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ceptible to de-anonymization. Our main result shows

that PB attacks diverting significant amounts of traffic

can be detected—quickly and practically, with privacy

guarantees—from small amounts of data. In Section 5

we describe the basic statistical test for such detection.

To protect individual users, our system uses differ-

ential privacy in reporting data. Middle nodes add noise

to data before transmitting it to the aggregator, which

ensures differential privacy irrespective of the subse-

quent use of the data or the security of communication

channels. To prevent excessive noise in the system, a se-

cret sharing mechanism is used between middle nodes,

reducing the noise requirement, but also ensuring that

unprotected data is never transmitted.

The variable bandwidths of the nodes in the net-

work pose an additional challenge in privacy protection.

The bandwidths determine the probability of selection

of nodes in random routes. Therefore, very low band-

width nodes handle few routes, which reduces reliability

of statistical tests, particularly in the presence of differ-

entially private reporting. To preserve test reliability,

we introduce a binning technique, where nodes are pro-

cessed in groups. This approach makes the algorithm

resilient to low data volumes and noise due to differen-

tial privacy, but allows the attack to still be detected

efficiently. In a real system, an adversary can also con-

trol some middle nodes and attempt to subvert the de-

tection process by introducing false data. We describe

sampling and voting mechanisms to mitigate such at-

tempts. These enhancements are discussed in Section 6.

Our experiments (Section 7) rely on two forms of

data collected from the Tor system. First, we used a Tor

consensus document to generate random routes within

the network which represents an expected traffic profile.

Second, from Tor clients operated by us, we made a se-

quence of connection establishment requests to the Tor

network and stored the successful routes – giving us an

empirical traffic profile.

Experimental results on these datasets demonstrate

the performance of the outlier detection algorithm for

different types of attackers and show that outlier detec-

tion is accurate, obtaining high F1 scores in most sce-

narios, even with strong privacy requirements (ǫ = 0.1)

and using only half a day of circuit data.

Motivations. While we use Tor as our prototype sys-

tem, the use of randomized paths, attacks on them,

and statistical detection mechanisms are of wider in-

terest. Mix networks operate using multi-hop random-

ized routes and are subject to similar path manipula-

tion attacks. Random walk based anonymity measures

have been proposed in sensor networks, and also have

the risk of leaking information [32]. In IoT systems,

compromised devices can send information to adversar-

ial servers, which may be detected by statistical devia-

tions in traffic distribution. Thus we expect our detec-

tion techniques to be generally useful against attacks on

anonymity systems.

2 Background

This section presents a brief background on Tor, se-

cret sharing and differential privacy, along with related

works in Tor measurement studies.

2.1 Anonymous Communication Networks
and Tor

Anonymous communication networks depend on a

route-randomizing mechanism. Given a message or con-

nection c between source s and destination t, a random

route or circuit c is constructed so the pair (s, t) cannot

be identified with high confidence by an adversary.

The Tor network routes a connection along a path

consisting of three relays before reaching its destination.

The route is selected at the source, that is, by the client.

Along this route, nested encryption ensures that the first

(entry) relay only knows the source of the connection

and the next hop in the route. Relays with high uptime,

stability, and bandwidth are assigned the guard flag.

Only these guard relays may be used for entry into the

Tor network.

Let us denote the set of guard, middle and exit

relays as G, M and X respectively. The routes chosen

by the Tor routing mechanism are of the form (g, m, x)

where g ∈ G, m ∈ M, x ∈ X.

The client selects a relay to be on the route of c

with probability proportional to its relative bandwidth

within its type. These bandwidths and probabilities are

public knowledge in the Tor consensus document pub-

lished every hour. An analysis of consensus documents

shows bandwidth distribution to be exponential, with

few large relays and many relays that have very small

bandwidth, and consequently a small probability of be-

ing chosen in a path. Indeed, hundreds of possible exit

relays have probability 10−6 or smaller of being chosen.
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2.2 Additive Secret Sharing

Additive secret sharing can be used by a group of enti-

ties to collaboratively and securely compute the sum of

private inputs. We use this method for relays to share

the counts of circuits they observe. .

Suppose each relay M maintains a count C of the

number of circuits it sees. The relays wish to compute

the sum of these counters without revealing individual

values. For initialization, M randomly picks a secret

value xs modulo a large prime Q, and sets C = xs. It

then splits xs in to N secret shares by creating N−1 ran-

dom values and setting xN = xs − (x1 +x2 + · · ·+xN−1)

mod Q. M then transmits the shares x1, . . . , xN to N

designated share keepers for future use. Each share

keeper adds the shares it receives from the relays to-

gether, modulo Q. During system operation, as each

observation is recorded, M increments the count as

C = (C + 1) mod Q.

When computing the sum over all nodes, we proceed

as follows: Each M and share keeper sends its value to

the aggregation server. Once all values have arrived, the

aggregator produces the aggregate as follows: It adds up

all of the values it receives from the relays to get R, and

separately adds up values it receives from share keepers

to get S, it then computes (R + S) mod Q to find the

sum of all observations across all M relays.

A compromise of up to N − 1 share keepers will not

reveal any information about the secret xs or any of the

intermediate sums to a dishonest relay, share keeper, or

aggregator. Like previous works, we assume that three

share keepers is reasonable for the settings we consider.

2.3 Differential Privacy

To prevent the data or statistics published by the ag-

gregator from revealing sensitive information, we use

differential privacy, which is the current gold standard

definition of statistical privacy.

Differential privacy operates by considering for each

input dataset D, similar neighboring datasets:

Definition 1 (Neighbouring Databases). Two

databases D and D′ are said to be neighbouring if

they differ in exactly one row.

Under this definition, differential privacy of a random-

ized algorithm requires that the probabilities of an out-

put are similar for any two neighboring datasets:

Definition 2 (Differential Privacy). A randomized al-

gorithm K operating on the database satisfies ǫ-

differential privacy if given any two neighbouring

databases D and D′ and a set of outputs S ⊆ Range(K)

then:

P [K(D) ∈ S] ≤ eǫP [K(D′) ∈ S] (1)

Smaller values of ǫ imply stronger privacy.

Usually, differential privacy is achieved by adding

noise to variables in the database, or by adding noise to

the final aggregated result.

2.4 Related Work

2.4.1 Privacy and Network Measurement

Monitoring anonymity networks while preserving pri-

vacy for users is challenging [25]. The statistics available

at the Tor Metrics project [22] are indirect, limited in

scope and many are based on assumptions about net-

work usage. Early attempts at in-depth analysis [25],

were later considered to be risky for privacy [35].

In response, Elahi et al. [14] proposed PrivEx, ap-

plying differential privacy to privately collect and re-

lease statistics for traffic between exit relays and several

destination websites. They used a combination of secure

multi-party computation—or distributed decryption as

an alternative—and differential privacy.

PrivEx was later extended by Jansen et al. [16] into

the PrivCount mechanism, allowing for more statistics

to be privately collected (e.g. the number of unique

clients). Mani et al. [23] and Wails et al. [37] extended

the methods to be more robust to adversarial manip-

ulation of the statistics gathered, which was further

extended including a large measurement study in the

follow-on work by Mani et al. [24]. These methods focus

on collecting data on client usage of the system.

