
Algorithms, Architectures and Models of

Computation

R.N. Ibbett, T. Heywood, M.I. Cole, R.J. Pooley, P. Thanisch,

N.P. Topham, G. Chochia, P.S. Coe, P.E. Heywood

Computer Systems Group

Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ, UK.

Abstract

The ALgorithms, Architectures and MOdels of computation (ALAMO)

project at the University of Edinburgh aims to investigate the scalability and

e�ciency with which the Hierarchical PRAM model of parallel computation

may be implemented on realistic parallel architectures. This investigation is be-

ing performed using a programming language H-FORK together with HASE, a

tool for the hierarchical design and simulation of computer architectures. This

paper outlines the background to the project and the motivation for it.

1 Introduction

The Computer Systems Group at Edinburgh has research interests which include

theoretical models of parallel computation, mapping and scheduling of processes to

processors, the design of processor and multiprocessor architectures, the evaluation

of systems through simulation, and object oriented databases. The ALAMO project

(`ALgorithms, Architectures and MOdels of computation: simulation experiments

in parallel systems design'), brings a number of these interests together. The pro-

ject aims to address the �rst and fourth of the four `Grand Challenge Problems in

Computer Architecture' identi�ed by the Purdue Workshop on Grand Challenges in

Computer Architecture for the Support of High Performance Computing [23]. These

are:

1

1. Idealised Parallel Computer Models

\The model of parallel computation is fundamental to progress in

high performance computing because the model provides the inter-

face between parallel hardware and parallel software. It is the ideal-

isation of computation that computer architects strive to support

with the greatest possible performance. The model is the speci�c-

ation of the computational engine that language and operating sys-

tems designers can assume as they seek to enhance the power and

convenience of parallel machines. [It is essential to identify] a small

number of `fundamental' models of parallel computation that serve

as a natural basis for programming languages and that facilitate high

performance hardware implementations."

4. Infrastructure for Prototyping Architectures

\Given that computer generations change every 2 to 3 years, new

ideas on architecture must be evaluated and prototyped quickly. Pro-

totype development involves not only hardware, but also software in

the form of compilers and operating systems. An infrastructure is

needed to facilitate the study of the e�ects of new hardware technolo-

gies and machine organisations against di�erent application require-

ments. This computer architecture challenge is to develop su�cient

infrastructure to allow rapid prototyping of hardware ideas and the

associated software in a way that permits realistic evaluation."

By combining work on these Grand Challenges we bene�t from interaction between

these two complementary areas of research. Speci�cally, we aim to identify the

characteristics of hardware architectures that are capable of providing cost-e�ective

scalable support for the Hierarchical PRAM (H-PRAM) [16, 17] model of parallel

computation, which is a strong `Idealised parallel computer model' candidate. In

other words, the goal is to determine the properties of cost-e�ective (cheapest pos-

sible) systems based on scalable architectures and e�cient support for the H-PRAM

model. Design, simulation, and evaluation of hardware architectures involves the de-

velopment and use of our Hierarchical computer Architecture design and Simulation

Environment (HASE) [19].

This paper overviews the background, reasoning and motivation behind this pro-

ject and summarises its current status. Section 2 describes the H-PRAM model.

The H-PRAM's technical de�nitions are primarily concerned with parallel algorithm

design and analysis, and thus the model needs an overlying programming model

in order that application programs can be written and experiments run. Section 3

discusses programming models overlying the H-PRAM. Section 4 provides a brief

description of the mapping strategy which underlies implementation of the H-PRAM

on mesh-connected architectures. Section 5 describes the framework within which

2

experiments are performed and the Hierarchical computer Architecture Design and

Simulation Environment (HASE) used to simulate the architectures on to which H-

PRAM programs are compiled. Finally, Section 5 covers the experimental method

used to obtain and interpret results.

2 The H-PRAM Model of Computation

In parallel computing, a model of computation has a di�cult task. It must medi-

ate between the conicting requirements of abstraction (ease of use) for algorithm

design/analysis, and cost/resource details of realistic architectures.

