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Abstract

Call admission in ATM networks involves a trade-o� between ensuring

an adequate quality of service to users and exploiting the scale e�cien-

cies of statistical multiplexing. Achieving a good trade-o� requires some

knowledge of the source tra�c. Its e�ective bandwidth has been proposed

as a measure that captures characteristics which are relevant to quality of

service provisioning. The e�ective bandwidth of a source is not known a

priori , but needs to be estimated from an observation of its output. We

show that direct estimators that have been proposed for this purpose are

biased when the source tra�c is autocorrelated. By explicitly computing

the bias for auto-regressive and Markov sources, we devise a bias correction

scheme that does not require knowledge of the model parameters. This is

achieved by exploiting a scaling property of the bias that is insensitive to

model parameters, and that has the same form for both auto-regressive

and Markov sources. This leads us to conjecture that the scaling prop-

erty may be valid in greater generality and can be used to obtain unbiased

e�ective bandwidth estimates for real tra�c. Use of our bias correction

technique enables us to obtain accurate estimates of e�ective bandwidths

using relatively short block lengths. The latter is important both because

the variance of the estimator increases with the block length, and because

real tra�c may well be non-stationary, requiring that estimates be obtained

from short data records.
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1 Introduction

The tra�c in an ATM (asynchronous transfer mode) network is packaged into

cells of �xed size (53 bytes) and carried over links between switches in the network.

Tra�c sources are bursty and so for periods of time cells may arrive at a switch

faster than they can be switched to output links. Switches are bu�ered to cope

with overow tra�c but cells will be lost when bu�ers are full. Cells arriving

when there is a large backlog in the bu�er will su�er large delays. The network

limits call acceptance in order to ensure an adequate quality of service (QoS),

speci�ed as a bound on the probability of cell loss, or of cell delays exceeding a

threshold. A bound of 10

�8

on the cell loss probability is a typical requirement. In

order to achieve e�cient network utilization while maintaining QoS requirements,

knowledge of tra�c characteristics is essential.

Traditional approaches to tra�c characterisation have relied on modelling.

A statistical model of the source is proposed, whose parameters are estimated

from observations of its output. The estimated parameters are used to compute

cell loss probabilities which form the basis of call admission decisions. Such an

approach su�ers from several shortcomings. Automating model selection is di�-

cult. The number of model parameters needed is usually large, which increases

the computational cost and reduces the statistical accuracy of the estimates. The

e�ect of errors in parameter estimates on computed cell loss probability is not

easy to see or to incorporate in the estimation procedure.

A number of recent papers [1, 5, 8] show that, in networks with large bu�er

capacities, cell loss and delay probabilities depend only on the large deviations

rate function of the tra�c. The detailed description of the tra�c obtained by

estimating a model of it contains a great deal of information which is superuos

to QoS provisioning. In view of this, Courcoubetis et al. [2] and Du�eld et al.

[7] suggest characterising the large deviations behaviour of the tra�c, which can

be done without reference to a speci�c source model and does not su�er from

the drawbacks mentioned above. The approach in [2, 7] is to directly estimate

either the large deviations rate function of the tra�c stream or a related quantity,

its e�ective bandwidth. Variants of this quantity were introduced by Guerin et

al. [9], Hui [10], Kelly [11] and de Veciana and Walrand [5] as a measure of the

resource requirements of a source.

In the next section we briey review the e�ective bandwidth concept and its

relevance to call admission control, and discuss some of the problems in estimat-

ing it from observed tra�c. In Section 3, we show that the e�ective bandwidth

estimator proposed in [7] is biased for auto-regressive (AR) sources. By obtain-

ing an expression for the bias, we suggest a procedure to correct for it. These

results are extended to a Markovian source model in Section 4. It needs to be

emphasized that our bias correction method does not require estimation of the

model parameters; it exploits scaling properties that are common to all models

in a certain class. Our results imply that both AR and Markov sources fall into
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this class; what other sources do remains an open question. We describe some

simulation results in Section 5 and conclude in Section 6.

