
Implementing the Hierarchical PRAM on the 2D

Mesh: Analyses and Experiments

�

George Chochia, Murray Cole and Todd Heywood

Department of Computer Science

The University of Edinburgh

King's Buildings, Edinburgh EH9 3JZ

Scotland

email: fgac,mic,thhg@dcs.ed.ac.uk

Abstract

We investigate aspects of the performance of the EREW instance of the

Hierarchical PRAM (H-PRAM) model, a recursively partitionable PRAM,

on the 2D mesh architecture via analysis and simulation experiments. Since

one of the ideas behind the H-PRAM is to systematically exploit locality

in order to negate the need for expensive communication hardware and

thus promote cost-e�ective scalability, our design decisions are based on

minimizing implementation costs. The Peano indexing scheme is used as a

simple and natural means of allowing the dynamic, recursive partitioning

of the mesh into arbitrarily-sized sub-meshes, as required by the H-PRAM.

We show that for any sub-mesh the ratio of the largest manhattan distance

between two nodes of the sub-mesh to that of the square mesh with an

identical number of processors is at most 3/2, thereby demonstrating the

locality preserving properties of the Peano scheme for arbitrary partitions

of the mesh. We provide matching analytical and experimental evidence

that the routing required to e�ciently implement the H-PRAM with this

scheme can be implemented cheaply and e�ectively.

�

Work supported by EPSRC grant GR/J43295

1 Introduction

A model of parallel computation has a di�cult task in that it must mediate

between the conicting requirements of simplicity of use for program design/analysis,

and reectivity of cost/resource details of realistic architectures. In other words,

it must abstract away the implementation details inherent in architectural views,

while truly reecting the essential costs of parallel computation on those architec-

tures [15]. The goal of a model is to bridge the gap between practice and theory;

pragmatically, this requires its joint acceptance by both the systems and theory

communities.

The PRAM model is accepted as a good tool for parallel algorithm research,

but fails to even abstractly represent realistic architectures since it ignores commu-

nication and synchronization costs. In recognition of this fact, many other models

have been proposed (see [5], and the references therein), none of which have yet

caught on. In various ways they try to balance simplicity of use and reectivity

of architectural costs, and may be roughly classi�ed into three types:

� PRAMs with locality (simplicity = shared memory, reectivity = locality),

e.g. H-PRAM, YPRAM, BDM, LPRAM, BPRAM.

� Global message passing models (simplicity = global address space, reectiv-

ity = message passing), e.g. BSP, LogP, and many more.

� \Adjusted" PRAMs with \architectural" features, such as asynchrony (many

variants of Asynchronous PRAMs) or memory queues to represent conten-

tion (QRQW PRAM).

Comparisons and critical analyses of various models may be found in [5, 6, 7].

With the exception of the LogP model, and to a small extent the BSP, results on

these models have been theoretical. They have not received much attention on

the part of the systems community.

This paper covers initial results of an investigation, via simulation experiments,

of implementation details and performance of the Hierarchical PRAM (H-PRAM)

model on a 2D mesh architecture. The H-PRAM, introduced in [7, 8], is the

most general of the \PRAM with locality" type models (i.e. has the least restric-

tions on partitioning the memory into sub-memories). The H-PRAM is a PRAM

whose instruction set is extended by a partition instruction, which allows the hier-

archical organization of processors and memory into groups. Each group works

as a separate synchronous \sub-PRAM", asynchronously and fully independently

1

from the others. The model accounts for communication and synchronization

costs, which are functions of the group size. An architecture implementing the

H-PRAM must be able to hierarchically partition itself into any number of in-

dependent sub-architectures, where communication and synchronization costs are

functions of sub-architecture size. The H-PRAM is reective of the costs and

resources of distributed memory architectures with recursively partitionable net-

works, thus H-PRAM programs would be architecture independent across this

class of architectures.

In this paper, we are concerned with the practical, systems aspects of the

implementation and performance of P -processor H-PRAM on a P-processor mesh

with P = P . Our goal, towards which this paper is an initial contribution, is

to determine the properties of cost-e�ective (cheapest possible) systems based

on scalable architectures which can e�ciently support the H-PRAM model. The

thesis is that through the systematic exploitation of locality, represented abstractly

at the programming level for ease of use, we can get high performance out of a

scalable architecture without the need for exotic hardware. In other words, the

use of locality should allow us to do more in systems software, reducing the need

for expensive communication and synchronization hardware which inhibit cost-

e�ective scalability. This philosophy should be contrasted with that implicit in

the global message passing models above; creating a scalable, global address space

requires signi�cant investments in router technology at the very least.

The 2D mesh is one obvious choice of network if the criteria is cost-e�ective

scalability. In terms of today's technology, it is relatively simple to construct,

and ideal for VLSI implementation. It also fares well when considering future

technology. Bilardi and Preparata [1] have shown that, under speed of light and

device area/volume limitations, the mesh is the only scalable parallel architec-

ture. Long term considerations are rather underappreciated in today's parallel

computing research, but are very important with respect to proposed models of

computation. Having a model of computation established and then made obsolete

by technological advances is worse than not having an established model in the

�rst place.