Our algorithm uses a similar setup, but for a differ-

ent objective of analyzing statistics of traffic within the

Tor network by collecting statistics from middle relays,

and leads to different privacy and utility guarantees.

2.4.2 Attacks and Measurements on Tor

There is significant evidence that adversaries who can

observe traffic at an entry and exit relay can re-

identify clients in low-latency mix networks such as

Tor [27, 29, 33, 38]. An attack was described by Borisov

et al. [7] which effectively denies service for routes which
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cannot be compromised, therefore increasing the chance

of a client using a route which is vulnerable to attack.

Singh et al. [34] describe eclipse attacks for overlay net-

works. Sun et al. [36] studied a new form of routing at-

tacks for anonymous communication networks based on

Border Gateway Protocol (BGP) hijacking. Nithyanand

et al. [28] provide estimates of the potential widespread

nature of attacks compromising entry and exit relays,

finding that up to 40% of circuits created by the exist-

ing Tor client were at risk.

2.4.3 Path Selection and Network Design

Several works [1, 3, 13, 17, 28] discuss AS-aware path se-

lection methods, offering resistance against traffic anal-

ysis and correlation attacks. We propose a detection

scheme which can be implemented in parallel to these

methods. Recently, Leibowitz et al. [21] proposed a mix-

network design that detects and mitigates the effect of

malicious mixes in higher-latency networks.

3 Threat Model

The adversary’s goal is to opportunistically compromise

the privacy of as many clients as possible by compromis-

ing their circuits, and to simultaneously avoid detection.

Adversaries may be passive or active. A passive ad-

versary controls one or many guard and exit relays and

records the source and destination of circuits that pass

through both compromised guards and exits, but does

not attempt to manipulate circuits in any way. Such ad-

versaries are hard to detect, but are also less of a threat.

Our main concern is an active adversary, who tries

to modify the flow of circuits to capture more victims

than is possible passively. In Tor, an adversary can take

the following actions:

1. Drop and/or delay communication packets, includ-

ing Tor circuit establishment requests.

2. Control some fixed fraction of the total Tor network

bandwidth, by operating or controlling a fraction of

the guard and/or exit relays.

Let BWG and BWX be the total guard and exit band-

widths in the Tor network, and let BWĝ and BWx̂ be

the adversarial guard and exit bandwidths, then the ad-

versarial bandwidth fractions for guards and exits are

Fĝ =
BWĝ

BWG
and Fx̂ = BWx̂

BWX
respectively.

Since clients choose relays on their circuit propor-

tional to the relay bandwidths, the fraction of circuits

controlled by the adversary is determined by their band-

width. We assume that the cost of fielding this band-

width is proportional to its size. Therefore, compromis-

ing or deploying nodes with high bandwidth is corre-

spondingly more expensive.

The adversary is assumed to have full knowledge of

our detection scheme and may strategically:

1. Redistribute their available bandwidth between re-

lays, (Section 4.1).

2. Attack selectively to avoid detection by our scheme,

at the cost of lower compromised circuit yield, (see

Sections 5 and 6.3).

3. Control a limited fraction of data collection points

(middle relays) and may manipulate the inputs they

provide to thwart attack detection, (Section 6.3.1).

There is a trade-off between risk tolerance and success

probability for the adversary. A larger attack incurs a

greater risk of detection. We assume that the adversary

does not alter these priorities during an attack, in this

sense he is non-mobile.

There are two types of adversarial action in ques-

tion. The PB adversary executes the PB attack and

hopes to observe as much of client traffic as possible.

A non-PB adversary is an external observer that

attempts to use the statistical reports generated by our

scheme to infer client behaviour, possibly by cross ana-

lyzing it against other information.

4 The Path Bias Attack

Our scheme is designed to detect the PB attack, and is

resistant to an active, strategic, non-mobile adversary

who has knowledge of our algorithm and aims to avoid

detection while carrying out the PB attack.

In a PB attack, the adversary’s strategy is to sub-

vert the randomized mechanism and force a circuit c

to follow a route in the network with the adversary’s

compromised end-points. The active PB attack there-

fore allows the adversary to increase the number of com-

promised circuits in order to gain additional circuits in

addition to those possible through the passive attack.

Suppose the adversary operates a specific guard re-

lay ĝ and an exit relay x̂. While the adversary cannot ac-

tively dictate the route for a connection c to go through

x̂, they are free to selectively drop at ĝ any connection

that does not subsequently pass through x̂ [7]. The ad-

versary can use flow tagging, or watermarking, to mark

a flow with a sequence of packets (that do not inter-
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Figure 2, which captures the adversary’s relative

advantage, shows that a lower BW adversary gets rel-

atively more (200-fold, top red line) reward for their

bandwidth investment than the larger BW adversary

(20-fold, middle orange line). However, note that this

takes many more attempts (a larger r) than for the

larger BW adversary. Specifically, we see from Fig. 2

that the larger adversary (middle orange line) may com-

promise up to 50%2 of all the circuits that use its guard

relay with just r = 20 PB attack attempts per circuit

while the smaller adversary (top red line) requires more

than r = 201 PB attack attempts per circuit to achieve

the same compromise level. From the perspective of a

PB attack victim, the larger adversary still poses a big-

ger threat than a relatively smaller adversary.

In practical terms, if we assume that the PB at-

tack itself takes no time at all3, the circuit construction

phase itself still takes non-negligible time. Tor circuit

build times vary across the network.4 Assuming a typi-

cal figure of 250 ms the smaller adversary would require

up to ≈ 50 s per circuit to compromise 50% of all cir-

cuits that use it, compared to the larger adversary who

requires up to ≈ 5 s per circuit to capture the same

50%. Therefore, in reality a large r may not be possi-

ble within the period t, either because 1) the adversary

may not be able to wait due to operational costs or 2)

the client may notice large delays in circuit construc-

tion and this could cause them to rotate away from the

malicious guard, ĝ, resulting in loss of potential circuits

to compromise. The strategic adversary will factor in

the above and chose the appropriate r to calculate the

optimal Fĝ : Fx̂ ratio before deploying their relays.

Practical limitations in attack strategies. In prac-

tice, in a Tor-like system, an adversary cannot gain sig-

nificant real advantage by using very low bandwidth ex-

its, which are selected with probability 10−6 or lower.

For example, this requires thousands of rejections by

the malicious guard before a client selects a low band-

width exit. While Tor does not have a clear guideline

on how many rejections marks a guard as defective, we

2 Similar results are obtained for other compromise proportions.

See A.4 for a summary table of results.

3 This is realistic since Rochet and Pereira’s dropmarking con-

firmation attack can be performed in the interval after circuit

construction and before any client traffic flows. [31]

4 Circuit build time statistics are reported on the Tor

Metrics portal here: https://metrics.torproject.org/onionperf-

buildtimes.html.

can safely assume that a practical client is unlikely to

accept this level of failure before changing guards.

On the other hand, the adversary may choose to

run many exits of low bandwidth, hoping to increase

the chances, but this will require deployment of hun-

dreds or more of new low bandwidth exits to have an

impact, which will be easily detected by Tor authorities

as suspicious behaviour.

5 PB Detection Scheme

Overview. Our proposal allows the defender to detect

when the observed number of circuits through a partic-

ular guard and exit pair exceeds the expected number

of circuits.