2 Estimating e�ective bandwidths

2.1 E�ective bandwidths

An output bu�er in an ATM switch can be modeled as a single server queue

in discrete time, with stationary ergodic arrivals fX

n

g and constant service rate

C. Suppose for now that the bu�er capacity is in�nite. For stability we require

that EX

1

< C, i.e., the service rate exceeds the mean arrival rate. The limiting

cumulant generating function (cgf) of the input tra�c stream is de�ned as

�(�) = lim

n!1

�

n

(�); where �

n

(�) =

1

n

logE [exp �(X

1

+ : : :+X

n

)] : (1)

We assume that this limit exists as an extended real number for all � 2 IR, and

satis�es the assumptions of the G�artner-Ellis theorem, [4]. This assumption is not

very restrictive and is satis�ed if, for instance, the tra�c is an ARMA process, or

a Poisson or uid process modulated by a �nite state Markov chain. Then, it was

shown in [5] that the tail of the queue length distribution satis�es the following

condition.

lim

B!1

1

B

logP(Q � B) < �� () �(�)

�

=

�(�)

�

< c: (2)

Here, Q denotes a random variable with the stationary queue length distribution,

and �(�) is called the e�ective bandwidth function. If the actual bu�er capacity,

B, is large compared to the number of cells arriving in one time slot, then the

cell loss rate is well approximated by P(Q > B), the probability that the queue

size in the corresponding in�nite bu�er queue exceeds B.

For a given bu�er size B, and a desired bound p on the cell loss probability,

let � = �(log p)=B. If we accept an additional call only when the e�ective

bandwidth, �(�), of the resulting tra�c stream is less than the service capacity

C, then (2) suggests that if B is large, the cell loss rate won't exceed p. In order

to implement this call admission policy, we need to estimate �(�), or equivalently,

�(�), from observations of the arrival process fX

n

g.

2.2 Estimation

Suppose we have a record fX

1

; : : : ;X

N

g of the arrival process over N time slots,

for some large N . Fix n;m 2 IN , and de�ne K = bN=m� 1c, where bxc denotes

the largest integer less than or equal to x. Let

S

k

=

km+n

X

j=km+1

X

j

; 0 � k � K; (3)
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denote the total tra�c arriving in the k

th

block, where the blocks are of length n

and the total number of blocks is K. Adjacent blocks overlap in n�m time slots

if m < n and are non-overlapping if m � n. The S

k

are identically distributed

by stationarity, but not necessarily independent. De�ne

^

M

n;m

(�) =

1

K

K

X

k=1

e

�S

k

;

^

�

n;m

(�) =

1

n

log

^

M

n;m

(�): (4)

^

M

n;m

(�) is an unbiased estimator of the moment generating function of the total

arrivals in a block, to which it converges, as N !1, by the strong law of large

numbers. Note that, for �xed n, the bias of

^

�

n;m

(�) as an estimator of �(�)

may not go to zero as N !1. However,

^

�

n;m

(�) is an asymptotically unbiased

estimator of �

n

(�), de�ned in (1). So, by (1), the bias in the estimate of �(�) can

be made arbitrarily small by choosing n su�ciently large. With this justi�cation,

^

�

n;m

(�), for su�ciently large n, has been proposed as an estimator for �(�) by

Crosby et al. [3] and Du�eld et al. [7].

In practice, however, it is hard to know when n is large enough. Furthermore,

it can be shown that the variance of the estimator increases rapidly with n, so

the use of large values of n is undesirable. Such is also the case if the tra�c

statistics are not stationary but vary slowly over time, as may well be true of

real tra�c. Du�eld et al. [7] suggest choosing n to achieve a trade-o� between

bias and variance. Apart from the di�culty of obtaining estimates of the bias

and variance, we feel that this does not fully exploit the information available in

the tra�c data. Instead, we derive an explicit relationship between the bias and

the block length n, whose form does not depend on the model parameters. Using

this, we show how estimates

^

�

n;m

(�), obtained for a number of di�erent values

of n, can be combined to yield an unbiased estimate. This is done in the context

of an AR tra�c model in the next section, and of a Markov model in Section 4.

We also obtain estimates of the variance as a function of m and n.

