

The state after the �rst (and any subsequent) communication has completed,

is characterised by SStep: no sender or receiver is blocked on the channel at any

processor, the channel focus is not set anywhere, the channel is marked as used

at the receiver's processor, the receiver location is known at both the sender's

and receiver's processors to be rp? and the sender and receiver identi�cations are

stored at the sender's and receiver's processors respectively.

SStep

FState; Args

8 p : PE � c? =2 dom(scontrol p) ^ c? =2 dom(rcontrol p)

c? =2 ran focus ^ (rp?; c?) 2 used

rloc sp? c? = rp? ^ rloc rp? c? = rp?

(c?; st?) 2 sender sp? ^ (c?; rt?) 2 receiver rp?

48

The base case lemmas

Lemma 2 The Op2 operation models a sender thread st? executing on sp?

requesting to send over a channel c?. The previously de�ned state SBase implies

that this is the �rst-ever use of the channel. The S2 schema shows the important

consequences of applying Op2.

Op2 b= SBase

o

9

CSend

S2

�FState; Args

Op2) st? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(9

1

p : PE � (p; c?) 2 focus

0

^ p = sp?) ^

(rp?; c?) =2 used

0

^

(c?; st?) 2 sender

0

sp? ^

(8 p : PE n fsp?g � advert(p; c?; sp?) 2 msgs!)

The sender is removed from the ready queue (st? =2 ran ready

0

), the sender

is blocked on the channel at sp? and only at sp? ((9

1

p : PE � c? 2

dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp?), no receiver thread is blocked

anywhere on the channel (8 p : PE � c? =2 dom(rcontrol

0

p)), the channel focus

is set at sp? and only at sp? (9

1

p : PE � (p; c?) 2 focus

0

^ p = sp?), the

channel-used
ag is not set at any processor ((rp?; c?) =2 used

0

), the sender thread

is recorded as the legal sender for the channel at sp? ((c?; st?) 2 sender

0

sp?) and

advert messages are queued for transmission by Centrenet to all processors other

than sp? (8 p : PE n fsp?g � advert(p; c?; sp?) 2 msgs!).

The functions ready, scontrol , focus and sender are updated by CSend as is the

output argument msgs!, note that SBase implies that there is no waiting receiver

and that rloc sp? c? is not de�ned. Functions rcontrol and used are carried over

from SBase.

Lemma 3 The schema S3 shows what happens when the �rst-ever receive request

on a channel c? �nds a sender already waiting.

Op3 b= S2

o

9

CReceive

49

S3

�FState; Args

sp? = rp? ^ Op3) st? 2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p) ^ c? =2 dom(rcontrol

0

p)) ^

c? =2 ran focus

0

^ (rp?; c?) 2 used

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

The sender is unblocked from the channel and returned to the ready queue, the

receiver consumes the channel focus and sets the channel used
ag, the receiver

location is updated at rp? and therefore at sp? since they are the same processor,

�nally the receiver identi�cation (receiver) is set|the sender identi�cation carries

over from S2.

Lemma 4 The S4 schema models the �rst-ever receive request on a channel c?:

the receiver is removed from the ready queue and blocked on the channel, the

receiver location is set at rp? (and therefore sp?) and the receiver identi�cation is

recorded. The values of scontrol and focus carry over from SBase.

Op4 b= SBase

o

9

CReceive

S4

�FState; Args

sp? = rp? ^ Op4) rt? =2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p)) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ (c?; rt?) 2 rcontrol

0

rp? ^

c? =2 ran focus

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; rt?) 2 receiver

0

rp?

Lemma 5 The S5 schema gives the implications of a send after the �rst-ever

receive on the same processor and for a channel c?: the receiver is unblocked

from the channel and returned to the ready queue thus scontrol and rcontrol are

completely unde�ned for c?, the channel used
ag is set and the sender identi�c-

ation is set. The values of focus and rloc carry over from S4.

Op5 b= S4

o

9

CSend

50

S5

�FState; Args

sp? = rp? ^ Op5) rt? 2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p) ^ c? =2 dom(rcontrol

0

p)) ^

c? =2 ran focus

0

^ (rp?; c?) 2 used

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

Lemma 6 The schema S6 shows what happens when an advert message, emitted

by the �rst-ever send on channel c? in S2, arrives at another processor: the sender

location for the channel is set. All the other functions carry their values over from

S2.