Formally, we operate with a sample dataset S, and

write n = |S|. The system is assumed to operate in

epochs, where each epoch produces such a dataset used

to detect presence of attacks. For any node a, we write

Sa and na for the set and number of circuits passing

through it. For any set of nodes a, b, c, . . . we corre-

spondingly write Sa,b,c,... and na,b,c,... for set and num-

ber of circuits common to all of them. The variable

Ea,b,c,... denotes the number of circuits through a, b, c

we expect to see in sample S based on prior knowledge

(such as probabilities for each node obtained from the

Tor consensus document).

Quantitatively, we wish to ensure that the number

of circuits through any pair gx of nodes does not sig-

nificantly exceed Egx—the expected number of paths

through g and x given the sample size n. Or, in general,

to ensure that the number of circuits nx through exit x

does not significantly exceed Ex for any guard g.

For this, we assume that the adversary, by employ-

ing the PB attack, intends to achieve nĝx̂ > Eĝx̂ +

(φEĝx̂ + λ). The (φEĝx̂ + λ) is the additional number

of victims that the adversary may gain by increasing

traffic through ĝx̂. The φEĝx̂ term implies at least a

constant fraction increase over the base rate Eĝx̂, and

the additive constant λ is to ensure that if Eĝx̂ is small,

i.e. the number of circuits through ĝx̂ is very small, the

adversary still gains some return for the attack.

On the other hand, the defender wishes to ensure

that E[ngx] ≤ Egx + (φEgx + λ) for every guard-exit

pair, and flags an attack if this condition is suspected

to be violated. The objective is to perform this test with

a given confidence 1 − β, based on a data sample which

is subject to differential privacy.
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Since this probability is to be bounded by β, we

have np
4 (φ + λ/Ex)2/3 ≥ ln( 1

β
).

Therefore, we need n ≥ 12 ln(
1

β
) ·

1

p(φ + λ
Ex

)2
sam-

ples.

In the
(

φ + λ
Ex

)

≥ 1 domain, a different version of

Chernoff bound (Lemma 12) implies that n ≥ 12 ln( 1
β

) ·
1

p(φ+ λ
Ex

)
circuits suffice. In that case, 1

min{1,(φ+ λ
Ex

)}
≥

1

(φ+ λ
Ex

)
, and thus

n ≥ 12 ln(
1

β
) ·

1

p
·

1

(min{1, (φ + λ
Ex

)})2

samples suffice.

False positive rate (bounded by β). The direct con-

sequence of the lemma is to limit the false positive rate.

It implies that a small number of samples suffices to en-

sure a false positive rate bounded by β. Sample size n

increases only logarithmically with decreasing value of

β, and it increases at most linearly as 1
φ2 . Observe that

1/p is the expected number of circuits needed to have

any connection through x at all.

False negative rate (bounded by β). A false negative

occurs when an attack is under way and the observation

is drawn from the distribution on the right (Fig. 4), but

the observation happens to be on the other side of the

threshold. By a variant of Chernoff bound [26] the same

sample complexity suffices as Lemma 6. Thus the false

negative rate of the algorithm is also bounded by β.

5.1.2 Differential Privacy and Secret Sharing

To protect the privacy of circuits counted by the middle

relays (e.g. from a non-PB adversary), each relay imple-

ments local differential privacy by adding noise to the

count before reporting it to the aggregator. The quan-

tity of noise required depends on a quantity called the

sensitivity of the model:

Definition 4 (Sensitivity[12]). The sensitivity of a

function f : D → R is defined as:

∆f = max
D,D′

||f(D) − f(D′)|| (3)

for all neighbouring databases D, D′.

Laplace mechanism of differential privacy. This

mechanism requires drawing a random number γ from

the Laplace distribution: γ ∼ Lap
(

∆f
ǫ

)

with mean 0

and scale ∆f
ǫ

. 5

In the case of counting, the presence or absence of a

single circuit can change the count by at most 1, and so

∆f = 1. Thus, a middle node samples a noise γ from a

Laplace distribution γ ∼ Lap
(

1
ǫ

)

. Instead of reporting

a true count C, the middle node now reports C + γ. It

repeats the process for every count reported.

The consequence of this method is that the prob-

abilities of reporting the same count are similar (to

within a factor of eε) whether a single particular circuit

is counted or not. The presence of a constant number

of circuits can be hidden by setting ∆f = k, and thus

drawing the noise from Lap
(

k
ǫ

)

. The parameter k is a

global constant for the system, set at initialization, and

known to all nodes.

The method of each data source (middle relay)

adding noise independently is called local differential

privacy. This approach has the advantage that it is inde-

pendent of the actions of the aggregator. By sanitising

data locally, the middle nodes ensure that the shared

information is permanently protected.

When added over a large number of source nodes,

the noise accumulates. The following result from Chan

et al. [9] gives a bound on the accumulated noise:

Lemma 5 (Sum of Independent Laplace Distributions).

Given γi as independent random variables following

Laplace distribution Lap(bi) with mean zero. Suppose

Y =
∑

i γi and 0 < δ < 1. Then |Y | is at most

O(
√

∑

i b2
i log(1/δ)) with probability at least 1 − δ.

The bound, however, shows that we can only limit the

noise to a limited degree. For example, in a system con-

sisting of |M | data sources, and each adding an inde-

pendent noise from Lap(1/ε), the noise is only bounded

by O( 1
ε

√

|M | log 1
δ
) with probability 1 − δ. Thus, as the

number(|M |) of reporting data sources grows, the noise

grows rapidly as
√

|M |.

Secret sharing. This noise accumulation can be

avoided by adding a single random noise γ ∼ Lap
(

k
ǫ

)

to the total sum instead of one to each variable. We

achieve this securely by employing additive secret shar-

ing among the relays and the aggregator (See Sec-

tion 2.2). In this design, the communication from each

5 This Laplace distribution is described by the probability den-

sity function P
(

x|0,
∆f

ǫ

)

= ǫ
2∆f

exp
(

−ǫ|x|
∆f

)

.
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relay is secure, and the aggregator only sees the total of

the values from all the relays.

In a distributed setup, addition of a single random

number is achieved by each middle adding a smaller

noise to their value, which sums to sufficient noise.

When there are |M | middle relays, each should add

a noise equivalent to:

R ∼ Γ

(

1

|M |
,

ǫ

k|M |

)

− Γ

(

1

|M |
,

ǫ

k|M |

)

.

before transmitting to the aggregator. It can be shown

that the sum of these |M | random numbers follows the

Lap
(

k
ε

)

distribution [20].

5.2 System Design

Data
Collectors  
(Middles)

m1 m2 m|M|

SK1 SK2 SK|SK|

Initialization Phase

...

...Share
Keepers

Reporting Phase

m1 m2 m|M|...

SK1 SK2 SK|SK|...

Aggregator

Fig. 5. Scheme design showing two of the phases where commu-

nication occurs. The red arrows denote shares.

Figure 5 shows the schematic view of the detection

scheme, which has three phases of operation: initializa-

tion, data collection, and reporting.

In the initialization phase, the data collectors (mid-

dle relays) initialize frequency counters for all guard-exit

pairs. These pairs are the same across all data collectors

and the same binning parameters (γ, η – to be intro-

duced in next section) are used for every middle relay.

Secret sharing is initialized as discussed earlier. A single

independent Laplace noise value, for differential privacy,

is drawn by each middle relay for each counter it stores.

