Polishing Up the Church–Rosser Theorem

Randy Pollack

Version of October 26, 2011
Let \(R \in Rel2 \), the class of binary relations.

the **transitive-reflexive closure** of \(R \), written \(R^* \), is defined inductively by

\[
\begin{align*}
\frac{aRb}{aR^*b} & \quad \text{*-base} \\
\frac{aR^*a}{aR^*b} & \quad \text{-refl} \\
\frac{aR^*b \quad bR^*c}{aR^*c} & \quad \text{-trans}.
\end{align*}
\]

\(R \) has the **diamond property**, \(dp(R) \), iff

\[
\forall a, b, c . \ aRb \land aRc \Rightarrow \exists d . \ bRd \land cRd.
\]

\(R \) is **confluent** iff \(dp(R^*) \).
Recall some λ-calculus

- x, y, z, \ldots, range over variables.
- λ-terms are ranged over by a, b, c:
 \[a ::= x \mid \lambda x.a \mid ab. \]

We are always speaking up to α-conversion.

- One-step β-reduction is defined by:
 \begin{align*}
 (\lambda u.b) a & > [a/u]b \quad (\beta) \\
 a > a' & \quad (\xi) \\
 a > a' & \quad (appl) \\
 b > b' & \quad (appr)
 \end{align*}

- Substitution lemma.
 If $a >^* b$, then $[a/x]c >^* [b/x]c$ and $[c/x]a >^* [c/x]b$.
- A term, a, is in $>^*$-normal form iff a has no $>-reductions.$
Church-Rosser (CR) theorem

- The CR theorem states that \Rightarrow is confluent, i.e. $dp(\Rightarrow^*)$.
- The same lemma holds for combinatory reduction for s, k combinators. The same proof idea works.
- **corollary:** normal forms are unique: if $a \Rightarrow^* b$, $a \Rightarrow^* c$, and b, c are both in normal form, then $b = c$ (up to α-conversion).
 - **proof** By diamond property, b, c reduce to a common term, d. But b, c are both in normal form, so $b = d = c$.
- CR does *not* say that every term has a normal form, or that if one reduction sequence reaches a normal form then every reduction sequence reaches a normal form.
Strip lemmas

For any $\rightarrow \in \text{Rel2}$, $dp(\rightarrow) \Rightarrow dp(\rightarrow^*)$ by the diagram chase:

![Diagram]

This is really double induction:

- first along the top, showing that every rectangle of height 1 commutes (called the *strip lemma*),
- then along the side, showing that every rectangle commutes.

See my paper to get same result with a single induction.

Thus, if we had $dp(\rightarrow^*)$, we would be finished; but that is not the case. **Two things go wrong.**
What is wrong with >?

(1) > can forget parts of a term, but is not reflexive

\[(\lambda x. y) ((\lambda x. x) z)\]

\[(\lambda x. y) z\]

\[y\]

\[y\]
What is wrong with \Rightarrow?

(2) \Rightarrow can copy parts of a term, but is not parallel

$$(\lambda x.xx)((\lambda x.y)z)$$

$$(\lambda x.y)z \quad (\lambda x.y)z$$

$$(\lambda x.xx)y$$

$y \quad y \quad y$$
An Outline of the Proof

The idea of Tait and Martin-Löf: define a relation of parallel reduction, \(\gg \), that is both reflexive and parallel.

1. The subtle part is showing \(dp(\gg) \).
 - I present an improvement (due to Takahashi) of the Tait–Martin-Löf proof.

2. The easy part is showing \(dp(\gg) \) implies \(dp(\gg^*) \).
 - This is the strip lemma we saw above.

3. Showing \(a \gg^* b \) iff \(a >^* b \) (hence \(dp(\succ^*) \), our goal).
 - This is usually considered trivial, but in fact the names of variables are problematic.
 - We skip the problematic details.
Parallel Reduction, \gg

- **pr-refl**
 - $x \gg x$

- **pr-β**
 - $a \gg a' \quad b \gg b' \\
 (\lambda u.a) b \gg [b'/u]a' \\
 \hline
 \quad a \gg a' \\
 \lambda u.a \gg \lambda u.a' \\
 \hline
 \quad a \gg a' \quad b \gg b' \\
 a \ b \gg a' \ b'$

- **pr-app**
 - $a \gg a' \quad b \gg b' \\
 \quad a \ b \gg a' \ b'$

- \gg is reflexive by rule **pr-refl**.

- General reflexivity, $a \gg a$, is derivable.

- \gg is parallel: rules **pr-β** and **pr-app** allow reduction in both subterms.

- Non-deterministic choice of which rule to apply to a redex, **pr-β** or **pr-app**.
Intuition about parallel reduction (\(\gg\))

- Any 2 redexes in a term are either disjoint, or one is contained in the other.
 - All redexes are subterms, and subterms have this property.
 - This holds for combinator terms as well as \(\lambda\)-terms.