Op6 b= S2

o

9

CAdvert

S6

�FState; Args

sp? 6= rp? ^ Op6) (c?; sp?) 2 sloc

0

rp? ^

(9

1

p : PE � c? 2 dom(scontrol

0

p) _ (p; c?) 2 focus

0

^ p = sp?) ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(rp?; c?) =2 used

0

^

(c?; st?) 2 sender

0

sp?

Lemma 7 The S7 schema models the �rst-ever receive operation on a channel

c? for which an advert message has already been received: the receiver is removed

from the ready queue and blocked on the channel, the receiver location is set

at rp?, the receiver identi�cation is set at rp? and an rtr message is queued for

transmission back to the sender. The values of scontrol , focus and sender carry

over from S6.

Op7 b= S6

o

9

CReceive

S7

�FState; Args

sp? 6= rp? ^ Op7) rt? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ scontrol

0

sp? c? = st? ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ rt? = rcontrol

0

rp? c? ^

(9

1

p : PE � (p; c?) 2 focus

0

^ p = sp?) ^

rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

rtr(sloc rp? c?; c?; rp?) 2 msgs!

51

Lemma 8 The schema S8 shows what happens when an advert message, emitted

by a sender in S2 during the �rst-ever communication over c?, is processed at a

site where there is a waiting receiver: an rtr message is returned to the sender's

processor. The values of scontrol , focus and sender carry over from the applic-

ation of CSend and the values of rcontrol , rloc and receiver carry over from the

application of CReceive.

Op8 b= (CSend

o

9

CReceive

o

9

CAdvert) _ (CReceive

o

9

CSend

o

9

CAdvert)

S8

�FState; Args

S2 ^ Op8) (9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ scontrol

0

sp? c? = st? ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ rt? = rcontrol

0

rp? c? ^

(9

1

p : PE � (p; c?) 2 focus

0

^ p = sp?) ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

rtr(sloc rp? c?; c?; rp?) 2 msgs!

Lemma 9 The S9 schema models an rtr message being processed at the sender's

processor during the �rst-ever communication over c?.

Op9 b= (S7 _ S8)

o

9

CRtr

S9

�FState; Args

st ! : THREAD

sp? 6= rp? ^ Op9) st? = st ! = scontrol

0

sp? c? ^ st? 2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p)) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ rt? = rcontrol

0

rp? c? ^

c? =2 ran focus

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

msg(rp?; c?; sp?; bu�er sp? c?) 2 msgs!

The sender is unblocked from the channel and returned to the ready queue, the

focus is consumed on the receiver's behalf, the receiver location is set at sp? and

a data message is queued for transmission to the receiver's processor. The values

of rcontrol , rloc rp?, sender and receiver carry over from S7 or S8.

Lemma 10 The S10 schema gives the implications of a data message being

processed at a receiver's processor during the �rst-ever communication over c?: the

52

receiver is unblocked from the channel (so c? is not de�ned anywhere in rcontrol)

and returned to the ready queue and the channel used
ag is set. The values of

scontrol , focus, sender and receiver carry over from S9.

Op10 b= S9

o

9

CMsg

S10

�FState; Args

st !; rt ! : THREAD

sp? 6= rp? ^ Op10) rt? = rt ! = rcontrol

0

rp? c? ^

rt? 2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p) ^ c? =2 dom(rcontrol

0

p)) ^

c? =2 ran focus

0

^ (rp?; c?) 2 used

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

The step case lemmas

Lemma 11 The schema S11 shows what happens when a send request is made for

a channel that has been used before and is therefore known to be local and to have

no waiting receiver: the sender is removed from the ready queue and blocked on the

channel (so there is now exactly one sender blocked on the channel), the channel

focus is set and the sender identi�cation is overwritten but, by Assumption 4, the

new value must be the same as the old value. The functions rcontrol , rloc and

receiver are carried over from SStep.

Op11 b= SStep

o

9

CSend

S11

�FState; Args

sp? = rp? ^ Op11) st? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(sp?; c?) 2 focus

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

Lemma 12 The S12 schema models a receive request at a local channel where

no sender is waiting: the receiver is removed from the ready queue and blocked

on the channel, the receiver location and identi�cation are overwritten but not

changed. The other functions carry over from SStep.