In the data collection phase, the data collectors in-

crement the counter for each pair by 1 when a circuit

with that guard-exit bin pair is observed. The counter

is only incremented if some data travels via the circuit,

therefore the results cannot be skewed by an adversary

falsely creating many never-used circuits (see the fol-

lowing discussion for more details).

In the reporting phase, the data collectors send

stored frequencies (plus the Laplace noise) to the ag-

gregator. The share keepers combine the shares they

received from the data collectors, and send them to the

aggregator. The aggregator receives the shares from the

share keepers and the noisy frequency estimates, and

simply adds these to recover the original frequencies plus

Laplace noise. The aggregator then releases the private

frequency estimates.

After obtaining the noisy statistics, the end user

of this system (for example, Tor Metrics) can use the

results to identify presence of suspicious activity. The

detection is statistical in nature and does not provide

absolute guarantees. It is expected that the user will

perform additional investigations before taking action

against specific relays.

The enhancements described in Section 6.1 include

a strategy of grouping similar exits together to re-

duce noise, which improves attack detection, but cre-

ates greater uncertainty about the compromised relay.

Overall, our methods are thus not necessarily meant to

pin point the adversaries, but designed to generate first

alarms in case of attacks.

Discussions on Differential Privacy. If the number

of circuits to be protected is k, then instead of Lap( 1
ǫ
)

noise, we add Lap( k
ǫ
) noise. In this scenario, the sample

size bounds (and thus the utility guarantees) can be

easily adjusted by simply increasing any terms in the

sample size bound containing ǫ by a factor of k. Elahi

et al. [14] suggest that for a collection period (epoch

length) of 1 hour, k = 6 is appropriate. If k + c circuits

were observed, the resulting value of ǫ would be ǫ k+c
k

.

For example, when ǫ = 0.1, c = 1 and k = 6. Then, ǫ

increases from 0.1 to 0.117.

We suggest counting circuits after they have been

built and some data have been sent, for example, after

the RELAY_DATA cell is seen6. A circuit rejected before

this threshold does not affect the counts and therefore

does not affect the differential privacy guarantee.

An adversary aware of the protocol may choose to

wait until the threshold to discard the circuit, but this

incurs extra cost for the adversary. It would also in-

crease the overhead for the PB attack by both the size

of a RELAY_DATA cell (586 Bytes), and the time it takes

to transmit, per circuit path bias attempt. Using the ex-

amples of the large (20% TBW) and small (2% TBW)

adversary from Section 4.1, the worst-case additional

bandwidth overheads are 11.7 KB and 117.8 KB respec-

tively per compromised circuit. The additional time

overheads are ≈ 1 s and ≈ 10 s respectively per compro-

6 Our scheme is not contingent on this condition, and can be

adapted to other thresholds.
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mised circuit. For a compromise rate of 50% of circuits

going through their guards, the larger adversary incurs

an additional BW cost of 2.34 GB, and the smaller ad-

versary incurs an additional BW cost of 2.36 GB.

Further, a behaviour of rejecting established and

counted circuits 7 in an attempt to carry out the PB

attack will inflate the count for the guard itself, and

can be detected by observing a larger n̂g, essentially

with the same statistical test as Lemma 6:

Observation 6. A sample size of

n ≥ 12 ln(
1

β
) ·

1

p
·

1

(min{1, (φ + λ
Eg

)})2

suffices to ensure that ng ≤ Eg + (φEg + λ)/2 with prob-

ability at least (1 − β).

A large adversary performing this attack on a φ fraction

of its overall circuits, or a tiny adversary performing this

attack on λ circuits, will be detected by this test.

Composition Across Epochs. The composition of

T passes of an ǫ-differentially private algorithm over

a given database D results in a final privacy guaran-

tee of Tǫ [12]. Therefore, in the worst-case of a user’s

behaviour remaining identical across T epochs, the pri-

vacy guarantee for the user after T epochs degrades to

Tǫ. The epoch length can be increased to control this ef-

fect, with the downside of less frequent reporting. Given

that there is a significant cost and delay involved in be-

ing approved as a guard, monitoring in epochs of days

can be considered suitable for Tor.

Note that if users’ behaviour is different across

epochs, the databases used in each epoch would be dis-

joint and privacy degradation would be smaller.

5.3 Security

Our system design and communication protocols are

based on the secret-sharing variant of PrivEx [14], there-

fore the security analysis from there also applies here.

However, our algorithm uses different databases and

noise mechanisms. We provide discussions of the pri-

vacy and utility guarantees provided by our algorithm.

The worst-case vulnerabilities posed by malicious

relays, share keepers or aggregators are limited to sub-

verting the attack detection or denial of service attacks

7 In the event that the adversary is following an inefficient form

of the PB attack as compared to the one shown by Rochet and

Pereira.

on the algorithm operations. Both of these vulnerabil-

ities risk the normal operation of the detection algo-

rithm, but do not risk the safety of the network, or the

privacy of individual users – our scheme fails-safe. We

further address the risk of malicious middle relays mis-

reporting frequencies in Section 6.3.1.

6 Enhanced Detection Algorithm

In the Tor network, the bandwidths of nodes and there-

fore their probabilities of being selected in a path vary.

Some exit nodes have probability of 10−6 or smaller of

being chosen on a particular circuit, which raises a chal-

lenge in performing detection when the epoch length,

and therefore data volume, are bounded. In these real-

istic scenarios, low probability exits will have very small

number of circuits to report, which can be dominated

by the Laplace noise.

6.1 Binning Algorithm: Reporting Exits in
Groups

To decrease noise in the system, we take the strategy

of grouping multiple exit relays together into bins. A

single unit of noise then suffices per bin, leading to less

noise per relay.

We require the bins to have the following properties.

For a bin B, and x, y ∈ B:

Ex ≤ (1 + γ)Ey + η (4)

|B| ≤ m (5)

For given parameters γ, η ∈ R
+, m ∈ Z

+.

The binning is achieved simply by sequentially pro-

cessing exits in decreasing order of bandwidth and

adding to a bin until the addition will violate one of

the two conditions. See Algorithm 1 (Appendix A.3).

After running this algorithm, each middle has the

same set of bins and allocations of exits to those bins

(alternatively, the bins may be decided by the aggrega-

tor and reported to middle nodes). The middle nodes

now report counts for bins, that is total for counts of all

exits in a bins instead of counts for individual exits.

In the above strategy, m is a bound on the bin size.

Parameters γ and η are set to describe the maximum

possible difference in expected counts between exit re-

lays in a single bin, where γ is the multiplicative factor

and η is a small additive factor (e.g. 1e-5) allowing us
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to group together extremely small probability exits that

would otherwise require a large value of γ.

The binning based method does not by itself pin

point the compromised exit. Its purpose is to detect the

presence of an attack quickly using a small amount of

data, which can then be investigated further. As before,

differential privacy can be achieved by adding Lap
(

1
ǫ

)

noise. However, in this case this unit of noise is added

to the count in a bin instead of individual exits.

We now show that statistical testing based on bin-

ning is efficient.

6.1.1 Analysis of Binning Algorithm

For binning parameters γ, η, m as defined above, with

EB denoting the expected frequency of the bin B,

Theorem 7. A sample size of:

n > 12 ln(
1

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η] + 6 ln(

1

β
) ·

1

φp

suffices to ensure that nB ≤ EB + 1
2 (φEx +λ) with prob-

ability at least 1 − β.