An argument against the the mesh is that it has a large diameter compared to

many other networks. However, the H-PRAM allows us to substantially reduce

or even eliminate the routing overhead of the underlying network at the price of

memory reorganization. It is well known that there exists a large body of parallel

algorithms where each processor, during a su�ciently long period of time, accesses

data within a restricted domain. The H-PRAM captures this locality in the data

2

access pattern via a partition instruction, and charges communication cost (for the

purpose of performance prediction) as a function of local neighborhood size.

An argument against the use of communication metrics which are functions of

the distances messages have to travel in a network is that in the current generation

of parallel architectures the \start up" cost of getting messages from a processor

onto the network dominates the network travel time. We believe this is a techno-

logical artifact, resulting from the concentration on routing network technology in

development work between the previous and current generations, at the expense

of the interface between the network and the processor nodes. This imbalance will

be probably be addressed by the next generation; see [3] for example. Note also

that under speed of light and device area limitations (see above) communication

delay is solely a function of distance.

The paper is organized as follows. In Section 2 the H-PRAM model and some

implementation details are briey overviewed, setting the stage for the presenta-

tion of analysis and experiments. Section 3 concerns the mapping of the H-PRAM

to the Peano-indexed mesh, giving the analytical results necessary for interpreting

the experimental results, as well as being informative in their own right. Section 4

gives details of implementing routing on the Peano mesh, and the set-up of the

resulting experiments. Finally, Section 5 presents the results of the experiments

on the performance of a randomly partitioned H-PRAM when implemented on the

2D mesh. The simulation results are compared against the analytical predictions

obtained earlier. Section 6 makes brief conclusions and outlines future work.

2 H-PRAM implementation

Structurally, the H-PRAM [7] is a PRAMwhich can recursively partition itself into

sub-PRAMs, giving rise to a hierarchy of sub-PRAMs. A P -processor H-PRAM

is a P -processor PRAM extended by a partition instruction:

partition f p

1

: Algorithm-1 (parameter-list);

p

2

: Algorithm-2 (parameter-list);

...

p

Q

: Algorithm-Q (parameter-list) g

where the p

i

are such that

P

Q

i=1

p

i

= P .

The operation partitions the P processors of the original PRAM into disjoint

subsets of p

i

processors running the speci�ed algorithms. Partitioning of pro-

cessors causes the memory to be partitioned proportionately; thus \sub-PRAMs"

3

are disjoint and cannot access any memory besides their own until the partition

step terminates (this was called the \private H-PRAM" variant in [7]). The sub-

PRAMs operate asynchronously from each other and synchronize at the termin-

ation of the partition instruction. Independently executing sub-PRAMs do not

interact, i.e. all communication is restricted to occur within each sub-PRAM.

The sub-PRAM sub-algorithms may themselves have partition instructions,

giving rise to a recursive partitioning of the H-PRAM. The hierarchical struc-

ture of the overall computation can be represented by a dynamically expanding

and contracting tree, where nodes spawning children correspond to the starts of

partition instructions and disappearing (leaf) nodes correspond to terminations of

partitions and reactivation of the parent node.

Partitioning is dynamic, i.e. the parametersQ and p

i

in the partition instruction

need not be known in advance. While the algorithms in [8] are static, dynamic

partitioning is more general, as it allows hierarchies to depend on data values.

Since an H-PRAM hierarchy will grow and contract according to data depend-

encies, the architecture must be able to partition into any number of arbitrarily-

sized sub-architectures so that sub-PRAMs map to sub-architectures, where costs

are functions of sub-architecture size. The evaluation of algorithm/program com-

plexity for the H-PRAM is di�erent than for the (unit cost) PRAM in that com-

munication and synchronization operations are charged with their realistic cost as

de�ned by the underlying architecture. See [7, 8] for complexity analysis details.

Space does not allow a recapitulation here, but we can summarize this by saying

that, under a set of very reasonable assumptions, H-PRAM algorithm analysis is

like PRAM algorithm analysis except that a communication cost is charged to

communication steps (synchronization cost is subsumed).

Each sub-PRAM in the hierarchy can be identi�ed with respect to its level in

a tree, and the order within the level. An arbitrary sub-PRAM at level i can be

represented by a pair hP

i

;M

i

i, where P

i

is an ordered set of processors speci�ed

by indices, M

i

an ordered set of memory locations, i � 0. jM

0

j is a multiple of

jP

0

j. P

i

� P

i�1

; i � 1 (i.e. some sub-PRAM at the next level up) such that the

ordered set of processor indices fpj p 2 P

i

g is a consecutive interval. There are

no intersections in the processors belonging to di�erent sub-PRAMs at the same

level (private H-PRAM). M

i

� M

i�1

is a subset of the shared memory locations

available to P

i

. Let L

p

denote a set of memory locations with indices

jM

0

j

jP

0

j

p; :::;

jM

0

j

jP

0

j

(p + 1)� 1

Then M

i

=

S

p2P

i

L

p

.

4

Now consider the implementation of the H-PRAM on a distributed memory

architecture whose network topology is de�ned as a graph G with diameter d(G).