53

Op12 b= SStep

o

9

CReceive

S12

�FState; Args

Op12)

rt? =2 ran ready

0

^

(8 p : PE � c? =2 dom(scontrol

0

p)) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ (c?; rt?) 2 rcontrol

0

rp? ^

c? =2 ran focus

0

^

rloc

0

sp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

Lemma 13 As S13 shows, the implications of a send applied at a processor where

the receiver is already waiting are the same as those in S5. The functions scontrol ,

focus, rloc and receiver keep their values from S12.

Op13 b= S12

o

9

CSend

S13

�FState; Args

sp? = rp? ^ Op13) S5

Lemma 14 The schema S14 shows that when a receive request �nds a sender

already waiting then the implications are the same as those in S3.

Op14 b= S11

o

9

CReceive

S14

�FState; Args

sp? = rp? ^ Op14) S3

Lemma 15 The S15 schema models a send request on a channel that has been

used before and is known to have a remote receiver.

Op15 b= SStep

o

9

CSend

54

S15

�FState; Args

sp? 6= rp? ^ Op15)

st? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

c? =2 ran focus

0

^

rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

focusm(rp?; c?; sp?) 2 msgs!

The sender is deleted from the ready queue and blocked on the channel, the

sender identi�cation is updated (but not changed) and a message is queued for

transmission to convey the channel focus to the receiver's processor. The functions

rcontrol , focus, rloc and receiver keep their values from SStep.

Lemma 16 The schema S16 shows what happens when a focus message, trans-

mitted by a sender on a channel which has been used at least once before, arrives

at the receiver's processor: the focus for the channel at rp? is set and the sender

location is set at rp?. The predicates on ready, scontrol , rcontrol , sender and

receiver are all derived from S15.

Op16 b= S15

o

9

CFocus

S16

�FState; Args

sp? 6= rp? ^ Op16)

st? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p) ^ p = sp?) ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(9

1

p : PE � (p; c?) 2 focus

0

^ p = rp?) ^ sloc rp? c? = sp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp?

Lemma 17 The S17 schema models a receive request being applied for a channel

known to be remote and for which the focus has already arrived.

Op17 b= S16

o

9

CReceive

55

S17

�FState; Args

sp? 6= rp? ^ Op17) rt? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p) ^ p = sp?) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ (c?; rt?) 2 rcontrol

0

rp? ^

c? =2 ran focus

0

^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

rtr(sloc rp? c?; c?; rp?) 2 msgs!

The receiver thread is deleted from the ready queue and blocked on the channel,

the focus is consumed, the receiver location and identi�cation are updated (but

not changed) and an rtr message is returned to the sender.

Lemma 18 The S18 schema gives the implications of a send and receive, in either

order, on di�erent processors: the sender and receiver are removed from their ready

queues and blocked on the channel, the receiver location is overwritten (but not

changed) at the receiver's processor, the sender and receiver identi�cations like-

wise, a message containing the channel focus is submitted at sp? for transmission

to rp? but focus

0

retains its value from the schemas S12 and S15.

Op18 b= (S15

o

9

S12) _ (S12

o

9

S15)

S18

�FState; Args

sp? 6= rp? ^ Op18) st? =2 ran ready

0

^ rt? =2 ran ready

0

^

(9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ (c?; rt?) 2 rcontrol

0

rp? ^

c? =2 ran focus

0

^

rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

focusm(rloc sp? c?; c?; sp?) 2 msgs!

Lemma 19 The schema S19 shows the consequences of processing a message

containing the channel focus at the receiver's processor: an rtr message is submit-

ted at the receiver's processor for transmission to the sender's processor. The

values of the other functions are carried over from S18.

Op19 b= S18

o

9

CFocus

56

S19

�FState; Args

sp? 6= rp? ^ Op19) (9

1

p : PE � c? 2 dom(scontrol

0

p) ^ p = sp?) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p) ^ p = rp?) ^

rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

rp? ^

rtr(sp?; c?; rp?) 2 msgs!

Lemma 20 The S20 schemamodels the processing of an rtr message at a sender's

processor: the sender is unblocked from the channel and returned to the ready

queue, the receiver location is overwritten (but not changed) and the data message

queued for transmission to the receiver's processor.