See Appendix A.1 for the proof of Theorem 7. This re-

sult implies that the sample size increases only linearly

with the size of the bin m.

6.1.2 Analysis of Differentially Private Detection with

Binning

When we add Laplace noise to the counts in bins, the

required sample complexity does not increase beyond

small factors. As before, the results apply symmetrically

to bounds for false positive and false negative rates.

Theorem 8. With a noise ζ ∼ Lap( 1
ǫ
) a sample size

of:

n ≥ 4

(

12 ln(
2

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η] + 6 ln(

1

β
) ·

1

φp

)

+ 4

(

1

ǫ
· ln (

1

β
) ·

1

φ
·

1

p

)

suffices to ensure that nB + ζ ≤ EB + φEx + λ with

probability at least 1 − β and ǫ-differential privacy.

See Appendix A.1 for the proof of Theorem 8. Note that

this theorem is for the goal of obfuscating the presence

of any single circuit. When the objective is to hide any

k circuits to the same level of privacy, the sample com-

plexity (or more precisely, the second term in expression

of n) grows by a factor of k.

Sample Sizes in practice. The Tor network con-

structs more than 1.2 billion circuits per day [24]. Con-

sider the case where β = 0.05 (a 95% confidence for

identified outliers), φ = 1, p = 0.01, m = 10, γ = 5,

η = 0.01 and ǫ = 0.1. In this case, a sample size of

n ≥ 275, 785 is sufficient. If the attack size decreases to

φ = 0.1 a sample size of n ≥ 26, 661, 792 is sufficient.

These theoretical estimates are loose, and are meant

to provide a conceptual bound that the data require-

ment does not grow excessively fast. Experimental re-

sults in Section 7 show that in practice substantially

smaller datasets produce reliable results.

An additional note here is that these theoretical re-

sults are with a view to reliably detecting a difference

in the circuit distribution, and thus the sample size is

required to be a multiple of 1/p, to ensure that there

are circuits through x for detection of attack. In prac-

tice, however, absence of circuits implies that there is

no significant attack action to detect.

Attack Parameters in practice. The values of φ and

λ are selected based on the characteristics of the at-

tacker and the desired trade-off between false positives

and false negatives.

Suppose that an adversary controls a 0.1 proportion

of both the total guard relay bandwidth and the total

exit relay bandwidth. As demonstrated by Figure 2, this

translates to an increase of between 1x and 20x times

more circuits observed through those compromised re-

lays, implying a level of φ between 1 and 20. The possi-

ble value of φ increases as the proportion of bandwidth

controlled decreases (Figure 2).

If Lap( k
ǫ
) noise is added, then λ = − ln(0.05) k

ǫ
is

the 95% confidence level for the increase in observations

due to this noise. Setting λ to this value or larger will

reduce the number of false positives due to the noise,

particularly for pairs where φEĝB is small.

6.2 Overhead Costs

Running the detection algorithm introduces some cost

for the relays, share keepers and aggregator. Suppose

the system comprises of |G| guard relays, |M | middle

relays (data collectors), |B| exit bins, |SK| share keepers

and a single aggregator. Let relay identifiers have at

most I characters. Let us consider a scenario in which
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|G| = 3000, |M | = 3000, |B| = 100, |SK| = 10 and I =

16. These values approximate typical numbers for Tor.

Database size. The size of the database determines the

basic communication and storage costs. The database

stores the count for |G|× |B| guard-bin pairs. Assuming

that each count is stored as a double precision floating

point number, each taking 8 Bytes to of space, which

for our scenario, amounts to a database size of 2.4 MB

at each node.

Initialization Phase. During the intialization phase,

data collectors (middles) initialize storage for the |G| ×

|B| counters, and an database of size 2.4 MB.

Each data collector sends the key information for

all the pairs (2.4 MB) to the share keepers.

Data Collection Phase. During the data collection

phase, data collectors (middles) increment the appro-

priate counter by 1 each time a new circuit uses the

pair and has suitable traffic.

Reporting Phase. During the reporting phase, data

collectors (middles) report all frequencies, sending the

database of size 2.4 MB to the aggregator. The aggrega-

tor receives a 2.4 MB database from each middle relay,

as well as the shares from the share keepers.

Discussion of Overhead Costs: The communication

costs are constant, and small for any reasonable length

of epochs. In each epoch, a middle relay communicates

2.4 MB for the detection algorithm, resulting in ≈ 7.2GB

for the whole network. Tor transports 517 TiB of data

per day [24] (21.54 TiB/hr). Thus the cost of the detec-

tion algorithm is negligible compared to the volume of

Tor client traffic, even for short epochs of one hour.

From the perspective of a single node, 2.4MB is

also a small cost. For example, in the consensus la-

belled 2019-09-04-18-00-00, approximately 95% of non-

exit-flagged relays (possible middle relays) have band-

width of above 0.01 MB/s (40 MB/hr), while 84% and

64% have bandwidths of above 0.1 MB/s (360 MB/hr)

and 1 MB/s respectively.

The costs of initialising and incrementing counters

are also small. In 1000 trial runs on a 2.9 GHz Intel

Core i7 processor, binning the exits (once per epoch)

takes 13 ms on average. Initializing the frequency coun-

ters and random noise, takes 536 ms. Incrementing a

counter when a new circuit is observed takes on average

0.45 µs. For example, if 1 million circuits were observed,

the total time cost would be 450 ms over the epoch.

6.3 Strategic Attacker and Practical
Considerations in Tor

It is natural to ask if instead of allocating its entire

bandwidth to single guard and exit nodes, the adver-

sary can gain any substantial benefit by dividing their

available bandwidth and running multiple relays.

To understand the effect of this strategy, let us con-

sider the attack parameters φ and λ separately. When

λ = 0 and φ > 0, the adversary can gain no benefit

by changing the distribution of bandwidths; this follows

simply by linearity. For example, if the adversary runs a

single exit x̂ with expected Ex̂ circuits, then they gain at

most φEx̂ additional circuits by the active attack with-

out being detected. If the adversary were to split the

the bandwidth into multiple exits, the total expected

circuits remains the same and thus the additional cir-

cuits remains the same at a factor of φ.

When λ > 0, the adversary can gain some advan-

tage. In this case, the adversary can direct λ addi-

tional circuits without detection to each bin containing

a compromised exit. For nodes with large bandwidth,

φEx >> λ, the approach does not gain significant bene-

fit over a passive attack. The approach becomes mean-

ingful only when λ is comparable to φEx. Since λ is a

small constant, the strategic adversary is restricted to

considering multiple low bandwidth exits.

In practice, low bandwidth exits are not particularly

strong attack tools since they are unlikely to be chosen

by the Tor path selection algorithm. An adversary may

insist on rejecting circuits many times to compromise

them, but simple calculations show that this will mean

rejecting a circuit hundreds of times before the compro-

mised exit is picked. Clients are likely to assume that

the guard is defective, and change to a different guard.

An adversary may choose to deploy multiple exits

in the hope of increasing their chances, but it is not

possible to stretch this far. For example, the current

Tor system has ≈ 1000 exits, and deploying hundreds of

new exits will be easily detected as suspicious behavior.