Each node of the graph represents a pair: a processor and its local memory, and

simulates some p 2 P

0

of the H-PRAM. We will say that a topology is suitable for

the H-PRAM implementation if there exists an indexing scheme I

P

enumerating

the nodes, such that

d(G

0

) � c � d(G

00

) ; (1)

where G

0

and G

00

are any two disjoint subgraphs of G onto which the sub-PRAMs

with P

0

and P

00

, P

0

< P

00

, processors are mapped, where c is a constant.

Let G be a 2D mesh, P

0

a set of processors of the mesh and L

p

, p 2 P

0

the local memory available to that processor. The simulated shared memory M

0

is a union of the local memories. The simulated processors P

0

and associated

memory space L

p

; p 2 P

0

are mapped bijectively to the physical processors P

0

and physical memory space L

p

; p 2 P

0

correspondingly. Each node of the mesh

p 2 P is assigned an index by means of the Peano indexing scheme. It will be

shown below that Peano indexed mesh simulating the H-PRAM satis�es (1) with

c =

3

2�2=

p

P

00

.

Before turning to the details of the mapping of the H-PRAM to the Peano

mesh, however, we briey need to cover the implementational issues of memory

organization. The logical address space of each sub-PRAM is randomized onto the

physical address space of the mesh by means of a pseudo-random hash function.

Let v be the amount of memory actually used by the the algorithm in a sub-PRAM

and let r be the space required to distribute this data in the physical memory using

the hash function of the sub-PRAM. In general, r � v. The value of r depends

on the hash function in use. If the hash function is not a bijection or collision

free, additional locations will be required to resolve the collisions. For instance,

the perfect hash functions of [4, 14] would require r to be O(v). It is reasonable

to expect that the requirements on a hash function should be not as strict if we

simulate a PRAM on the topologies with diameter larger than logP. For instance,

the requirement that a hash function must be computed in O(logP) timemay now

be excessive.

The obvious practical demand is that v should be as small as possible, ideally

v = r. The class of 2-universal hash functions [2] computable in constant time suits

this objective very well. In this case v is the minimal prime greater than r, and

v�r is known to be O(log

2

r) in the worst case. These hash functions give a much

weaker theoretical guarantee that the memory requests are evenly distributed over

5

the memory banks than do logP-universal hash functions. However, in the case

of the mesh, it remains an open question whether their properties are su�cient

in practice, i.e. it may very well be that shared memory simulation where the

overhead associated with memory rehashing due to bad memory access patterns

is much less than that of successful PRAM simulation cycles.

Whenever a partition step occurs, memory must be reorganized. The partition

step is a union of two operations: moving of the data from the parent sub-PRAM

into the simulated shared memory of the child sub-PRAMs and the replacement

of the hash function. Consider variables inM

i

which must be placed into a shared

memory M

i+1

. At �rst, each processor p 2 P

i+1

puts its fair share of these into

its local memory in time O

�

v

i+1

�

p

jP

i

j

jP

i+1

j

�

, and then moves them to their correct

destinations using a new hash function in time O

�

v

i+1

�

p

jP

i+1

j

jP

i+1

j

�

.

Some details, including costs and their subsumption by the charged costs in

H-PRAM algorithm analysis, are discussed in [7]; other details pertaining to the

constant factors involved are currently under investigation.

3 Partitioning the Peano mesh

This section presents the properties of Peano mesh partitionability, arriving at

analytical results used in interpreting the experimental results in the following

two sections.

The H-PRAM model does not impose any constraints on the number and sizes

of the sub-PRAMs created in a partition step other than those imposed by the

available number of processors. We need to be able to partition into any number

of arbitrarily-sized sub-meshes, carried out dynamically at run-time. Though the

sub-meshes will not generally be square, the sub-meshes must be of a shape that

they well-approximate square sub-meshes of the same size, in that the diameter of

a sub-mesh that a sub-PRAM maps to is O(

p

P) for a P-processor sub-PRAM.

The Peano indexing scheme [9] nicely satis�es these criteria.

The indexing scheme I

P

can be de�ned recursively for any 2

q

�2

q

; q � 0 mesh

by the process shown in Figure 1. The trick with the scheme is that any two

nodes whose indices di�er by d are at manhattan distance O(

p

d) in the mesh.

There is a simple O(q) step algorithm to convert the Peano index into Cartesian

coordinates.

Given some segment of I

P

, a subgraph of the mesh is de�ned, which we refer

to as a shape. In the following, we give a classi�cation of the shapes in terms of

6

0

1 2

3

0 1

3 12

14

2� 2 mesh 4 � 4 mesh

2 13

87

65 9 10

114

15

Figure 1: The recursive rule for Peano indexing scheme. Each node of the mesh

is shown as a square.

primitive shapes and show that (1) above holds.

De�nition 1 A primitive shape is any shape that does not contain a 2�2 square.

Twelve primitive shapes are shown in Figure 2. The complete set consists of these

shapes and their reections. Each primitive shape is identi�ed by its type (shapes

obtained by reections have identical type). We will show that any shape has

1 2 4

9
10

11 12

3 5 6 7

8

Figure 2: Primitive shapes

a type equivalent to one of the primitive shapes. Indeed, any shape contains a

square of size 2

q

� 2

q

; q � 0, with the �rst node index a multiple of 2

q

� 2

q

.