Op20 b= (S17 _ S19)

o

9

CRtr

S20

�FState; Args

st ! : THREAD

sp? 6= rp? ^ Op20) S9

6.2.2 Communication proof

Having stated the assumptions about the sequences of communication operations

that the Testbed may be required to execute, and having given a list of lemmas

demonstrating the e�ects of applying various operations to various states, I now

prove that the lemmas include all possible state transitions and that all trans-

itions representing a communication involve synchronisation between sender and

receiver.

The proof is by induction. The base case assumes that the channel has never

been used before (as modelled by SBase) and the step case assumes that at least

one communication has been completed on the channel (as modelled by SStep).

Since channels operate independently from each other, the proof considers an

arbitrary channel without loss of generality.

Communication proof base case: There are four sub-cases depending on

whether the sender and receiver share a processor or not and depending on whether

the sender requests to communicate �rst or second.

1. If the sender and receiver are executing on the same processor and the sender

communicates �rst then Lemma 2 shows that the sender will be blocked.

When the receiver requests communication, the situation is described by

57

Lemma 3 which shows that the sender is restarted. The suspension of the

sender implements synchronisation.

2. If the sender and receiver share a processor but the receiver requests to

communicate �rst, then Lemma 4 shows that the receiver will be blocked.

When the sender requests communication, the situation is described by

Lemma 5 which shows that the receiver is restarted. The suspension of the

receiver implements synchronisation.

3. If the sender and receiver do not share a processor then it does not matter

which requests to communicate �rst but it does matter whether the advert

message issued by the sender is processed at the receiver's site before or after

the receiver requests to communicate.

Supposing the advertisement arrives before the receiver. Lemma 6 shows

that in processing the advert message the location of the sender is stored so

that in Lemma 7 the blocking receiver returns an rtr to the sender's processor.

Lemmas 9 and 10 then show the processing of the rtr and the subsequent data

message. Note that the sender is suspended until it receives the rtr message

and that the receiver is suspended until it receives the data message|this

implements synchronisation.

4. Finally, suppose that the advertisement arrives after the receiver requests to

communicate. Lemma 4 shows the receiver being blocked and Lemma 8 the

processing of the advert message. The argument now continues as above with

the processing of the rtr message.

Communication proof step case: I assume that all communications in the

step case begin in the state characterised by SStep and I prove that they all end

in state SStep. Note that all communications in the base case end in the SStep

state (the post conditions of S3, S5 and S10 all contain the conditions of SStep).

There are four sub-cases much as before.

1. If the sender and receiver are executing on the same processor and the sender

communicates �rst then Lemma 11 shows that the sender will be blocked.

When the receiver requests communication, the situation is described by

Lemma 14 which shows that the sender is restarted. The suspension of the

sender implements synchronisation. The post conditions of S14 are a superset

of SStep.

2. If the sender and receiver share a processor but the receiver requests to

communicate �rst, then Lemma 12 shows that the receiver will be blocked.

When the sender requests to communicate, the situation is described by

Lemma 13 which shows that the receiver is restarted. The suspension of

the receiver implements synchronisation. The postconditions of S13 are a

superset of SStep.

58

3. If the sender and receiver do not share a processor then it does not matter

which requests to communicate �rst but it does matter whether the focus

message issued by the sender is processed at the receiver's site before or after

the receiver requests to communicate.

Supposing the focus arrives before the receiver. Lemma 16 shows that in

processing the focus message the location of the sender is stored so that in

Lemma 17 the blocking receiver returns an rtr to the sender's processor.

Lemmas 20 and 10 then show the processing of the rtr and the subsequent

data message. Note that the sender is suspended until it receives the rtr

message and that the receiver is suspended until it receives the data message|

this implements synchronisation. The postconditions of S10 are a superset of

SStep.

4. Finally, suppose that the focus arrives after the receiver requests to commu-

nicate. Lemma 12 shows the receiver being blocked and Lemma 19 the

processing of the focus message. The argument now continues as above with

the processing of the rtr message.

This completes the proof. �

6.3 Transparency of Thread Migration

This subsection follows a similar format to the preceding one. A series of lemmas

show, for di�erent beginning states, what happens to channel communicationwhen

a thread migrates. The proof then demonstrates that all possible `before' states

have been considered and that in each case migration is transparent, i.e. the `after'

state of the operation is essentially the same as the before state.