3 Autoregressive sources

3.1 Bias of the estimator

Let the tra�c be modeled as an AR(M) process, i.e.,

X

n

=

M

X

i=1

a

i

X

n�i

+ U

n

; U

n

i.i.d. � N(�; �

2

); (5)

for given constants, a

i

, and a given innovations process fU

n

g, which is white

Gaussian with mean � and variance �

2

. We assume that the AR process is

stable, i.e., that all roots of the characteristic equation 1 �

P

M

k=1

a

k

z

�k

= 0 lie
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within the unit circle in the complex plane. Fix a block length n and a shift m,

and let S

k

be as in (3), for all k 2 ZZ . De�ne

H

1

(!) =

M

X

k=1

a

k

e

i!k

; H

2

(!) =

n�1

X

k=0

e

i!k

: (6)

Then,

H

2

(!) = exp

"

i!(n� 1)

2

#

sin(n!=2)

sin(!=2)

: (7)

Let U(!) =

P

1

k=�1

U

k

e

i!k

denote the Fourier transform of the innovations pro-

cess U

k

. Similarly, de�ne X(!) and S(!) to be the Fourier transforms of the

sequences X

k

and S

k

respectively. H

1

(�), H

2

(�) are deterministic whereas U(�),

X(�) and S(�) are random functions; the in�nite sums de�ning them converge

almost surely. We have

S(!) = H

2

(!)X(!) = H

1

(!)H

2

(!)U(!): (8)

De�ne H(!) = H

1

(!)H

2

(!). Observe that S

k

and X

k

, being linear combinations

of Gaussian random variables U

k

, are Gaussian. Hence,

�

n

(�)

�

=

1

n

logE [exp(�S

0

)] =

1

n

h

�E(S

0

) +

�

2

2

Var(S

0

)

i

: (9)

But S

0

= (1=2�)

R

�

��

S(!)d(!) and so, by (8),

E[S

0

] =

1

2�

Z

�

��

H(!)E[U(!)]d!:

Since U(!) is the Fourier transform of U

k

, which are i.i.d. � N(�; �

2

), we have

E[U(!)] = 2���(!), where �(�) denotes the Dirac delta function. Hence,

E[S

0

] = �H(0) = �nH

1

(0); (10)

where the second equality is because H

2

(0) = n. Let S

U

(!), S

S

(!) denote the

power spectral densities of fU

k

g and fS

k

g respectively. Then, S

U

(!) � �

2

for all

! 2 [��; �] and S

S

(!) = H(!)H(�!)S

U

(!). Hence, by Parseval's theorem,

Var(S

0

) =

1

2�

Z

�

��

S

S

(!)d!

=

�

2

2�

Z

�

��

H(!)H(�!)d!

=

�

2

2�

Z

�

��

H

1

(!)H

1

(�!)

sin

2

(n!=2)

sin

2

(!=2)

d!

= n�

2

H

2

1

(0) +

�

2

2�

Z

�

��

H

1

(!)H

1

(�!)�H

2

1

(0)

sin

2

(!=2)

h

1� cos(nw)

i

d!;
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where the third equality is obtained by substituting H(!) = H

1

(!)H

2

(!), and

the last equality is because

R

�

��

[sin

2

(n!=2)= sin

2

(!=2)]d! = 2�n. Observe from

(6) that H

1

(!) is a C

1

function of ! on [��; �], i.e., it has derivatives of all

orders. Hence, so is [H

1

(!)H

1

(�!) � H

2

1

(0)]= sin

2

(!=2). This is obvious when

! 6= 0; when ! = 0, it can be seen by expanding H

1

(!) in a Taylor series around

0. Therefore, the integral of this function over [��; �] is some constant, c, that

does not depend on the block length n. In addition, over any one period of

cos(n!), it varies by no more than 2�L=n, where

L = max

��<!<�

�

�

�

�

�

d

d!

(

H

1

(!)H

1

(�!)�H

2

1

(0)

sin

2

(!=2)

)

�

�

�

�

�

is �nite. Therefore, we have

�

�

�

�

�

Z

�

��

H

1

(!)H

1

(�!)�H

2

1

(0)

sin

2

(!=2)

cos(n!)d!