The PRAM model is accepted as a good tool for parallel algorithm research, but

fails to represent, even abstractly, realistic architectures since it ignores communica-

tion and synchronisation costs. In recognition of this fact, many other models have

been proposed (see [9] and the references therein), none of which has yet gained gen-

eral acceptance. In various ways they try to balance simplicity of use and reectivity

of architectural costs, and may be roughly classi�ed into three types:

� PRAMs with locality (simplicity = shared memory, reectivity = locality), e.g.

H-PRAM [16, 17], YPRAM [24], LPRAM [2], BPRAM [1].

� Global message passing models (simplicity = global address space, reectivity

= message passing), e.g. BSP [25], LogP [7], and many more.

� `Adjusted' PRAMs with `architectural' features, such as asynchrony (many

variants of Asynchronous PRAMs) or memory queues to represent contention

(QRQW PRAM [10]).

Comparisons and critical analyses of various models motivating the study of the

H-PRAM may be found in [14, 16].

The H-PRAM is a model which balances simplicity of use, and reectivity of

the costs and resources of architectural models employing direct networks (i.e. a

`good' H-PRAM algorithm will translate to a `good' algorithm on a direct network

model). It is the most general of the `PRAM with locality' type models, i.e. has the

least restrictions on partitioning the logical memory space into sub-memories. The

H-PRAM uses the PRAM as a sub-model, allows the utilisation of general locality,

and enforces determinate (testable) computation in the face of asynchrony, thus

providing a basis for bridging theory and practice of parallel computing. It satis�es

almost all of the goals of the `Idealised parallel computer models' Grand Challenge.

The remaining goal of cost-e�ective implementation of the model is that for which

the ALAMO project is striving.

Structurally, the H-PRAM is a PRAM which can recursively partition itself into

sub-PRAMs, giving rise to a hierarchy of synchronous PRAMs which operate asyn-

chronously from each other. Sub-PRAMs may be any of the standard types, i.e.

EREW, CREW, CRCW. A P -processor H-PRAM is thus a P -processor PRAM

whose instruction set is extended by a partition instruction:

3

partition f p

1

: Algorithm-1 (parameter-list);

p

2

: Algorithm-2 (parameter-list);

...

p

q

: Algorithm-q (parameter-list) g

where the p

i

are positive integers with

P

q

i=1

p

i

= P .

The operation partitions the P processors of the original PRAM into disjoint

subsets of p

i

processors running the speci�ed algorithms. These sub-PRAMs oper-

ate asynchronously from each other. They synchronise after having �nished their

algorithms, i.e. at the termination of the partition instruction. The sub-PRAM

sub-algorithms may themselves have partition instructions, giving rise to a recursive

partitioning of the H-PRAM. The hierarchical structure of the overall computation

can be represented by a series{parallel graph, where `forks' correspond to the start

of a partition instruction and `joins' correspond to the termination of them.

The H-PRAM, algorithmic issues, and relationships to architectures are covered

in detail in [16, 17], so these issues will not be discussed here. The following section

considers programming models for overlying the H-PRAM computational model.

3 Programming Models for the H-PRAM

The existing body of work on the H-PRAM is predominantly concerned with the

asymptotic analysis of algorithms, de�ned in conventional parallel pseudo-code. This

pseudo-code suits its purpose well, but its informality is inappropriate for this project.

If we are to simulate the behaviour of implementations of realistic programs then we

will require a more precisely de�ned language in which to express them. Furthermore,

the full power of the H-PRAM model lies in its ability to exploit locality which

emerges dynamically in data dependent patterns. Existing H-PRAM analyses deal

mainly with oblivious algorithms (for example the FFT [17]), in which the partition

structure is a feature of the problem rather than of speci�c instances thereof. The

only way to capture the dynamic evolution of non-oblivious computations is to run (or

at least emulate) them

1

. The implied automation necessitates a more conventional

programming notation.

3.1 The FORK language

A similar situation existed in the early days of PRAM algorithm design. The lan-

guages FORK [11] and its successor FORK95 [21] were designed to act as standards

for PRAM algorithm description and as real languages intended for implementation.

FORK95 is a block-structured C-like language in which statements are executed by a

dynamically evolving hierarchy of groups of processes. Its semantics de�ne the ways

1

An attempt was made to analyse a non-oblivious N -body algorithm on the H-PRAM, but the

bounds were extremely rough due to simplifying assumptions that were made in reaction to the

di�culty of parallel, recursive probabilistic analysis.