Let us call this a maximal square. In general, a shape contains more than one

maximal square. The part of the Peano curve \before" the �rst maximal square

is a shape of size less than the maximal square (\before" translates to: consisting

of processors whose indices are less than those of processors within the maximal

square). We can complement it by adding nodes along the Peano curve in the

direction outside the shape, in order to form a (virtual) maximal square. This

follows from the recursive de�nition of the Peano curve. The same is true for the

last part of the Peano curve \after" the last maximal square. The original graph

(shape) is a subgraph of that obtained by the complement process described above.

The complemented shape must be congruent to one of the primitive shapes, since

when reduced recursively, it becomes a shape of unit squares. As there are no

other shapes of unit squares than primitive shapes the shape gets a unique type.

7

The other important characteristic, to which we devote the rest of this section,

is the largest possible ratio of the distance between any two nodes within a shape

to the square root of its size. For the primitive shapes in Figure 2, the most distant

nodes in the mesh (going outside of the shape for type 9, 11, 12) are marked with

crosses. Clearly, shapes 8 and 10 have the largest ratio of 4=

p

5. In what follows

we prove that shapes of this type have the asymptotically largest ratio compared

to the rest. Consider the process shown in Figure (3) de�ning the shape of type

10. The longest distance between any pair of nodes, l

q

, can be expressed by the

q=0

q=1

q=2

Figure 3: Shape of type 10 is bounded by the bold line. Nodes belonging to the top

and bottom maximal squares for q = 1 are marked with dots.

recurrence

l

q+1

= 2 � l

q

+ 2 (2)

l

0

= 4 ;

which has a solution: l

q

= 6 � 2

q

� 2. The minimal size of a shape of type 10, i.e.

the shortest length s

q

of the Peano curve between nodes at distance l

q

, can be

found from

s

q+1

= 4 � s

q

� 3 (3)

s

0

= 5 ;

which has a solution s

q

= 4

q+1

+ 1. These recurrences are obtained as follows.

Consider valid shapes of type 10 with a property that the �rst and the last nodes

are at the maximal distance from each other. Let us call these nodes extremal.

8

Consider the shape obtained from the primitive shape 10 after the �rst recursive

step. Clearly, its size is s

1

= 4�s

0

and the maximal distance is equal to l

1

= 2�l

0

+2.

From the recursive rule de�ned in Figure (1) it is easy to see that the order in

which four nodes of the 2 � 2 left upper square are enumerated is the same for

the 4 � 4, 8 � 8, and larger meshes. If two largest indexed nodes are deleted at

each new iterative step, we still have a shape of type 10 with one of the extremal

nodes at the left upper corner. The process can be repeated at each iteration.

Analogously, it is easy to check that the order in which four nodes of the 2 � 2

bottom right square are enumerated is the same for the 4 � 4, 8 � 8, and larger

meshes. If one of the smaller indexed nodes is deleted at each new iterative step,

we again have a shape of type 10 with the other of extremal nodes at the bottom

right corner. Thus, in total, three nodes are deleted at each step, which is reected

in recurrence (3).

To ensure that the ratio obtained from (2) and (3) is the largest for shapes of

type 10 we have to check that it is not less than that for any pair of nodes such

that one of them belongs to the �rst (bottom) and the other to the last (top)

maximal square. This is formulated in the following:

Lemma 1 For shapes of type 10, the largest ratio of the distance to the square

root of the size, within a mesh of size 2

q+2

� 2

q+2

, q � 0 is

r

max

q

=

6 � 2

q

� 2

p

4

q+1

+ 1

< 3 �

1

2

q

: (4)

Proof: It is easy to see that the nodes with indices less than the minimal extremal

node and larger than the maximal extremal node can not have a smaller ratio than

that for the extremal nodes.

First we prove that given any node from the top maximal square (\top node")

and bottom maximal square (\bottom node") the maximal ratio is achieved if

the latter is an extremal node. The part of the curve within the bottom 2

q

� 2

q

maximal square consists of two complete 2

q�1

� 2

q�1

squares followed by the �nal

part of the curve within the remaining 2

q�1

� 2

q�1

square. The latter part in its

turn consists of two complete 2

q�2

� 2

q�2

squares and the �nal part within the

remaining 2

q�2

� 2

q�2

square and so on until the bottom extremal node. This

structure follows from the construction of this shape. Thus, any non-extremal

node belongs either to the �rst (most distant from the extremal) or to the second

(nearest) 2

i

� 2

i

; 0 � i < q, complete squares (see Figure 3).