6.3.1 Sampling to Avoid Adversary Interference

Suppose an adversary controls a proportion q
|M | of the

middle relays m̂ ∈ M and attempts to subvert detection

by misreporting frequencies.

As a strategy to avoid this interference, the aggrega-

tor can sample a random subset of K middle relays from

M and then aggregate the observed frequencies from

only these relays. The probability of the result being
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affected is reduced to 1 −
(

1 − q
|M |

)K

, which decreases

with decreasing q and K. For example, if |M | = 1000,

q = 10 and K = 100, the probability of result being af-

fected by the adversary is reduced to 63%. If q = 5, the

probability reduces to 40%.

Lemma 9. A sample size of:

n ≥
4

∑

i∈{1,...,K} pmi

(

12 ln(
2

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η]

)

+
4

∑

i∈{1,...,K} pmi

(

6 ln(
1

β
) ·

1

φp

)

+
4

∑

i∈{1,...,K} pmi

(

1

ǫ
· ln (

1

β
) ·

1

φ
·

1

p

)

circuits overall suffices to ensure that nB ≤ EB+φEx+λ

with probability at least 1 − β given that the aggregator

randomly selects K middle relays without replacement

from the set of |M | middle relays.

Lemma 9 describes the cost of this strategy, which is an

increase in the number of observations required (sample

size) by a factor of the reciprocal of the proportion of

network traffic observed by the sampled middle relays.

For example, if the sample of middle relays used to

report frequencies represents 50% of the total probabil-

ity mass over selecting middle relays, then the sample

size increases from n to 2n. See Appendix A.1 for the

proof of Lemma 9.

Choosing a large value of K which is likely to cover

a large fraction of the network reduces the basic sample

size, but the probability of the adversary affecting the

result increases as K becomes large. Therefore, there is

a natural trade-off here between protection against mis-

reporting and the increase in sample size required. The

exponential dependence on K suggests that sampling

alone results in a trade-off which could be further im-

proved, underlined by the relatively high revised prob-

abilities of the adversary affecting the result.

Despite this, sampling the middle nodes also has

the benefit of increasing the privacy of the algorithm, as

there is now a lower chance of any one group of circuits

being included in the result:

Observation 10. The subroutine of sampling has been

shown to increase the level of privacy obtained by an ǫ-

differentially private algorithm [2, 4, 5, 8, 10, 18]. As

outlined by Balle et al. [2], uniformly sampling K re-

lays from |M | without replacement would amplify the

ǫ-differentially private algorithm described, resulting in

a new value of ǫ′ = log
(

1 + K
|M | (e

ǫ − 1)
)

. For exam-

ple, if ǫ = 0.1, K = 100, |M | = 1000 the multiplicative

guarantee eǫ improves from 1.105 to 1.005.

6.3.2 Voting to Prevent Adversary Interference

An alternative approach to reduce the effect of the ad-

versary compromising up to q middle relays would be

for each middle relay to run the statistical test on its

own and submit the decision as a vote. The aggregator

may collect votes from K of the |M | middle relays, and

check the total against a threshold T . The aggregator

in this scheme works as follows:

1. Randomly select K from |M | middle relays.

2. Receive a binary vote (outlier or not) for each guard-

exit pair from each middle relay.

3. For each guard-exit pair, if the total number of pos-

itive votes exceeds a threshold T , identify that pair

as an outlier.

The defense provided by this method is to reduce the

influence of misreporting relays by collecting a vote, in-

stead of a potentially unbounded count, from each re-

lay. This strategy prevents a small number of compro-

mised relays from flipping the decision for any pair by

reporting a large value. It ensures a high probability of

correctly identifying an outlier pair despite the compro-

mised votes (Lemma 11).

Lemma 11. For up to q compromised relays, the prob-

ability of correctly identifying if a guard-exit bin pair is

an outlier is at least:

1 − e

−

(

1−
T +q

(1−β′)K

)2
(1−β′)K

2+

(

T +q

(1−β′)K
−1

)

given that each individual relay has a probability (1−β′)

of reporting the correct result for that pair.

See Appendix A.1 for the proof of Lemma 11. Note that

in order for an individual relay to have at least a (1−β′)

probability of reporting the correct result for a given

pair, they must individually satisfy the sample size re-

quirement. Therefore, similarly to sampling, the sam-

ple size bound must be scaled up by the reciprocal of

the individual’s proportion of network traffic, with β in

Lemma 9 replaced by β′.

Discussion of parameters. Increasing β′ increases

the probability of non-compromised relays voting incor-

rectly. Decreasing β′ increases the probability of correct

non-compromised votes, but also increases the size of
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the dataset required. Increasing the value of K increases

the probability that compromised relays will be included

by the aggregator. Decreasing K increases the relative

effect of including compromised votes. The severity of

this effect depends on the threshold T . Increasing T im-

plies that more positive votes are needed to identify a

pair as an outlier. T should be low enough to allow for

some errors by non-compromised relays, reducing the

required dataset size by allowing for a higher value of

β′. However, T should also be high enough to avoid com-

promised relays from easily overwhelming the votes of

non-compromised relays e.g. when T is close to K.

Using our previous example, if q = 10, |M | =

1000, K = 100, β′ = 0.1 and T = 50, the probabil-

ity of correctly identifying an outlier is 0.99. Doubling

the probability of incorrect non-compromised votes to

β′ = 0.2 changes the probability of correct identification

in this scenario to 0.95. Doubling the number of com-

promised relays to q = 20 results in a probability of 0.92.

Allowing T to be close to K with T = 95 (as advised

against), reduces the probability of correct detection to

0.68. The probability of correct detection approaches 1

as K increases.

7 Simulations

In this section we present experimental evidence demon-

strating the performance of the above algorithms for de-

tecting attacks on datasets of routes generated accord-

ing to the Tor process. The accuracy of the algorithm is

defined as its F1-score, which is a combined measure of

the false positive and false negative rates of detection.

The main observations are:

1. Attacks using high bandwidth relays can be de-

tected using a low amount of data (10 million cir-

cuits ≈ 10 minutes of traffic on Tor) when the pri-

vacy guarantee is strong (ǫ = 0.1). This is reflected

by an F1 score of over 0.99. (Section 7.4).

2. If all other parameters are held constant, increas-

ing the privacy guarantee from ǫ = 1 to ǫ = 0.1

causes a decrease in the F1 score from 0.99 to 0.84.

(Section 7.3).

3. This decrease in accuracy due to a higher level of

noise can be offset by increasing λ as ǫ decreases.

In this case, even for ǫ = 0.1 an F1 score of 0.98 is

attained. (Section 7.3).

4. Attacks which are spread out between many low

bandwidth exit relays are harder to detect. How-

ever, increasing the dataset size recovers the lost ac-

curacy, resulting in F1 scores of over 0.99, as long as

the guard relay is either high bandwidth or medium

bandwidth. (Section 7.4).

5. Attacks using many low bandwidth guards are the

most difficult to detect, with F1 scores of between

0.79 and 0.88. (Section 7.5).
See Section 7.2 for a full explanation of the terms used.

7.1 Data Sets

Two datasets were used in the completion of these ex-

periments.The first dataset (RW-Tor) captures a total

of 353, 331 successful circuits generated via Tor clients

from four different regions: Canada(Central, 86, 740 cir-

cuits), Frankfurt(Europe, 96, 072 circuits), Oregon(US-

West, 91, 397 circuits), and Tokyo(Asia, 79, 122 circuits).