- We can unambiguously mark each redex in a term, say by putting a unique identifier on its outer application.

- \(\gg\) allows contracting any subset of the marked redexes
 - Contracting may discard some redexes, and may copy some redexes (copy the marks with the redexes).
 - Contracting may also create brand new unmarked redexes.
 - The redexes with a particular mark left after a \(\gg\)-step are called **residuals** of the original redex with that mark.
Intuition about the proof of CR

- To prove $dp(\rightarrow\rightarrow)$, we are given 2 reductions, $a \rightarrow\rightarrow b$, $a \rightarrow\rightarrow c$, contracting different sets of marked redexes, say M_b and M_c.
- To complete the diamond, just contract the necessary marked redexes.
 - In b, (resp. c), contract any redexes from M_c (resp. M_b) that are left.
 - Any redexes not in M_b or M_c can be ignored.
 - Any new (unmarked) redexes can be ignored.
- At the end the same set of redexes will have been contracted along both reduction paths, so they will end at the same term.
dp(≫): Parallel Reduction has the diamond property

- We could actually mark the redexes (Huet 1994) . . .
- usual proof keeps track implicitly of which redexes are contracted.

lemma (CR): \(\forall a, b, c . a \gg b \land a \gg c \Rightarrow \exists d . b \gg d \land c \gg d. \)

proof By “induction on the structure of \(a \)” (Shankar 1988):

- \(a \) is a variable (trivial)
- \(a \) is a lambda (easy)
- \(a \) is an application; 5 subcases
 1. \(a \) is not a redex
 2. \(a \) is a redex, and is only contracted in the reduction \(a \gg b \)
 3. \(a \) is a redex, and is only contracted in the reduction \(a \gg c \)
 4. \(a \) is a redex, and is contracted in both reductions
 5. \(a \) is a redex, and is not contracted in either reduction
...proving \(dp(\gg) \)

For example in case 4, suppose \(a = (\lambda x. a_l) a_r \) and \(a \gg b \) (respectively \(a \gg c \)) by two instances of \textit{pr-beta}:

\[
\frac{a_l \gg a^b_l \quad a_r \gg a^b_r}{(\lambda x. a_l) a_r \gg [a^b_r/x]a^b_l} \quad \frac{a_l \gg a^c_l \quad a_r \gg a^c_r}{(\lambda x. a_l) a_r \gg [a^c_r/x]a^c_l}
\]

By the two induction hypotheses we have the diagrams:

\[
\begin{array}{c}
\begin{array{...
Another Proof of \(dp(\gg) \)

- By “simultaneous induction on the structure of the reductions” \(a \gg b \) and \(a \gg c \) (Pfenning 1992).
- The argument goes as above, but the two uses of IH diagrammed above are justified because the derivations of
 - \(a_l \gg a_l^b \) and \(a_l \gg a_l^c \)
 - respectively \(a_r \gg a_r^b \) and \(a_r \gg a_r^c \)

are subderivations of the given derivation pair, \(a \gg b \) and \(a \gg c \).
These proofs are too fine!

- They analyze what redexes are contracted in the two given reductions, $a \gg b$ and $a \gg c$;
- they close the diamond by contracting only the redexes that are necessary to bring b and c together.

Why be so careful?
- In b, contracting all the marked redexes left
 - without regard to what redexes were contracted in $a \gg c$
 will have the same effect as if we just contracted all the redexes in a to start with.
- The same is true of c.
- This will close the diamond, although it may contract some redexes that were not necessary to do so.
- the bottom of the diamond will be the “maximum \gg-step from a”.
A Coarser Proof of \(dp(\ggg) \) (Takahashi)

- Taking the “maximum” parallel reduction step that contracts all redexes in \(a \), we can close any triangle

\[
\begin{array}{c}
\ggg \\
\cdot \\
\ggg \\
\end{array}
\longrightarrow
\begin{array}{c}
a \\
\cdot \\
d \\
\end{array}
\]

by contracting all the residuals in \(b \) of redexes in \(a \).

- Then we can complete any diamond by closing the left and right triangles independently.

Define a new relation, called **complete development**, \(\ggg \), that contracts all the redexes in a term.
Complete Developments

\[\text{cd-var} \quad x \gg x \]

\[\text{cd-}\beta \quad \frac{a \gg a'}{ \lambda u. a \gg [b'/u] a'} \]

\[\text{cd-}\xi \quad \frac{a \gg a'}{\lambda u. a \gg \lambda u. a'} \]

\[\text{cd-app} \quad \frac{a \gg a' \quad b \gg b'}{a b \gg a' b'} \quad a \text{ is not an abstraction} \]

\[\gg \] is “the same as \(\gg\) but goes farther”:

- The non deterministic choice in \(\gg\) to use \(pr-\beta\) or \(pr-app\) on a redex is removed.
- \(\gg\) contracts every redex (but not newly created ones).
is the “maximum parallel reduction”

- **lemma** (≫ exists) Every term has a complete development:
 \[\forall a \exists d . \ a \gg d . \]

- **proof** Easy structural induction on \(a \): in every case exactly one rule applies.