Let l be the distance, s the length of the Peano curve between two nodes from

maximal squares, De�ne l

�

to be the distance, s

�

the length of the Peano curve

9

between a bottom node and bottom extremal node. It is su�cient to show that

l

p

s

<

l+l

�

p

s+s

�

which is equivalent to

s

�

<

2 � l

�

� s

l

+

l

2

�

� s

l

2

(5)

The right hand is minimal if l is maximal and s is minimal. Maximal l is 6 �2

q

�2,

the distance between the extremal nodes, and s is greater than the number of

nodes in three maximal squares between the top and bottom maximal squares,

i.e. 3 � 4

q

. If the bottom node is any node in the nearest square of size 4

i

, then

l

�

� 2

i

and s

�

� 4

i

+ 2 �

P

i

j=1

4

i�j

. Thus s

�

<

5

3

� 2

2�i

whereas the right hand side

is greater than 2

q+i

+

2

2�i

12

i.e. greater than the left hand side for any 0 � i < q.

If the bottom node is any node in the distant square then for any node within it

l

�

� 2 � 2

i

and s

�

� 2 � 4

i

+2 �

P

i

j=1

4

i�j

, i.e. s

�

<

8

3

� 4

i

. It is easy to check that (5)

holds.

In the same way we can prove that, given any node from the bottom maximal

square and the top maximal square, the bottom node and top extremal node

has a larger ratio in comparison to it. Indeed, the part of the curve within the

top maximal square can be represented as a sequence of 2

i

� 2

i

squares, where

0 � i < q. Hence in that case we have l

�

� 2

i

and s

�

�

P

i

j=1

4

i�j

, i.e. s

�

<

4

i

3

.

The inequality (5) holds in this case as well.

For any shape of type other than 10 we can �nd a recursive process that

generates the shape with the largest ratio. Figure 4 shows these processes for

types from 3 to 8. The types 1, 9, 11, and 12 can not have larger ratio compared

to 3, 7, 8, and 10 respectively, because the latter have the same maximal distance

but a smaller size. Shapes of type 2 contain a shape of type 10 with the same

longest distance but smaller size for any q � 1. The ratios stated for types 3{8 in

Figure 4 can be proven to be maximal for their types using the same method as

above for type 10. Although type 8 has the same ratio as 10, it appears �rst time

in the 8 � 8 mesh, whereas type 10 appears in the 4 � 4 mesh, i.e. the former is

one iteration away from the latter. Thus, we can conclude that

Theorem 1 The maximal ratio: distance to the square root of the size for any

Peano shape within the mesh of size 2

q+2

� 2

q+2

; q � 0 is given by (4).

From this and the fact that a P processor square has the minimal ratio

2 � 2=

p

P, we can conclude that inequality (1) holds with c =

3

2�2=

p

P

. Indeed,

from Theorem 1 it follows that the maximal possible longest distance for any P

processor Peano shape of the mesh is less than 3�

p

P whereas the minimal possible

10

5�2

q

�2

p

3�4

q

+1

6�2

q

�2

p

4

q+1

+1

5�2

q

�2

p

3�4

q

+1

4�2

q

�2

p

2�4

q

+1

5�2

q

�2

p

3�4

q

+1

4�2

q

�2

p

2�4

q

+1

87

6 3

5 4

Figure 4: The recursive de�nitions of the shapes with the largest ratio: distance

to the square root of the size (shape of types 3{8). The ratio as a function of the

recursion step q � 0 is shown below. Extremal nodes are marked with crosses.

longest distance is 2 �

p

P � 2. Setting P

0

= P

00

in inequality (1) we �nd the value

for c, which is asymptotically 3=2 as P ! 1.

Most of this section involved a derivation of an upper bound on the ratio which

can be represented analytically. In fact, it is possible to �nd the exact value of

the maximal distance (and a ratio) over the shapes of the given size, via a longest

distance search algorithm (see below).

4 Implementation: analysis and simulation

At the present time, we are primarily interested in simple routing schemes, in

order to get an idea of the performance of a practical, cost-e�ectively scalable im-

plementation of the H-PRAM. This e�ectively translates to simulating an EREW

H-PRAM. Supporting concurrent reads/writes is related to the complexity of the

routing algorithm and/or hardware mechanisms. We return to this in the conclu-

sions. (For the same reason, we are not yet considering multithreading.)

Each of the sub-PRAMs comprising the EREW H-PRAM is an EREW PRAM

(no two processors are allowed to reference the same memory location in one step).

The shared memoryM of the simulated EREW sub-PRAM is organized as a union

of the local memories of the mesh processors simulating that sub-PRAM. Each

local memory is assumed to consist of one memory bank, i.e. only one memory

location can be fetched or stored in a single memory access cycle.

11

In the worst case, all memory references may occur to the same bank of

memory. It was shown in [12] that given a randomly chosen k-universal hash

function [2], where k = O(

logP

log logP

), by means of which the memory is hashed, and

any memory access pattern, then no more than q = O

�

logP

log logP

�

references fall

into the same memory bank. Thus, in this case the routing problem we have is

1-to-q relation, i.e. at each simulated step each processor generates one request

and receives at most q requests with high probability.

One of the questions we are looking to answer with the experiments is whether

simple 2-universal, perfect hash functions may su�ce for an e�cient implement-

ation of the H-PRAM on a mesh. As noted above, these functions possess the

important feature that they can be implemented with a very small additional

address space over that of the data being hashed; they are also quickly evalu-

able. The advantage of 2-universal hash functions is that there exist explicit such

functions with a bijective mapping of the logical to physical addresses [2, 12].