�

�

�

�

�

�

�

2

L

n

:

Combining the above results, we get

Var(S

0

) = n�

2

H

2

1

(0) + c+O

�

1

n

�

; (11)

for a constant c that does not depend on n. Therefore, by (9), (10) and (11),

�

n

(�) = ��H

1

(0) +

�

2

�

2

2

H

2

1

(0) +

c

n

+O(

1

n

2

): (12)

Letting n!1 above, we have by (1) that

�(�) = ��H

1

(0) +

�

2

�

2

2

H

2

1

(0): (13)

Since

^

�

n;m

(�) is an asymptotically unbiased estimator of �

n

(�), we have from

(12), 13) that its asymptotic bias as an estimator of �(�) is c=n + O(1=n

2

).

Ignoring the last term for moderately large n, the asymptotic bias is a constant

times 1=n; this form does not depend on the model parameters though the value

of the constant does. Based on this result, we suggest the following improved

estimator. Obtain

^

�

n;m

(�) for a range of values of n, plot them against 1=n

and �nd a linear least squares �t. The intercept of this line at 1=n = 0 gives an

estimate

^

�(�), which the above analysis suggests will be unbiased. An alternative

approach is possible: observe from (12) that if we �t a straight line to a plot of

n

^

�

n;m

(�) versus n, it should have intercept approximately equal to c and slope

approximately equal to �(�). It remains to be seen which of these estimators

performs better; simulation studies can throw light on the question.

The estimator suggested above has a number of advantages. Because bias is

corrected for, we can use moderately small values of n, for which the bias is large.

6



It can be shown that the variance of the estimator increases exponentially in n;

therefore, it is desirable not to use large n. In addition, real tra�c may well be

non-stationary, in which case estimates must be obtained from data records that

are su�ciently short that the source can be thought of as being stationary over

that time. To do this, it is essential that we be able to work with small values of

n.

3.2 Variance of the estimator

Observe from (4) that

E

h

^

M

2

n;m

(�)

i

=

1

K

2

K

X

i;j=1

E

h

e

�(S

i

+S

j

)

i

;

for S

k

de�ned in (3). Using the stationarity of the source, we can rewrite the

above as

E

h

^

M

2

n;m

(�)

i

=

1

K

2

K

X

k=�K

(K � jkj)E

h

e

�(S

0

+S

k

)

i

:

Let Y

k

(n) = S

n

+ S

k+n

and note that the Y

k

(n) are Gaussian since the S

n

are.

Therefore

E

h

^

M

2

n;m

(�)

i

=

1

K

2

K

X

k=�K

(K � jkj) exp

"

�EY

k

(0) +

�

2

2

Var(Y

k

(0))

#

: (14)

Now, E[Y

k

(0)] = 2E[S

0

] for all k, by stationarity. Also,

E[

^

M

n;m

(�)] = E[exp(�S

0

)] = exp

 

�E[S

0

] +

�

2

2

Var(S

0

)

!

:

Noting that (1=K

2

)

P

k

k=�K

�

K � jkj

�

= 1, we see from (14) that

Var(

^

M

n;m

(�)) = e

2�ES

0

1

K

2

K

X

k=�K

(K � jkj)

h

e

�

2

Var(Y

k

(0))=2

� e

�

2

Var(S

0

)

i

;

and so,

cv

2

(

^

M

n;m

(�)) =

1

K

2

K

X

k=�K

(K � jkj)

h

e

�

2

(Var(Y

k

(0))�2Var(S

0

))=2

� 1

i

; (15)

where, for a random variable X, cv

2

(X) = Var(X)=(EX)

2

denotes its squared

coe�cent of variation. We shall now evaluate the right hand side of (15). Fix k

and de�ne S

Y

(!) to be the power spectral density of the sequence Y

k

(n). Then
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S

Y

(!) = H

3

(!)H

3

(�!)S

S

(!), where H

3

(!) = 1+exp(�i!km) and m is the shift

between adjacent blocks in the sum. Hence, by Parseval's theorem,

Var(Y

k

(0))� 2Var(S

0

)

=

1

2�

Z

�

��

[S

Y

(!)� 2S

S

(!)] d!