Our clients selected routes using the latest version of the

Tor routing mechanism. See Appendix A.2 for details of

the collection procedure. Due to the large cost of gener-

ating the RW-Tor data set, a second data set (SYN-Tor)

was synthetically generated containing 1 billion circuits

(around a day of traffic across the Tor network [24])

by outputting routes with a distribution matching the

relay selection probabilities described by the Tor con-

sensus document labeled 2019-09-04-18-00-00.

Comparing Synthetic to Real World Tor Circuit

Data. Our expected number of circuits observed at a

node comes from the consensus documents generated by

the Tor network every hour. However, the actual circuits

that clients build depend on 1) the Tor path selection

algorithm that introduces additional rules for security

and performance reasons, 2) transient network effects,

and 3) path skews due to client location on the net-

work [19]. We use our RW-Tor dataset for this analysis.

Due to our limited sample size, we analyze the top

10 guard-exit pairs since we can be more confident

(β = 0.05) at this end of the range. Our results show

that these pairs are more frequently selected than is ex-

pected, on average 1.96 times more often (σ2 = 0.753).

This may be for the reasons we have already mentioned

above. To accommodate these phenomena, our scheme

can be tuned with this in mind by setting φ = 0.96, in

this case. With a larger sample size we could better tune

the scheme by analysing the network deviation across all

guard-exit pairs and updating the expected probability

distributions and scheme parameters accordingly.
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7.2 Simulation Set-Up (SYN-Tor)

The ability of the algorithm to detect an attack depends

on factors including the amount of data (n), the ex-

pected probability of the compromised relay (p), the

attack size (φ, λ) and the privacy level (ǫ). In order to

explore the relationships between these interacting fac-

tors, we defined several dataset sizes of between 2 mil-

lion and 1 billion circuits and examined the accuracy

of the algorithm for various attack scenarios. Follow-

ing [14], we let k = 6, our results then obscure changes

of up to 6 circuits per epoch.

The attack scenarios are defined by the ‘size’ of the

relays being compromised (p) and the magnitude of the

attack (i.e. the probability pA that a route through a

compromised guard will be rejected).

We consider two types of simulated adversary:

1. A high resource adversary who has the resources

available to run both a single compromised high

bandwidth guard and high bandwidth exit for the

desired amount of time. These relays have a ≈

3×10−3 proportion of the total available guard/exit

bandwidth.

2. A medium resource adversary who has the re-

sources available to run both a single compromised

medium bandwidth guard and medium bandwidth

exit for the desired amount of time. These relays

have a ≈ 1 × 10−4 to 1 × 10−5 proportion of the

total bandwidth

A low bandwidth relay has p < 1 × 10−6. Note that

the adversary can divide resources into multiple lower

bandwidth relays in each of the two cases above. For

example, a high resource adversary could compromise

approximately 10 medium bandwidth guard/exit relays.

In each scenario, the attacks were simulated by se-

lecting compromised relays of the appropriate expected

frequencies and then, with probability pA = 0.1, remov-

ing routes generated which contained a compromised

guard relay but did not pass through a compromised

exit relay. These routes were replaced with routes pass-

ing through the compromised exit relay. The appropri-

ate expected frequencies were those described by the

Consensus labeled 2019-09-04-18-00-00.

7.3 The Effect of ǫ

We first examine the effect which the level of privacy

guarantee has on accuracy. As shown in Figure 6, when

all other parameters are held constant, increasing the

strength of the privacy guarantee reduces accuracy due

to the addition of a larger amount of random noise. For

example, using a dataset of 50 million circuits letting

ǫ = 0.1 results in an F1 score of 0.84 whereas ǫ = 1

produces an F1 score of 0.99. Figure 6 demonstrates

that for low values of ǫ such as 0.1, the F1 score can be

improved by increasing the dataset size. In this case, for

ǫ = 0.1, the F1 score increases to 0.87 if the dataset size

increases to 1 billion circuits (∼1 day of traffic).

Larger improvements can be made by allowing λ to

increase as ǫ decreases to reflect the larger magnitude

of noise added. Figure 6 demonstrates that the loss in

accuracy is significantly reduced, with all F1 scores be-

tween 0.977 and 0.99, if we allow λ = − ln(0.05) 6
ǫ

in or-

der to reflect the 95% confidence interval for the Laplace

distribution with scale 6
ǫ
.

7.4 Detecting Different Attack Scenarios

In this section, scenarios including those which spread

the attacks in this way are considered.

High Resource Adversary. Suppose we define high,

medium and low bandwidth relays as before. A high re-

source adversary could then use any combination of a

single high bandwidth guard, some medium bandwidth

guards (i.e. 10) or many (i.e. 100) low bandwidth guards

with a single high bandwidth exit, some medium band-

width exits or many low bandwidth exits.

As shown in Table 1, detection quickly reaches an

F1 score of 1 using any combination of high and medium

bandwidth relays.

Datasize (mil.)

10 50 100 200 500 1000

High BW Guard

High BW Exit 0.99 1 1 1 1 1

Medium BW Exits 0.99 0.99 1 1 1 1

Low BW Exits .76 .98 .99 .99 1 1

Medium BW Guards

High BW Exit .99 .99 1 1 1 1

Medium BW Exits .92 .99 1 1 1 1

Low BW Exits .67 .69 0.79 0.92 0.99 1

Low BW Guards

High BW Exit 0.65 0.70 0.74 0.76 0.79 0.82

Medium BW Exits 0.65 0.66 0.66 0.67 0.72 0.74

Low BW Exits 0.65 0.66 0.66 0.66 0.66 0.66

Table 1. F1 Score vs datasize with ǫ = 0.1, φ = 10, λ = 150.

Attacks using low bandwidth exit relays with high

or medium bandwidth guard relays also reach an F1

score of 1 when the dataset size is increased to ap-
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A Appendix

A.1 Proofs of theoretical results

Lemma 12. Let X denote the sum of n independent

random variables, X1, ...Xn, where µ = E[X]. Then, for

δ ≥ 1,

P [X ≥ (1 + δ)µ] ≤ e− δµ
3 (6)

Proof. By [26], P [X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ

.

Given that ln(1 + δ) > 2δ
2+δ

for all δ > 0, we have

ln

[(

eδ

(1 + δ)(1+δ)

)µ]

= µ (δ − (1 + δ) ln(1 + δ))

≤ µ

(

δ

[

1 −
2(1 + δ)

2 + δ

])

= µ

(

−δ2

2 + δ

)

.

When δ ≥ 1, we have e
−δ2µ
2+δ ≤ e− δµ

3 . Thus :

P [X ≥ (1 + δ)µ] ≤ e
−δ2µ
2+δ ≤ e− δµ

3 .

Proof of Theorem 7:

Proof. We can split n into n = n1 + n2 where:

n1 ≥ 12 ln(
1

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η]

and

n2 ≥ 6 ln(
1

β
) ·

1

φp

Then,

n1 ≥ 12 ln(
1

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η]

=⇒ n1 ≥ 12 ln(
1

β
) ·

1

φ2
·

1

p
· m

[

(1 + γ) +
η

np

]

assuming that n1 > 1
p
. This implies:

n2
1p2 ≥ 12 ln(

1

β
) ·

1

φ2
· m[(1 + γ)n1p + η]

=⇒
n2

1p2φ2

m[(1 + γ)np + η]
≥ 12 ln(

1

β
)

=⇒ (φ
Ex

EB
)2EB ≥ 12 ln(

1

β
)

=⇒ (φ
Ex

EB
+

λ

EB
)2EB ≥ 12 ln(

1

β
)

=⇒ e−
1
4

(φ
Ex
EB

+ λ
EB

)2EB

3 ≤ β.