In fact complete development is unique, but we don’t need that fact.

- **lemma** (triangle) ≫ closes any ≫ triangle:
 \[\forall a, d, b . \ a \gg d \land a \gg b \Rightarrow b \gg d . \]

\[a \]
\[\gg \]
\[b \]
\[\gg \]
\[\gg \]
\[\gg \]
\[d \]
Proof that $a ≫ d \land a ≫ b \Rightarrow b ≫ d$

Structural induction on $a ≫ d$.

- Consider the case where $a = (\lambda u.a_l) a_r ≫ [a_r^d / u] a_l^d = d$

 because

 \[
 \frac{a_l ≫ a_l^d \quad a_r ≫ a_r^d}{(\lambda u.a_l) a_r ≫ [a_r^d / u] a_l^d} \text{ (cd-β)}
 \]

- Two subcases for the 2 possible $≫$-steps from $a = (\lambda u.a_l) a_r$:
 - First subcase: $(\lambda u.a_l) a_r$ reduces by $pr-β$:

 \[
 \frac{a_l ≫ a_l^b \quad a_r ≫ a_r^b}{(\lambda u.a_l) a_r ≫ [a_r^b / u] a_l^b} \quad \text{ (pr-β)}
 \]

 - By IH we have $a_l^b ≫ a_l^d$ and $a_r^b ≫ a_r^d$,
 - by substitution lemma, $[a_r^b / u] a_l^b ≫ [a_r^d / u] a_l^d$ as required.
... $a \gg d \land a \gg b \Rightarrow b \gg d$

... proof continued

- Still the case where $a = (\lambda u. a_l) a_r \gg [a_r^d/u]a_l^d = d$ because

$$
\begin{align*}
 a_l \gg a_l^d & \quad a_r \gg a_r^d \\
 \frac{}{(\lambda u. a_l) a_r \gg [a_r^d/u]a_l^d} \quad (cd-\beta)
\end{align*}
$$

- Second subcase: $(\lambda u. a_l) a_r$ reduces by pr-app:

$$
\begin{align*}
 a_l \gg a_l^b \\
 \frac{}{(\lambda u. a_l) a_r \gg (\lambda u. a_l^b) a_r^b} \quad pr$-$lda \\
 \frac{}{(\lambda u. a_l) a_r \gg (\lambda u. a_l^b) a_r^b} \quad pr$-$app
\end{align*}
$$

- By IH we have $a_l^b \gg a_l^d$ and $a_r^b \gg a_r^d$,
- by rule pr-β, $(\lambda u. a_l^b) a_r^b \gg [a_r^d/u]a_l^d$ as required.
Church–Rosser theorem

Lemma \(dp(\gg) \): \(a \gg b \land a \gg c \Rightarrow \exists d . b \gg d \land c \gg d. \)

Proof Let \(d \) be s.t. \(a \gg d \) (\(\gg \) exists). \(b \gg d \) and \(c \gg d \) by (triangle).

This proof is **coarser** than the standard one:
- It treats less cases, by using a deterministic relation \(\gg \) instead of figuring out which redexes must be contracted by \(\gg \).
- It produces a **worse program to compute** \(d \), contracting more redexes than necessary.

Corollary \(dp(\gg^*) \)

Proof By a strip lemma diagram chase.

Corollary \(a \gg^* b \iff a \succ^* b \); hence \(dp(\succ^*) \).

Proof (\(\leftarrow \)) \(a \succ b \Rightarrow a \gg b \) is trivial, as every \(\succ \)-step is also a \(\gg \)-step.

(\(\rightarrow \)) \(a \gg b \Rightarrow a \succ^* b \) is proved by induction on the derivation of \(a \gg b \).
More about \gg

- \gg is not just a reduction relation, it is deterministic, i.e. \gg is a strategy.
- **Lemma** \gg^* is cofinal for \ast, i.e.

\[
\forall a, b . \ a \ast b \Rightarrow \exists d . \ a \gg^* d \land b \ast d
\]

- **Proof** Easy from what we have proved above.

- **Lemma** \gg^* is normalizing: if a has a normal form, then \gg^* deterministically finds it.
 - **Proof** If a_n is the normal form of a, then $a \ast a_n$, so for some d, $a \gg^* d$ and $a_n \ast d$. But a_n is normal, so $a = d$.

- \gg^* is an easier normalizing strategy to reason about than other such strategies (call-by-need, call-by-name, ...)
Conclusion

- Very well known proofs can be made more beautiful.
- Look for alternative inductive definitions that are easier to reason with.
 - In this search, try to eliminate unnecessary non-determinism in definitions.
- For program extraction must pay attention to the algorithmic content of proofs.