The e�ects of migration are considered in relation to a single, arbitrarily chosen

channel so the before states in the proof base case are a subset of those presen-

ted in Lemmas 2 to 20. In fact, the before states are a strict subset because

migration can only occur if the migrating thread is in the ready queue (and not

blocked on the channel). The before states are subject to schema renaming|the

migration schemas presented below use the three input arguments mt?, fp? and

tp? to represent the migrating thread, the `from processor' and the `to processor'

respectively|so if the migrating thread is a sender for c? then mt? is identi�ed

with st? and fp? is identi�ed with sp?, otherwise if the migrating thread is a

receiver for c? then mt? is identi�ed with rt? and fp? is identi�ed with rp?.

6.3.1 The receiver location problem

The after states are subject to the same rules for renaming and, as will be shown,

are identical in all relevant aspects to the corresponding before states. In most

cases it is obvious that the functions in the after state have the same value as they

did in the before state. The receiver location rloc, however, is updated in a more

complicated fashion and therefore requires some further explanation.

59

st

sp

rt

rp

pj

c
1

c
1

1
c

1
c

p
i

rloc sp =
1

c p
i

pjrloc =
1

cp
i

sppjrloc =
1

c

Figure 10: A receiver rt executing on processor p

i

communicates with sender st

before migrating to p

j

and then rp. Forwarding addresses are left at p

i

and p

j

so

the sender can still locate the receiver when necessary.

For the �rst communication over a channel, senders locate the appropriate

receiver by broadcasting their presence to all processors in the system. For reas-

ons of e�ciency, second and subsequent communications rely on the sender being

able to transmit the channel focus more directly to the receiver. When migration

is disallowed, the sender simply remembers the last location of the receiver and

sends the focus there|this is how rloc has been used in the lemmas up to this

point.

However, when migration is allowed, a receiver may migrate from processor

to processor between two communications and thus cause the sender to transmit

its focus to the wrong place. The solution employed on the Testbed is to have

receivers leave a forwarding address behind them every time that they migrate.

Now, when a sender transmits a focus to an old address it can be forwarded as

necessary until it catches up with the receiver. The receiver location rloc is used

to encode these forwarding addresses as shown in Figure 10.

To make it easier to compare rloc functions in the before and after states I de�ne

a new predicate called linked. A focus message from a sender on processor sp? for

a channel c? will reach a receiver on rp? if the receiver's processor is linked to the

sender's processor, i.e. if rp? 2 linked(rloc; sp?; c?).

linked : ((PE 7! (CHANNEL 7! PE))� PE � CHANNEL) 7! PPE

8 r : PE 7! (CHANNEL 7! PE); p : PE ; c : CHANNEL �

linked(r ; p; c) = if c 2 dom(r p) then fr p cg [linked(r ; r p c; c) else ?

60

6.3.2 Lemmas

The next group of lemmas follow the format already established: a new schema

Opn is de�ned in terms of MConnect and MDisconnect applied to a previously

de�ned state and a state schema Sn is de�ned in which the relevant consequences

of Opn are shown.

Lemma 21 Neither migrate schema in Op21 changes scontrol or rcontrol , so they

maintain their values from SStep.

Op21 b= SStep[mt?=st?; fp?=sp?]

o

9

MDisconnect

o

9

MConnect

S21

�FState; Args

mt? : THREAD

fp?; tp? : PE

Op21)

(8 p : PE � c? =2 dom(scontrol

0

p) ^ c? =2 dom(rcontrol

0

p)) ^

c? =2 ran focus

0

^ (rp?; c?) 2 used

0

^

rloc

0

tp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

tp? ^ (c?; rt?) 2 receiver

0

rp?

The channel c? is in the sets named sc and scl but not in rc or rcl so the

functions focus and used are not updated with regard to c?. Function rloc is not

updated at fp? but is overwritten with tp? 7! fc 7! pgg by MDisconnect so if

tp? = rp? then rloc rp? c? = rloc fp? c? = rp? otherwise rloc rp? c? maintains its

previous value. The function sender is updated at tp? in the correct way, receiver

retains its original value.

Lemma 22 The migrate operation Op22 does not update rcontrol or scontrol so

their values are maintained from S12. The channel c? is in the sets sc and scl but

not in rc or rcl so the function focus is not updated with regard to c?. MConnect

ensures that the sender's new processor knows rloc tp? c? = rp? and, if rp? = tp?

this ensures rloc rp? c? = rp? as well|otherwise, rloc rp? retains its value from

S12. The function sender is updated at tp? in the correct way, receiver retains

its original value.