We chose for our simulation the simplest two stage \greedy" routing algorithm

(GRA) that routes the messages to the right column in the �rst stage and to

the right row in the second. The �rst question that arises, given a partition of

the H-PRAM into sub-PRAMS mapped to sub-meshes with di�erent shapes, is

whether the routing should stay within the bounds of the shape or not. This will

be referred to as routing \in" and \out". Logically, sub-PRAMs are independent

of each other, so one may think that the simulation of the sub-PRAMs should

also be independent. This implies choosing routing \in". Below we show that

routing \out" is preferable because it reduces the simulation time. If we ignore

(just for the moment) the delay due to the link and memory contention, then, the

only message delay is the distance a message has to go. The distance for routing

\out" is not greater than that for routing \in" for any shape. The situation can

be summarized with:

Theorem 2 Let d

in

and d

out

be the longest distance for routing \in" and \out".

Then for primitive shape 9, of size s = 5, d

in

=d

out

= 2; the asymptotic ratio for

shapes of this type with s!1 is at most 5=3. Shapes of type 11 and 12 also have

a ratio d

in

=d

out

greater than 1. Shapes of types 1{8 have d

in

=d

out

= 1.

Proof: Obvious.

The next question that arises is whether interference between independent sub-

PRAMs may cause contention delays negating any advantages of routing \out".

The following section gives experimental evidence that the delay due to link and

memory contention is e�ectively bounded by a small (less than 7) additive constant

12

to the total message routing delay. Moreover, it is independent of the size of a

mesh and of a shape simulating a sub-PRAM. This is asymptotically negligible

compared to the delay due to the larger multiplicative factors of Theorem 2 in the

cases of shapes of type 9, 11, and 12.

The purpose of the simulation experiments carried out was to estimate the

contribution of link and memory contention to the delay, i.e. the time required to

simulate sub-PRAM steps on sub-meshes, for concurrently operating sub-PRAMs.

The simulation is described by the tuple hR,Q,H,Pi, whereR is a routing scheme,

Q { a queueing discipline,H { a hash function, and P { a problem. Although there

exist a very large choice of deterministic and randomized algorithms (see e.g. [11])

for the routing R on the mesh with nice behavior in the worst case for problems

like routing of permutations, there is no reason to apply more complicated schemes

than the GRA given that we do not observe \bad" behavior. In general, when

using these algorithms, we may expect the improvements for worst cases problems

only.

We use the FIFO queueing discipline Q for input and output queues in each

direction. Queue size has been varied from 1 to O(log n) for the n � n-processor

mesh. A communication protocol between the adjacent nodes has been implemen-

ted to prevent queue overow.

Now consider the implementation of the hash functions. We use the following

local address indexing scheme: assign the index 0 to the �rst free memory location

of the local memory of the node with the smallest Peano index l belonging to

P-processor sub-PRAM, index 1 to the �rst available location of the node l + 1,

and so on until the node with index l+P � 1; followed by index P to the second

available memory location of the node l and so on. Then the hash function h(x)

is a mapping of the logical address x to the local address index

h(x) =

0

@

0

@

X

�=0;k�1

a

�

� x

�

1

A

mod r

1

A

mod v (6)

where a

�

2 [0; r � 1] { uniformly distributed random variables, and r 2 Z

+

0

is the

nearest prime greater or equal to v (v de�ned in section 3). In our experiments k

has been varied from 1 to O(logP).

It remains to specify the problem P. The H-PRAM was simulated for the

problem of linear array references with a random stride, which is a typical access

pattern in algorithms [8]. Each processor of a sub-PRAM generates a read request

to the virtual address

(� �#+ �) mod v ;

13

where � and � are random numbers with uniform distribution over [0; v � 1], and

is a processor index relative to the least Peano index of that sub-PRAM.

In the simulation experiments, the H-PRAM/Peano-mesh was randomly parti-

tioned into sub-PRAMs (i.e. with a random number of processors in each disjoint

sub-PRAM such that every processor is in some sub-PRAM). During the simu-

lation the following statistics were collected: longest and average distances found

for shapes of the given size, and worst and average delay required to complete a

sub-PRAM step of the given size. The delay is expressed in the number of mesh

neighbor-to-neighbor communication steps. Each simulated sub-PRAM was as-

signed a di�erent number of instances of the problem, proportional to 1=

p

P, so

that every sub-PRAM terminated approximately in the same time. This overload-

ing of the small-sized sub-PRAMs sustains the level of link contention for messages

crossing the boundaries of the shape.

5 Experimental Results

The experiments were done for n � n; 4 � n � 16 square meshes. We report

results for 256 processor mesh. The experiments indicate that the number of the

worst and average case delays does not change with n. Given that this remains

unchanged for larger n, the number of communication steps needed to simulate a

step of the sub-PRAM of P processors of any shape within a mesh of 2

q+2

� 2

q+2

processors in the worst case can be probabilistically upper bounded by

2 � r

max

q

�

p

P + C ;

where r

max

q

is de�ned in (4) and C is a constant less then 7, found experimentally.