=

�

2

�

Z

�

��

H

1

(!)H

1

(�!)

sin

2

(n!=2)

sin

2

(!=2)

cos(mk!)d!

=

�

2

�

Z

�

��

h

H

2

1

(0) +O(!

2

)

i

sin

2

(n!=2)

sin

2

(!=2)

cos(mk!)d!:

Neglecting the O(!

2

) term and using the fact that sin

2

(n!=2)= sin

2

(!=2) = (1 +

: : :+ exp(i!n))(1 + : : :+ exp(�i!n)), we can rewrite the above as:

Var(Y

k

(0))� 2Var(S

0

) = 2�

2

H

2

1

(0)(n � jkjm)

+

; (16)

where x

+

denotes maxfx; 0g. For notational convenience, we de�ne the quantity

 = �

2

�

2

H

2

1

(0). Recall that K was de�ned to be bN=m�1c, so K � N=m. Using

this, we get on substituting (16) in (15) and simplifying that

cv

2

(

^

M

n;m

(�)) =

m(1 + e

�m

)

1� e

�m

e

n

� 1

N

+

m

1� e

�m

2n

N

�

2m

2

e

�m

(1� e

�m

)

2

e

n

� 1

N

2

�

2n

N

+

n

2

N

2

: (17)

The last two terms above don't depend on m. It can be veri�ed by di�erentiation

that the second term is increasing and the third term is decreasing for all positive

m, whereas the �rst term reaches its minimum at the solution of m = 1� e

�m

.

Let m

�

denote the solution. Then m

�

= c= for some constant c 2 [0; 1], and so it

does not depend on n or N . It is clear that the minimum over m of cv

2

(

^

M

n;m

(�))

is achieved at some m < m

�

< 1=. It is not possible to �nd the exact value of

m that minimizes the variance of the estimator without knowledge of the model

parameters. However, the above calculations imply that this value is small, and

that it does not grow with n or N . We feel that the choice m = 1 is reasonable

in practice. The more important point to note is that the squared coe�cient of

variation of the estimator depends on n as e

n

� 1, for �xed m and N . It can

be shown that the variance of

^

�

n;m

, de�ned in (4), is approximately the same

as cv

2

(

^

M

n;m

). Therefore, this variance grows rapidly with the block length n,

making the use of large values of n undesirable.

4 Markov-modulated sources

Let f�

0

; �

1

; : : :g be a Markov chain on a �nite state space f1; : : : ;Mg. The tra�c

process fX

n

g is speci�ed by the vector (�

1

; : : : ; �

M

); if �

n

= j, then X

n

= �

j

.

8



Let P be the transition probability matrix of the Markov chain, assumed to be

irreducible and aperiodic, and let � denote its unique stationary distribution.

Given � > 0, de�ne Q = P diag (exp ��), where diag (exp ��) denotes the matrix

whose j

th

diagonal entry is exp(��

j

), and whose o�-diagonal entries are zero.

De�ne f

i

(n) = E[exp �(X

1

+ : : :+X

n

)j�

0

= i]. Then, by the Markov property,

f

i

(n) =

M

X

j=1

p

ij

e

�j

f

j

(n� 1); i.e., f(n) = Qf(n� 1): (18)

Combined with the fact that f(0) = 1, the vector of ones, the above implies that

in stationarity,

E

h

e

�(X

1

+:::+X

n

)

i

= �Q

n

1: (19)

De�ne � to be the spectral radius of Q. Since Q is primitive, i.e., Q � 0

and Q

k

> 0 for some k, we have by the Perron-Frobenius theorem (see [12] for

example) that � is an eigenvalue of Q and that all other eigenvalues are strictly

smaller than � in absolute value. Writing Q = S

�1

JS, where J is in Jordan form,

it is clear from (19) that

E

h

e

�(X

1

+:::+X

n

)

i

= c�

n

+

m

X

j=2

r

j

�1

X

k=0

c

jk

�

n�k

j

; (20)

for some constants c 6= 0, c

jk

. Let �

2

be the second largest, in absolute value, of

the eigenvalues of Q. Then j�

2

j < �, and it follows from (20) that

1

n

logE

h

e

�(X

1

+:::+X

n

)