Op22 b= S12[mt?=st?; fp?=sp?]

o

9

MDisconnect

o

9

MConnect

61

S22

�FState; Args

mt? : THREAD

fp?; tp? : PE

Op22) (8 p : PE � c? =2 dom(scontrol

0

p)) ^

(9

1

p : PE � c? 2 dom(rcontrol

0

p)) ^ (c?; rt?) 2 rcontrol

0

rp? ^

c? =2 ran focus

0

^

rloc

0

tp? c? = rp? ^ rloc

0

rp? c? = rp? ^

(c?; st?) 2 sender

0

tp? ^ (c?; rt?) 2 receiver

0

rp?

Lemma 23 The migrate operation Op26 does not update rcontrol or scontrol so

their values are maintained from S11. The channel c? is in the sets rc and rcl

but not in sc or scl so the focus is removed at processor fp? and created again at

tp?. The receiver location at tp? is updated byMConnect to be tp?. The function

receiver is updated at tp? in the correct way, sender retains its original value.

Op23 b= S11[mt?=rt?; fp?=rp?]

o

9

MDisconnect

o

9

MConnect

S23

�FState; Args

mt? : THREAD

fp?; tp? : PE

Op23) (9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(tp?; c?) 2 focus

0

^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

tp?

Lemma 24 The migrate operation Op24 does not update scontrol or rcontrol so

their values are maintained from S15.

Op24 b= S15[mt?=rt?; fp?=rp?]

o

9

MDisconnect

o

9

MConnect

S24

�FState; Args

mt? : THREAD

fp?; tp? : PE

Op24) (9

1

p : PE � c? 2 dom(scontrol

0

p)) ^ (c?; st?) 2 scontrol

0

sp? ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

rloc

0

tp? c? = tp? ^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

tp? ^

(9 p : PE � focusm(p; c?; sp?) 2 msgs! ^ rp? 2 linked(rloc; p; c?))

62

The channel c? is in the sets rc and rcl but not in sc or scl so the receiver

location recorded at tp? is set to tp? by MConnect . As before, receiver is updated

by the appropriate value at tp? and sender is left unchanged. The focus message

is still waiting to be delivered, but to the processor that the receiver has just left.

However, the MDisconnect operation sets rloc fp? c? to tp? which, when CFocus

is applied at fp?, will cause the �rst implication to be true and the focus message

to be forwarded to tp?.

Lemma 25 The migrate operation Op25 does not update scontrol or rcontrol so

their values are maintained from S16. The channel c? is in the sets rc and rcl

but not in sc or scl so the focus is deleted at fp? and restored at tp?. As before,

receiver is updated by the appropriate value at tp? and sender is left unchanged.

Op25 b= S16[mt?=rt?; fp?=rp?]

o

9

MDisconnect

o

9

MConnect

S25

�FState; Args

mt? : THREAD

fp?; tp? : PE

Op25) (9

1

p : PE � c? 2 dom(scontrol

0

p) ^ p = sp?) ^

(8 p : PE � c? =2 dom(rcontrol

0

p)) ^

(tp?; c?) 2 focus

0

^

(c?; st?) 2 sender

0

sp? ^ (c?; rt?) 2 receiver

0

tp?

6.3.3 Migration proof

I now show the transparency of migration with respect to communication by

demonstrating that the lemmas presented above exhaust all the situations in which

migration may occur and by showing that the postconditions of the lemma state

schemas are essentially the same as the before state of the lemma operations. The

proof is by induction: the base case models the �rst migration after a communic-

ation on c? and the step case models the second or subsequent migration after the

last communication on c?.

It is assumed that no operations occur on the channel in question between the

application of MDisconnect and the application of MConnect|although this is

not true for the Testbed the proof can be extended to cover this case relatively

easily.

Migration base case: There are a number of sub-cases to consider depending

on whether mt? is a sender or a receiver for the channel and whether the other

user of the channel has requested to communicate yet or not.

63

1. Ifmt? is the sender for c? then there are two situations depending on whether

the receiver has requested to communicate yet.

If the receiver has not yet requested to communicate then the state of c?

is described by SStep and the e�ect of the migration operation by Op21 in

Lemma 21. It does not matter where the receiver is located. The postcondi-

tions of S21 contain the conditions of SStep[mt?=st?; tp?=sp?] so in this case

migration is transparent.