4

in which the group hierarchy evolves. Informal PRAM notions of memory sharing

and synchronisation are de�ned precisely with respect to this hierarchy. The hier-

archy is a�ected by the execution of conditional statements and, more interestingly,

by the execution of fork statements. fork allows the rearrangement of existing

processes into new groups, which may then be assigned distinct tasks, still sharing

access to common memory locations. Conventional rules of block-scoping, together

with the ability to declare variables as shared or private (relative to the group

hierarchy) combine to de�ne the environment seen by a process and as a framework

within which the traditional re�nements of PRAM memory policy (CRCW, CREW

and so on) can be applied.

3.2 An H-PRAM variant of FORK

We use a FORK-like language to describe H-PRAM computations. Our prototype

language amends the original FORK model in several ways. Most importantly, we

introduce a means of expressing the partitioning of memory which lies at the core

of the H-PRAM model. Note that the existing fork is essentially a convenient

syntactic sugaring which facilitates the expression of algorithms in a particular style.

The shared memory space available to processes in the newly created groups is not

immediately a�ected. In contrast, the spirit of the H-PRAM is that greater e�ciency

(and scalability) may be obtained by explicitly and exclusively dividing the shared

memory amongst groups of processors. Thus we introduce a variant of fork, called

hfork in which each new group must explicitly lay claim to those shared variables to

which it requires exclusive access. It is a compile-time checking requirement to ensure

that these claims are indeed mutually exclusive. Such a requirement has implications

for the use of aliasing which must be considered carefully. A simple notation has been

developed which allows the expression of the division of bulk data structures, such

as arrays, similar in concept to occam's `abbreviations' or Fortran 90's `sections'.

We are also considering some form of `permute-and-partition' notation (as might be

useful in the standard parallel FFT computation).

These extensions de�ne a simple `vanilla' H-PRAM language, which we develop

in two directions. Firstly, for pragmatic reasons, we pare the language down to

the minimum required to express realistic computations for emulation, allowing us

to isolate and concentrate upon speci�cally H-PRAM related issues, as opposed to

those which complicate both H-PRAM and PRAM implementations. For similarly

pragmatic reasons we have initially chosen to restrict the power of the procedural

abstraction mechanisms allowed.

Having developed clear insights into the concepts embodied by this simple \H-

FORK" language, we will expand back towards a fuller language, with the re-

introduction of conventional PRAM techniques (such as multi-threading to exploit

parallel slackness).

5

3.3 Skeletal Extensions

Our second aim is to consider the extension of H-FORK to embody other possible

notions of partition. In this work we will be guided by the principles of the `skeletal'

approach to parallel algorithm design. This model [6, 8] proposes that parallel pro-

gramming systems be based around a collection of implicitly parallel program `skel-

etons', each embodying the computational and communications structure of a class

of algorithms, with parallel implementation of the structure being provided by the

system. The parallel programming task is then reduced to the problem of selecting,

specialising and composing appropriate skeletons.

As an algorithmic model, the H-PRAM is clearly a exible `divide & conquer'

machine, and so formulation of a range of more or less prescriptive divide & conquer

skeletons should be straightforward. More interestingly, a wide range of other skel-

etons has been proposed in the literature, ranging from the simple and general to

the complex and specialised. We propose to investigate the e�cacy with which these

and perhaps other new structures can be executed on the H-PRAM and expressed

in extensions of H-FORK. Most obviously, it seems that many such structures (for

example, consider simple pipelines) will require the ability to exchange information

between sub-PRAMS in restricted patterns. These patterns will no doubt lead to

the de�nition of new forms of fork.

4 Mapping the H-PRAM to Architectures

It is intended to investigate the implementation of H-FORK programs and their map-

ping on to architectures whose interconnection topology is a mesh. Experimentation

with architectural features will address processor design, router and synchroniser

design, I/O port design, etc., but not topology. We are concentrating on the mesh

since this is a cost-e�ectively scalable topology, both with current technology and

with future technology presumably operating at the physical limits [3] [14].