i

= log �+

log c

n

+ o

�

�

n

n

�

; (21)

for any � > j�

2

j=�. Ignoring the last term above for moderately large n, we have

from (1) that

�(�) = log �; �

n

(�) = log � +

c

n

; (22)

for some �nite constant c. Since

^

�

n;m

(�), de�ned in (4), is an asymptotically un-

biased estimator of �

n

(�), it follows from the above that its bias as an estimator

of �(�) is approximately a constant times 1=n. Note that the this form does not

depend on the model parameters, even though the exact value of the constant c

does. Also, the form is identical to what we obtained in (12), (13) for autore-

gressive sources. Therefore, the same techniques for bias correction that were

developed in the autoregressive setting are also applicable to Markov modulated

sources.
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5 Simulation results

5.1 Autoregressive source

We simulated tra�c from the AR(3) model

X

n

= 1:4X

n�1

� 0:73X

n�2

+ 0:2X

n�3

+ U

n

;

where U

n

is a white noise process with mean 0:52 and variance 0:1566. These

values were chosen so that the resulting AR process has mean 4 and variance 1.

The AR process has a real pole at 0:8 and a pair of complex poles at 0:3� 0:4i.

The results reported below are based on a record of 10,000 observations of the

above process taken after it had reached stationarity.

Figure 1 shows estimates of the cumulant generating function, �

n

(�), cor-

responding to a range of blocklengths n between 10 and 50, for � = 0:10, 0:15,

0:20 and 0:25. These estimates were obtained using the procedure outlined in

Section 2.2. The dotted horizontal line in each plot depicts the true value of

�(�), calculated using (13). Observe that the estimated values of the cumulant

generating function (cgf), and hence of the e�ective bandwidth, underestimate

the true value. The error grows larger as the blocklength increases, and also

as the parameter � increases. If we take the value corresponding to the largest

blocklength in the experiment, then the underestimate of the cgf ranges from

2:2% for � = 0:1 to 9:6% for � = 0:25. A more conservative approach would be to

use the largest value of the estimated cgf, over all choices of blocklengths. This

procedure yields estimates that fall short of the true value by 2% when � = 0:1

and by 5:8% when � = 0:25.

It may appear that these underestimates are small. Nevertheless, they are

signi�cant for the following reason. The aim is to implement a call admission

policy which can ensure a guaranteed quality of service in the ATM network.

This guarantee usually takes the form of a bound on the cell loss probability,

a typical value of the bound being around 10

�8

. Around such low values, the

actual cell loss probabilities are very sensitive to the service rate. Therefore, even

a small underestimate of the e�ective bandwidth can result in a large degradation

in the quality of service. On the other hand, small overestimates are harmless,

resulting only in a small loss of e�ciency in network utilization.

Observe from Figure 1 that the cgf estimates decrease progressively with in-

creasing blocklength. The reason for this is that the cgf estimates are sensitive

to the tail behaviour of the corresponding random variables. Given a �nite data

sample, we are less likely to observe large deviations from the mean in long blocks

than in short ones. Since it is such large deviations that provide the main con-

tribution to the cgf estimate, it is no surprise that the estimates decrease with

blocklength. This observation points up a de�ciency of the traditional approach

to estimation, which is based on choosing a fairly large blocklength, in keeping

with the asymptotic nature of the formula, (1).

10



We now turn to the estimates obtained using our proposed approach to bias

correction, see Figure 2. Here, we have plotted the cgf estimates obtained earlier

against 1=n, where n denotes the blocklength. Keeping only those values of n that

are less than the value at which the maximum estimate obtains, we �t a straight

line to the corresponding estimates and extrapolate it to 1=n = 0. The intercept

is our corrected estimate of the cgf. The true value of the cgf is again shown by a

dotted horizontal line. It is clear from the �gures that the bias correction yields

a substantial reduction in the estimation error. For the corrected cgf values, the

underestimates range from 0:7% for � = 0:1 to 2:2% for � = 0:25. Our �ndings

are summarised in Table 5.1 below. We show for each value of � the true cgf,

the estimate corresponding to the largest blocklength, the conservative estimate

which is the largest over all blocklengths, and �nally our corrected estimate,

denoted �

�

(�). For each estimate, the percentage by which it underestimates the

true value is shown in brackets.