2. If mt? is the sender for c? and the receiver has already requested to commu-

nicate then the state of c? is described by S12 and the e�ect of the migra-

tion operation Op22 by Lemma 22. It does not matter where the receiver

is located. The postconditions of S22 contain the conditions of S12 so the

migration is transparent.

3. If mt? is the receiver for c? then there are three situations depending on

whether the sender is local or not and for remote senders whether the focus

message has arrived or not.

If the sender is local and has already requested to communicate then the state

of c? is described by S11 and the e�ect of the migration operation by Op23 in

Lemma 23. The postconditions of S23 do not contain the conditions of S11

but they do contain the conditions of S16 and S16 represents essentially the

same point in the communication protocol, so the migration is transparent.

(In S16 there is a focus at the receiver's processor so the receiver can deduce

that there is a waiting sender and the sender location points to the sender's

processor so that an rtr message can be sent to the correct location.)

4. If mt? is the receiver for c? and the sender is not local, has already requested

to communicate but its focus message has not arrived, then the state of c?

is described by S15 and the e�ect of the migration operation by Op24 in

Lemma 24. The postconditions of S24 contain the conditions of S15 modi�ed

so that the focus message is being sent indirectly to the receiver.

5. If mt? is the receiver for c? and the sender is not local, has already reques-

ted to communicate and its focus message has arrived, then the state of

c? is described by S16 and the e�ect of the migration operation by Op25

in Lemma 25. The postconditions of S25 contain the conditions of S16 so

migration is transparent.

Migration step case: The step case states that the above arguments also hold

for the second or any subsequent migration. This completes the proof. �

64

7 Conclusions

A formal speci�cation in Z was developed in Sections 4 and 5, focusing on those

parts of the Testbed operating system concerned with task exchange, i.e. thread

synchronisation, channel communication and thread migration. Framing schemas

were developed to show how sequences of operations are built up. Section 6 then

used the speci�cation to demonstrate properties of safety and correctness|an

assurance that, provided certain constraints are met, user tasks can be migrated

as many times as is desired without changing the results of their computation. A

critical assessment of the Z language is presented next, after the advantages and

disadvantages of formal speci�cation in general are discussed.

The formal speci�cation was carried out in tandem with the development of

the Testbed's operating system. This was bene�cial in several ways. Firstly,

the speci�cation provided a much faster way of prototyping procedures for the

implementation than the traditional code, test and debug cycle. Secondly, the

speci�cation coped well with changes in the requirements for the implementation

and was invaluable for indicating, albeit in a non-automatic way, ambiguities and

inconsistencies in those requirements. Thirdly, the speci�cation was useful as

a tool for documentation, producing a clear description of the protocols being

implemented. This meant not only that walk-throughs of the code were simpli�ed

but that the answers to various `what if' questions could be given without having to

write and execute test programs. As described in Martin [10] the speci�cation also

provided a precise way of presenting and interpreting performance measurements

made of the intrinsic properties of the Testbed. Finally, the proofs showed the

implementation to be safe and correct (provided the implementation is a correct

rei�cation of the speci�cation) to a degree that could never have been determined

by enumerating interactions between the multiple processors.

A single caveat in the use of formal speci�cation: it is not always easy to �nd the

most appropriate level of abstraction in preliminary versions of a speci�cation. The

work in Sections 4 and 5 went through a number of revisions before an acceptable

balance was found between specifying the design principles and specifying features

of the implementation. The veri�cation process was helpful in indicating bene�cial

modi�cations to the speci�cation.

I am still convinced that the Z language is one of the best for specifying task

migration protocols. However, there are a number of areas in which Z needs to

be used carefully. Z is a rich language, it has most of the operations a speci�er

needs already de�ned. Arbitrary use of di�erent operations can be confusing for

the reader of a speci�cation and the work in this report has shown that it is

very bene�cial to impose a `house style' covering choice of operators, order of

presentation and naming of user-de�ned objects. The value of having a house

style is also emphasised in Macdonald [9] where a lengthy list of good practices is

given.

The Z language has associated tools for syntax and type checking and for type-

setting. These allow a high degree of consistency and evenness of appearance in

65

the �nal speci�cation which aid the reader in navigating the document. Proto-

typing and re�nement were not attempted in this report, so the lack of tools to

assist these processes was irrelevant. The lack of a theorem prover for Z would

only become a problem if the rigorous proofs presented in Section 6 were to be

made formal proofs.