Work so far has addressed the structural mapping of the H-PRAM to a mesh

together with preliminary simulations of the resulting routing patterns [15, 4, 5]. In

order to give a small taste of the strategy, we outline here a mesh indexing scheme

which allows a very simple dynamic mapping. Indeed, it is being used because of the

simplicity.

The H-PRAM model does not impose any constraints on the number and sizes

of the sub-PRAMs created in a partition step other than those imposed by the

available number of processors. Thus, we need to be able to partition into any number

of arbitrarily-sized sub-meshes, and to do this dynamically at run-time. Though

the sub-meshes will not generally be square, each p-processor sub-mesh must have

diameter O(

p

p), and permit PRAM simulation on it in O(

p

p) mesh routing steps

per PRAM step. The Peano indexing scheme [20] allows us to meet these criteria.

The Peano scheme indexes a mesh such that the processors in block A of Figure 1

get smaller indices than those in block B, further than those in C, and D (of course,

6

B C

A D

Figure 1: Peano scheme: processor indexing

Figure 2: Peano scheme: recursive pattern

symmetric variants are equivalent). The scheme is nested recursively according to

the pattern in Figure 2 such that an 8 � 8 mesh is indexed as follows:

22 23 26 27 38 39 42 43

21 24 25 28 37 40 41 44

20 19 30 29 36 35 46 45

17 18 31 32 33 34 47 48

16 13 12 11 54 53 52 49

15 14 9 10 55 56 51 50

2 3 8 7 58 57 62 63

1 4 5 6 59 60 61 64

The trick with the scheme is that any two nodes whose indices di�er by d are at

Manhattan distance O(

p

d) in the array. For further details see [4, 5, 15], in which we

tie down the constant factor to at most

3

2

in theory, and demonstrate very encouraging

results in practice. We are also working to tackle the problem of implementing the

dynamically evolving patters of synchronization within sub-groups of the processors

implied by data dependent conditionals.

5 Experimental Framework

The primary goal is to demonstrate that it is possible to support an H-PRAM inspired

programming model on a physical mesh architecture in a way that is cost-e�ectively

scalable, in contrast with other models of a similar level of abstraction (eg PRAM).

Thus we are interested in the comparing the results of changes in the characteristics

of our system (e.g. architectural details, hardware mechanisms vs. software mech-

anisms), as opposed to comparison with others. Limited absolute comparison with

7

either straight PRAM (using the same implementation) or some benchmark straight-

forward program on the same hardware may be desirable, but is really a side-issue.

It is our intention to produce results by simulation rather than analysis of the

type performed in [17]. This has the key advantage of enabling the introduction

of non-oblivious algorithms, which exploit the full power of the H-PRAM's dynamic

exibility. Clearly computational resources will limit the extent to which full, detailed

simulation at a low level can be performed, and so careful abstraction will be required.

We will investigate scalability of each architectural structure by plotting perform-

ance versus scale curves, and will repeat this across a range of architectures (all mesh

connected, but with varying degrees of hardware/software support for system mech-

anisms, e.g. routing, synchronising, etc.) to quantify `cost-e�ectiveness'. We can

then produce `cost versus scalability' plots.

5.1 The Simulation Environment - HASE

HASE [19] addresses the fourth Purdue Grand Challenge. It allows for the rapid de-

velopment and exploration of computer architectures at multiple levels of abstraction,

encompassing both hardware and software.

Using HASE, designers can create and explore architectural designs at di�erent

levels of abstraction through a graphical interface based on X-Windows/Motif (�g-

ure 3 shows an example of a design window). Designs can be simulated in such a

way that di�erent parts of the architecture can be simulated at di�erent levels of

abstraction. This involves the creation of simulation code appropriate to each level.

Thus in a multiprocessor, some processors could run code held in their (simulated)

memory, while in others the code could be abstracted to computation and communic-

ation (send and receive) sections; simple timings can then be used to represent each

computation section, with communication events following the appropriate protocol.

The components of a computer system lend themselves naturally to being mod-

elled as objects, so HASE has been implemented in an object oriented language.

Furthermore, many complex systems of interacting components can be more easily

understood as a picture rather than as words, and in a computer architecture the

dynamic behaviour of systems is frequently of interest. Thus the graphical interface

allows users to view the results of simulation runs though animation of the design

window.