The justi�cation of this result is given below. Again, we note that a more accurate

prediction than the analytic bound can be obtained by using a \longest distance"

search algorithm. In this a case constant C must be added to the value of the

longest distance for the given sub-PRAM size generated by the algorithm.

Figure 5 compares simulation results against the analytical results produced

earlier. In a large number of cases we have a match between the longest distance

predicted by the longest distance search algorithm and obtained in the simulation.

Based on the results above, for a sub-PRAM of size P, the upper bound on

distance in any shape within the mesh of size 2

q+2

� 2

q+2

; q � 0 is 2 � r

max

q

�

p

P.

The appearance of the factor of two is due to the fact that the messages are read

requests. The constant factor 2 � r

max

q

for a 16 � 16 mesh is equal to

44

p

65

.

14

0

10

20

30

40

50

60

70

80

50 100 150 200 250

1
2
3

Figure 5: 1 { the longest distance found by random sampling, 2 { the longest

distance found by the longest distance search algorithm, 3 { the analytical upper

bound (all plotted against sub-PRAM size)

Figure 5 demonstrates the relative discrepancy between the upper bound on

the distance for 256 node H-PRAM, i.e.

44

p

65

p

P and that found by the longest

distance search algorithm. At the point P = 65 the two curves meet. This

corresponds to the shape of type 10, shown in Figure 3 for q = 2. The third curve

represents the longest distance found as a result of random partitioning of the

H-PRAM when solving the problem P as described above.

Figure 6 represents the largest and average delay observed in a simulation of

the H-PRAM on a mesh with queue size equal to two, plotted against sub-PRAM

size. It is seen that the delay is only a small number of steps away from the dis-

tance curve. The more important observation is that the di�erence does not tend

to vary with the size of the shapes. This di�erence is the number of delays due

to link contention and is more clearly shown in Figure 7. The simulation results

are in agreement with results due to Leighton [10], who showed that the random

destination routing problem can be solved on a square mesh in 2n communication

steps with the queue size equal to 4 with high probability under the furthest-�rst

queueing discipline. Our results demonstrate that delay greater than 4 is excep-

tional. The worst case delay due to the link contention larger than 4 (note, that

15

10

20

30

40

50

60

70

80

50 100 150 200 250

1
2
3
4

Figure 6: Number of mesh communication steps (y axis) to complete a simulation

of one step for the sub-PRAM of random shape with a given number of processors

(x axis) within the 256 processor mesh. 1 { longest distance found (as 1 in Figure

5), 2 { the maximal number of steps to complete the simulation of the sub-PRAM

(longest delay), 3 { average distance, 4 { average delay. Simulation results for

20,000 random partitions. Queue size = 2.

the delay presented in Figure 7 is for messages traveling both to and from their

memory destination) was observed in less then 5% of the cases, and the maximal

delay is equal to 6 in 1.2% of the cases. Thus, the probability of observing the

larger worst case delay is a rapidly decreasing function of its argument, independ-

ent of the shape and size of a sub-PRAM. The observed delay due to the link

contention averaged over the number of runs is less than one for any sub-PRAM

size. This suggests that any interference between the sub-PRAMs from routing

\out" is negligible compared to their diameter, i.e. routing \out" will always be

faster than routing \in".

It is worth remembering that our implementation requires only two one-element

bu�ers: input and output to implement a queue. The experiments with larger buf-

fers organized in a FIFO queue show no noticeable improvements in performance.

Another important outcome of the simulation is that varying the choice of k

in the hash functions (6), which determines the minimal value of the probabilist-

16

0

2

4

6

8

10

12

50 100 150 200 250

1
2

Figure 7: 1 { the largest observed number of link contention during one sub-PRAM

simulation step, 2 { average delay due to the link contention. Queue size = 2.

ically independent outputs for any k possible unequal inputs, did not lead to any

noticeable reductions either in the value of the worst or average observed delay.

This suggests that at least for the problem P under consideration, 2-universal hash

functions are su�cient. This result is similar to results observed for the buttery

network simulating a PRAM [13].

6 Conclusions & Future Work

We have presented an analytical and experimental investigation of aspects of the

implementation of the H-PRAM on a two dimensional mesh. Our technique ex-

ploits the Peano indexing scheme to preserve locality. We have demonstrated that

the shapes of the sub-mesh areas induced by the scheme have satisfactory prop-

erties with respect to maximal path length. More speci�cally, we have developed

a classi�cation of the shapes in terms of 12 possible types and have demonstrated

an exact upper bound on the longest distance within a shape for all these types

as a function of the number of nodes in a shape.

These results allowed us to predict the number of communication steps needed

to simulate a step of the sub-PRAM of any shape within a mesh of any size

17

very accurately, provided that the delay due to the link contention is negligible

compared to the longest distance. Our experimental evidence shows that this

can indeed be the case. The worst case delay due to link and memory contention

when simulating an H-PRAM step did not exceed 6 for all sub-PRAMs of di�erent

shapes simulated, for H-PRAMs/meshes of up to 256 processors. This suggests

that the major contribution to the delay is due to the longest distance within a

sub-PRAM that a message has to travel.