In conclusion, formal methods provide an invaluable way of proving safety and

correctness of complicated protocols, such as those for thread migration. Formal

methods also provide a host of other bene�ts: faster implementation, better docu-

mentation and a precise basis for presenting and interpreting performance meas-

urements.

Acknowledgements This work was funded by a Research Studentship from the

Science and Engineering Research Council.

References

[1] Antoni Diller. Z: An Introduction to Formal Methods. John Wiley & Sons,

1990.

[2] Anthony Hall. Seven Myths of Formal Methods. IEEE Software, 7:11{19,

September 1990.

[3] Ian Hayes. VDM and Z: A Comparative Case Study. Formal Aspects of

Computing, 4(1):76{99, 1992.

[4] Ian J. Hayes. Applying Formal Speci�cation to Software Development in

Industry. IEEE Transactions on Software Engineering, 11(2):169{178, Febru-

ary 1985.

[5] Roland N. Ibbett, D. A. Edwards, T. P. Hopkins, C.K Cadogan, and D. A.

Train. Centrenet|A High Performance Local Area Network. The Computer

Journal, 28(3):231{242, July 1985.

[6] Kayhan Imre. A Performance Monitoring and Analysis Environment for

Distributed Memory MIMD Programs. PhD thesis, University of Edinburgh,

1993.

[7] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice Hall, second edition, 1988.

[8] INMOS Limited. occam2 Reference Manual. Prentice Hall International (UK)

Ltd, 1988.

[9] R. Macdonald. Z Usage and Abusage. Technical Report Report 91003, Royal

Signals and Radar Establishment, St Andrews Road, Malvern, Worcs WR14

3PS, February 1991.

66

[10] Paul Martin. The Performance Pro�ling of a Load Balancing Multicomputer.

Technical Report ECS-CSG-3-94, University of Edinburgh, June 1994.

[11] Bertrand Meyer. On Formalism and Speci�cations. IEEE Software, 2(1):6{26,

January 1985.

[12] David Pitt and Paddy Byers. The Rest Stays Unchanged. (to appear in)

Formal Aspects of Computing, 1994.

[13] Dick Pountain. A Tutorial Introduction to Occam Programming. INMOS

Limited, March 1987.

[14] J. M. Spivey. The fuzz Manual. J. M. Spivey Computing Science

Consultancy, Oxford, 1988.

[15] J. M. Spivey. The Z Notation. Prentice Hall, 1992.

[16] Peter H. Welch. The Role and Future of Occam. Available by ftp from

unix.hensa.ac.uk (129.12.21.7), 1993.

[17] Jeannette M. Wing. A Speci�er's Introduction to Formal Methods. IEEE

Computer Magazine, 23(9):8{24, 1990.

[18] SimonWoods. Error Diagnosis in a Distributed Environment. Master's thesis,

University of Edinburgh, September 1990.

67

A Index of Z Terms

advert , 16

Args, 48

advert, 17

bu�er , 26

CAdvert , 30

CFocus, 31

CHANNEL, 26

CInit , 27

CMsg, 32

cnet , 18

CNETMSG, 16

cntr , 18

COUNTER, 16

create, 17

CReceive, 29

CRtr , 32

CSend , 28

CState, 26

FAdvert , 35

FCreate, 24

FFocus, 35

FInit , 24, 34

FMsg, 36

focus, 17

focus, 26

focusm, 16

FReceive, 35

FRtr , 36

FSend , 34

FState, 23, 34

FSync, 25

FTerm msg, 25

FTerminate, 25

INSTRUCTION , 23

linked, 60

MConnect , 42

MDisconnect , 41

MEM BLOCK , 26

msg, 17

msg, 16

null thread , 16

OP , 17

par bd , 18

parent , 18

pc, 23

PE , 16

program, 23

rcontrol , 26

ready, 18

Receive, 36

receive, 17

receiver , 26

rloc, 26

rtr, 17

rtr , 16

SBase, 48

Schedule, 36

scontrol , 26

send, 17

sender , 26

sloc, 26

SStep, 49

68

sync, 17

TCreate, 19

term, 16

terminate, 17

term msg, 17

thrd , 16

THREAD , 16

TInit , 18

trace, 23

TState, 18

TSync, 20

TTerm msg, 22

TTerminate, 21

used , 26

69