By Chernoff bound, with 1
2

φEx+λ
EB

≤ 1:

P [nB ≥ EB +
1

2
(φEx + λ)] ≤ e−

(

1
2

(φ
Ex
EB

+ λ
EB

)

)2
EB

3 ≤ β.

Now observe that:

φn2p > 6 ln
1

β

=⇒ φEx + λ > 6 ln
1

β

=⇒

(

φEx + λ

EB

)

EB ≥ 6 ln
1

β

=⇒ e
−

(

φEx+λ
6EB

)

EB ≤ β

When 1
2

φEx+λ
EB

> 1 this implies by Lemma 12, that

P [nB ≥ EB +
1

2
(φEx + λ)] ≤ e

−
(

φEx+λ
6EB

)

EB ≤ β.

Proof of Theorem 8:

Proof. We can split n into n = n1 + n2 where:

n1 ≥ 4

(

12 ln(
2

β
) ·

1

φ2
·

1

p
· m[(1 + γ) + η] + 6 ln(

1

β
) ·

1

φp

)

n2 ≥ 4

(

1

ǫ
· ln (

1

β
) ·

1

φ
·

1

p

)

.

The following result then follows in the same way as

Theorem 7, substituting φ with φ
2 and β with β

2 . A

sample size of n1 ensures that

P [nB ≤ EB +
1

4
(φEx + λ)] ≤ e−

(

1
4

(φ
Ex
EB

+ λ
EB

)

)2
EB

3 ≤
β

2
.

.
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For n2, we have:

φn2p ≥ 4
1

ǫ
ln(

1

β
)

=⇒ φEx ≥ 4
1

ǫ
ln(

1

β
)

=⇒ φEx + λ ≥ 4
1

ǫ
ln(

1

β
)

=⇒
1

2
e− 1

4 (φEx+λ)ǫ ≤
β

2
.

Since ζ ∼ Lap(0, 1
ǫ
) this implies:

P [ζ ≥
1

4
(φEx + λ)] ≤

β

2
.

Therefore, as n ≥ n1 and n ≥ n2:

P [nB + ζ ≥ EB +
1

2
(φEx + λ)] ≤

β

2
+

β

2
= β.

Proof of Lemma 9:

Proof. Middle relays m1, ...mK receive a proportion α =
∑

i∈{1,...,K} pmi
of the total network traffic.

The result describing the sample size in Theorem 8

still holds in this case, however now if no circuits are

observed by the network, only αno are expected to be

recorded by the sampled middle relays.

Therefore the result found in Theorem 8 increases

by a factor of 1
∑

i∈{1,...,K}
pmi

.

Proof of Lemma 11:

Proof. Say V =
∑

i=1,...,K vi where vi is a binary vote

from middle relay i indicating if a given pair is an outlier

or not an outlier.

If the pair is an outlier, the expected value of K

reported votes is (1 − β′)K. This is correctly identified

when q votes are misreported if V ≥ T + q. By Chernoff

Bound:

P (V ≤ (1 + α)(1 − β′)K) ≤ e−
α2(1−β′)K

2+α

Setting (1 + α)(1 − β′)K = T + q we obtain the

required bound:

P (V > T + q) ≥ 1 − e

−

(

T +q

(1−β′)K
−1

)2
(1−β′)K

2+

(

T +q

(1−β′)K
−1

)

A.2 Further Experimental Details for
RW-Tor

Our approach was to run 120 Tor clients (30 in each

of the four regions) in parallel, one per virtual machine

deployed on Amazon Web Services, and construct and

record successful circuits over the course of one hour.

This process was approved by the Tor research safety

board and our University ethics board.

We utilized Tor version 4.0.5 (May 2, 2019) which

we built from source. Our circuit collection script in-

teracted with the running Tor client through the Tor

controller port using the STEM library. We constructed

circuits as follows:

1. We allow Tor to start up

2. We download the consensus through STEM and

save it for future reference.

3. We drop the guards the client knows about so far,

thus forcing the Tor client to re-pick a guard(s) for

future circuit creation requests.

4. We create 1 circuit, logging each successful circuit

(i.e. three hops) built. The next circuit is requested

after the we log the previous one.

5. We repeat the last two steps 3600 times.

6. Finally we download the consensus again and store

it for future reference before ending the experiment.

Our 120 Tor clients attempted to construct 378943 cir-

cuits. However, in reality circuits do not always build

successfully (i.e. circuits of length less than three) within

the 1 second between the circuit creation request and

the logging. Removing those we captured 353331 cir-

cuits (1-2pm on 20/05/2020).

Circuits were created using Stem; specifically, the

via the module Controller. Note that our torrc configu-

ration uses the default settings, except that we open

a control port (un-commenting the line ControlPort

9051 ). We observed that the percentage of failed cir-

cuits was ≈ 6.7% on average across all the regions.
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A.3 Binning Algorithm PseudoCode

Data: Data size n, probabilities of exits.

Parameters γ, η, m

Result: Result a histogram of counts in bins.

S=sorted(x ∈ X) (exits descending order) ;

k=0 (bin number);

for s ∈ S in descending order do

if (∃x ∈ Bk : Ex ≥ (1 + γ)Es + η) or

|Bk| ≥ m then

k = k + 1 (move to next bin);

Bk = Bk ∪ {s} (initialize with the

current element);

else

Bk = Bk ∪ {s} (add to current bin)

end

end

Algorithm 1: Binning algorithm

A.4 PBA under various compromise rates

Retries per circuit, r

10% 20% 50%

pb-0.02 29 56 201

pb-0.2 2 4 20

Table 2. Number of retries per circuit, r, required to compro-

mise 10%, 20%, 50% of total circuits seen by the large and small

adversary.

A.5 Simulation Results

Datasize (mil.)

10 50 100 200 500 1000

Medium BW Guard

Medium BW Exit 0.97 0.98 0.99 0.99 0.99 0.99

Low BW Exits 0.65 0.65 0.66 0.68 0.98 0.99

Low BW Guards

Medium BW Exit 0.67 0.73 0.77 0.81 0.84 0.86

Low BW Exits 0.61 0.61 0.61 0.61 0.61 0.61

Table 3. F1 Score vs datasize with ǫ = 0.1, φ = 10, λ = 150.

Datasize (mil.)

10 50 100 200 500 1000

High Resource Adversary - Low BW Guards

High BW Exit 0.66 0.76 0.80 0.83 0.84 0.86

Medium BW Exits 0.66 0.73 0.77 0.80 0.78 0.84

Low BW Exits 0.65 0.70 0.72 0.72 0.77 0.80

Medium Resource Adversary - Low BW Guards

Medium BW Exit 0.66 0.78 0.83 0.85 0.85 0.88

Low BW Exits 0.63 0.68 0.69 0.69 0.76 0.79

Table 4. F1 Score vs datasize with ǫ = 0.1, φ = 10, λ = 150.
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