HASE includes a design editor and object libraries appropriate to each level of

abstraction in the hierarchy, plus instrumentation facilities to assist in the validation

of the model. Thus the output from a simulation run can be used to animate the

design drawings, or can be used to investigate the performance metrics of hardware

architectures.

The HASE project has pioneered the use of object-oriented database technology in

discrete-event simulation [12]; HASE uses an object oriented database management

system (ObjectStore) to make the design objects and the entity library persistent. For

each architecture model HASE allows many experiments with varying parameters to

be performed. The database facilities provided through HASE manage not only the

8

Figure 3: A HASE Design Window

results of each experiment, but also their relationship to the state of the architecture

model that produced these results, including all input and output parameters and

their values during the experiment. Work is in progress to provide model exploitation

facilities based on [18].

HASE is being used not only as part of the ALAMO project, but also in a number

of other architecture projects, including an evaluation of multiprocessor interconnec-

tion networks, parallel performance prediction, a simulation of the Stanford DASH

architecture, and an on-line teaching system for computer architecture. Use of the

client/server architecture of the database system to create a distributed simulation

environment for HASE is also being investigated [13].

In the ALAMO project HASE will be used to design and simulate architectures

to support the H-PRAM model, with the goal of determining the properties of cost-

9

e�ective (cheapest possible) systems based on scalable architectures and e�cient

support of the H-PRAM model.

5.2 Experimental Method

The target architectural components are being created, tested and installed in the

HASE library. We expect to investigate a variety of parallel system con�gurations,

so we will generate a variety of interconnection components as well as processors

and memory modules. The intention in HASE is to allow di�erent components of

a system to be simulated at di�erent levels of abstraction and to be able to replace

detailed sub-models with aggregated equivalents, in order to be able to trade o�

simulation time against the level of measurement information required.

This last simpli�cation will also require great care and pre-analysis of behaviour.

How far details of the behaviour of sub-models can be ignored when aggregating is,

in general, di�cult to decide.

From the algorithmic viewpoint, the key characteristics of an H-PRAM compu-

tation are its evolving group structure, and the number and extent of the implied

synchronisations and data re-organisations. One reduction in the amount of detailed

simulation required within HASE has been achieved by building a separate H-FORK

emulator which, given a program and data set, will return a trace of the abstract

evolution of the corresponding H-PRAM computation, annotated with information

about synchronisations, regroupings and so on. These traces will then drive HASE

computations, whose concern will be to quantify the e�ect of emulating the given

H-PRAM structure on a range of target architectures, but without explicitly having

to work through the detailed execution of instructions within the H-FORK processes.

The bene�ts of this approach can be increased further by deriving abstract work-

loads for the architectures, where stochastic models of workload replace explicit

traces. Such an abstraction requires careful analysis of more detailed behaviour

to identify pathological sequences of instructions leading to exceptional behaviour

not preserved in averaging.

Acknowledgements

The ALAMO project is supported by the UK Engineering and Physical Sciences

Research Council.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir, \On Communication Latency in

PRAM Computations", ACM Symposium on Parallel Algorithms and Architec-

tures, pp. 11-21, 1989

[2] A. Aggarwal, A. K. Chandra, and M. Snir, \Communication Complexity of

PRAMs", Theoretical Computer Science, Vol. 71, pp. 3-28, 1990.

10

[3] G. Bilardi, F. P. Preparata,\Horizons of Parallel Computation". In \Future

Tendencies in Computer Science, Control and Applied Mathematics. Int. Conf.

on the Occasion of the 25th Anniversary of INRIA", A. Bensoussan, J-P. Verjus

(eds.), LNCS 653, pp. 155-174, 1992.

[4] Chochia, G., Cole, M., and Heywood, T., \Implementing the Hierarchical PRAM

on the 2D Mesh: Analyses and Experiments", Proc. of the Seventh IEEE Sym-

posium on Parallel and Distributed Processing, San Antonio, 1995.

[5] Chochia, G., Cole, M., and Heywood, T., \Lower Bounds on Average Time for

Random Destination Mesh Routing and Their Utility as Performance Predictors

for PRAM Simulation", University of Edinburgh, Computer Systems Group,

ECS-CSG-18-95, 1995.