It is important to note that these results have been obtained for a simple, prac-

tical and cheaply implementable routing scheme, with two element FIFO queues

in each direction and fast 2-universal hash functions requiring minimal additional

memory for implementation. Recall from the introduction that our goal is cost-

e�ective scalability.

We also note that our mechanism could be adapted for a variety of topologies,

and emphasize the fact that it works on bounded degree networks like the mesh,

where such mechanisms as parallel slackness [16] do not (see [1]) improve the

performance by more than a constant factor. (Exploitation of parallel slackness,

or multithreading, also imposes onerous and costly requirements on the router in

logarithmic diameter topologies, which must be capable of dealing with O(logP)

messages in a �xed time with growing P.)

Future work in this project will consider extension of the scheme to cover is-

sues of concurrent access to locations (i.e. CREW and CRCW variants). We

hope to show that the extra burdens imposed can be addressed in software (for

example, implementation via pre�x computations and sorting, hence without ex-

pensive hardware) without crippling performance, due to the H-PRAM's system-

atic exploitation of locality to control costs. We are also investigating higher level

aspects of our approach, including ways in which the conceptual tools involved

can be embedded in a realistic programming language. This will lead on to exper-

imentation with the hierarchical structures and memory access patterns generated

by real applications.

In a wider context, we anticipate that the partitioning techniques introduced

in this paper will prove bene�cial for a very broad class of parallel algorithms,

with respect to meshes, whether implemented through the H-PRAM abstraction

or otherwise.

18

References

[1] Bilardi, G., Preparata, F.P., \Horizons of Parallel computation." in: A. Ben-

soussam, J.-P. Verjus (eds.), Future Tendencies in Computer Science, Con-

trol and Applied Mathematics, Int. Conf. on the Occasion of the 25th An-

niversary of INRIA, LNCS 653, pp. 155-174, 1992.

[2] Carter, J.L., and Wegman, M.N., \Universal classes of hash functions", J.

Comput. Syst. Sci., 18:143-154, 1979.

[3] Choi, L. and Chien, A.A., \Integrating Networks and Memory Hierarchies

in a Multicomputer Node Architecture", International Parallel Processing

Symposium, 1994.

[4] Dietzfelbinger, M., Meyer auf der Heide, F., \A new universal class of hash

functions and dynamic hashing in real time". In M.S. Paterson, editor, Proc.

of the 17th ICALP, pp. 6-19. Springer, 1990. LNCS 443.

[5] Gibbons, P., \Models of Parallel Computation: An Overview", DIMACS

Workshop on Models, Architectures, and Technologies for Parallel Compu-

tation, Sept. 1993, DIMACS Tech. Report 93-87, pp. 8-10 and 59-65.

[6] Heywood, T., and Leopold, C., \Models of Parallelism", Proc. 2nd Leeds

Workshop on Abstract Models for Highly Parallel Computers, Oxford Univ.

Press.

[7] Heywood, T., and Ranka, S., \A Practical Hierarchical Model of Parallel

Computation. I. The Model", Journal of Parallel and Distributed Computa-

tion, 16, pp. 212-232, 1992.

[8] Heywood, T., and Ranka, S., \A Practical Hierarchical Model of Parallel

Computation. II. Binary Tree and FFT Algorithms", Journal of Parallel

and Distributed Computation, 16, pp. 233-249, 1992.

[9] Kaklamanis, C., and Persiano, G., \Branch-and Bound and Backtrack

Search on Mesh-Connected Architectures", Proc. 4th ACM Symp. on Par-

allel Algorithms and Architectures, pp. 118-126, 1992.

[10] Leighton, T.,\Average case analysis of greedy routing algorithms on arrays"

Proc. ACM Symp. on Parallel Algorithms and Architectures, pp. 2-10, 1990.

19

[11] Leighton, T., Methods for message routing in parallel machines", 24th An-

nual ACM Symp. of Theory of Computing, pp. 77-96, 1992.

[12] Mehlhorn., K., and Vishkin, U.,\Randomized and Deterministic Simulations

of PRAMs by Parallel Machines with Restricted Granularity", Acta Inform-

atica, 21, pp. 339-374, 1984.

[13] A. G. Ranade,\How to Emulate Shared Memory", Journal of Computer and

System Sciences, Vol. 42, pp. 307-326, 1991.

[14] Siegel, A., \On universal classes of fast high performance hash functions,

their time-space tradeo�, and their applications", Proc. of the 30th IEEE

Ann. Symp. on Foundations of Computer Science, pp. 20-25, 1989. Revised

Version.

[15] Siegel, H.J., et. al.,\Report of the Purdue Workshop on Grand Challenges in

Computer Architecture for the Support of High Performance Computing",

Journal of Parallel and Distributed Computing, 16, pp. 199-211, 1992

[16] Valiant, L.G., \General purpose parallel architectures", In J. van Leewen,

editor, Handbook of Theoretical Computer Science, Vol. A: Algorithms and

Complexity, chapter 18, pages 943-971. Elsiever, Amsterdam, 1990.

20