� �(�)

^

�

48

(�) max

n

^

�

n

(�) �

�

(�)

0.10 0.446 0.436 (2.2) 0.437 (2.0) 0.443 (0.7)

0.15 0.704 0.673 (4.4) 0.681 (3.3) 0.697 (1.0)

0.20 0.985 0.917 (6.9) 0.940 (4.6) 0.971 (1.4)

0.25 1.290 1.166 (9.6) 1.215 (5.8) 1.262 (2.2)

Table 1. Comparison of di�erent estimators of the cgf.

5.2 Markov-modulated source

Tra�c was simulated by multiplexing the output of ten independent Markovian

On-O� sources. Each source produces one unit of output when it is On and

none when it is O�. The transition probability from O� to On is 0:1, and that

from On to O� is 0:2 in each time slot, independent of the past, and sources

remain in their current state with the residual probability. Consequently, in

stationarity, each source is On with probability 1=3 and O� with probability 2=3.

The aggregate tra�c can be modelled using a Markov chain with eleven states,

the states corresponding to the number of sources that are On. It is however
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simpler to compute the e�ective bandwidth of the aggregate tra�c by making

use of the additivity of the e�ective bandwidth for independent sources. Using

this fact and the results of Section 4, we have calculated �(�) for � = 0:10, 0:15,

0:20 and 0:25. The calculated values are shown in Table 5.2, as are estimates

based on a record of 10,000 observations of the simulated aggregate tra�c.

Figure 3 shows estimates of the cumulant generating function, �

n

(�), cor-

responding to a range of blocklengths n between 10 and 50, for � = 0:10, 0:15,

0:20 and 0:25. These estimates were obtained using the procedure outlined in

Section 2.2. The dotted horizontal line in each plot depicts the true value of

�(�), calculated using (22). Observe that the estimated values of the cumulant

generating function (cgf), and hence of the e�ective bandwidth, underestimate

the true value. The estimates obtained using our proposed method for bias cor-

rection are shown in Figure 2. Here, we have plotted the cgf estimates obtained

earlier against 1=n, where n denotes the blocklength. Using only the ten smallest

blocklengths, we �t a straight line to the corresponding estimates and extrapolate

it to 1=n = 0. The intercept is our corrected estimate of the cgf. The true value

of the cgf is again shown by a dotted horizontal line.

Our �ndings are summarised in Table 5.2 below. We show for each value

of � the true cgf, the estimate corresponding to the largest blocklength, the

conservative estimate which is the largest over all blocklengths, and �nally our

corrected estimate, denoted �

�

(�). For each estimate, the percentage by which it

underestimates the true value is shown in brackets. It is clear from these �gures

that bias correction achieves considerable improvement over just using some large

block length. However, in this example at least, the method of using the most

conservative estimate over all block lengths works almost equally well.

� �(�)

^

�

48

(�) max

n

^

�

n

(�) �

�

(�)

0.10 0.4014 0.4017(-0.07) 0.4017(-0.07) 0.4008 (0.15)

0.15 0.6568 0.6396 (2.6) 0.6447 (1.8) 0.6510 (0.9)

0.20 0.9489 0.8841 (6.8) 0.9143 (3.7) 0.9188 (3.2)

0.25 1.275 1.132 (11.2) 1.196 (6.2) 1.190 (6.7)

Table 2. Comparison of di�erent estimators of the cgf.
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6 Conclusions

We studied the estimation of e�ective bandwidths for autoregressive and Markov

models of the source tra�c. These are popular models for variable bit rate sources

in ATM networks. We showed that a direct e�ective bandwidth estimator, which

has been used by a number of researchers, is biased and suggested an alternative,

based on a scaling property of the bias. Our bias correction procedure does not

require estimation of the model parameters. Simulation studies reported here

suggest that this procedure can yield signi�cant improvements in the accuracy of

e�ective bandwidth estimates. Our results are preliminary, and a more thorough

simulation study is needed to con�rm the �ndings.
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