[6] M.I. Cole \Algorithmic Skeletons: Structured Management of Parallel Compu-

tation", Pitman & MIT Press, 1989.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.

Subramanian, T. von Eicken, \LogP: Towards a Realistic Model of Parallel

Computation", Proc. 4th ACM SIGPLAN Symp. on Principles and Practice of

Parallel Programming, May 1993

[8] J. Darlington et al., \Parallel Skeletons for Structured Composition", Proceed-

ings of Principles and Practice of Parallel Programming '95.

[9] P. Gibbons, \Models of Parallel Computation: An Overview", DIMACS Tech.

Report 93-87, pp. 8-10 and 59-65, 1993.

[10] P. Gibbons, Y. Matias, and V. Ramachandran, \The QRQW PRAM: Account-

ing for Contention in Parallel Algorithms", Proc. 5th ACM-SIAM Symp. on

Discrete Algorithms, Jan. 1994.

[11] T. Hagerup, A. Schmitt & H. Seidl, \FORK: A High-level Language for

PRAMs", Future Generation Computer Systems, vol. 8, pp. 379-393, 1992.

[12] P.E. Heywood, P. Thanisch and R. Pooley \Object-Oriented Database Techno-

logy for Simulation Environments", Proceedings UKSS '95, Vol 2, North Ber-

wick, April 1995.

[13] P.E. Heywood, G. MacKechnie, R.J. Pooley and P. Thanisch, \Object Oriented

Database Technology Applied to Distributed Simulation", Proc. EUROSIM

Congress '95, Vienna, Elsevier, 1995.

[14] T. Heywood and C. Leopold, \Models of Parallelism". In Abstract Machine

Models for Highly Parallel Computers, J.R. Davy and P.M. Dew (eds), Oxford

Univ. Press, 1995.

11

[15] T.Heywood and C. Leopold, \Dynamic Randomized Simulation of Hierarchical

PRAMs on Meshes", Aizu Int. Symp. on Parallel Algorithm/Architecture Syn-

thesis, March 1995.

[16] T. Heywood & S. Ranka \A Practical Hierarchical Model of Parallel Computa-

tion I: The Model", Journal Parallel and Distributed Computing 16, pp. 212-232,

1992.

[17] T. Heywood & S. Ranka \A Practical Hierarchical Model of Parallel Compu-

tation II: Binary Tree and FFT Algorithms, Journal Parallel and Distributed

Computing 16, pp. 233-249, 1992.

[18] J. E. Hillston, \A Tool to Enhance Model Exploration", Proc. Sixth Interna-

tional Conference on Modelling Techniques and Tools for Computer Perform-

ance Evaluation, Edinburgh, 1992.

[19] R.N. Ibbett, P.E. Heywood and F.W. Howell \HASE: A Flexible Toolset for

Computer Architects, The Computer Journal, to appear.

[20] C. Kaklamanis & G. Persiano, \Branch-and-Bound and Backtrack Search on

Mesh-Connected Architectures", Proc. 4th ACM SPAA, 1990.

[21] C.W. Kessler & H. Seidl, \Fork95 Language and Compiler for the SB-PRAM",

5th International Workshop on Compilers for Parallel Computers, 1995.

[22] R.J. Pooley, \The Integrated Modelling Support Environment, a new generation

of performance modelling tools", Computer Performance Evaluation Modelling

Techniques and Tools, Elsevier Science Publishers, Amsterdam, 1991.

[23] H.J. Siegel, S. Abraham, et al \Report of the Purdue Workshop on Grand Chal-

lenges in Computer Architecture for the Support of High Performance Comput-

ing", Journal Parallel and Distributed Computing, 16, pp. 199-211, 1992.

[24] P. de la Torre, C. P. Kruskal,\Towards a Single Model of E�cient Computation

in Real Parallel Machines", Proc. Parallel Architectures and Languages Europe

PARLE, LNCS, pp.6-24, 1991.

[25] L. G. Valiant,\A Bridging Model for Parallel Computation", Communications

of the ACM, Vol. 33, No. 8, pp. 104-111, 1990

12

