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Abstract—We study the problem of information brokerage in
sensor networks, where information consumers (sinks, users)
search for data acquired by information producers (sources).
In-network storage such as geographical hash table (GHT) has
been proposed to store data at rendezvous nodes for consumers
to retrieve. In this paper, we propose a double rulings scheme
which stores data replicas on a curve instead of one or multiple
isolated sensors. The consumer travels along another curve which
is guaranteed to intersect the producer curve. The double rulings
is a natural extension of the flat hashing scheme such as GHTs.
It has improved query locality, i.e., consumers close to producers
find the data quickly, and structured aggregate queries, i.e.,
a consumer following a curve is able to retrieve all the data.
Further, by the flexibility of retrieval mechanisms we have better
routing robustness (as multiple retrieval paths are available)
and data robustness against regional node failures. We show
by simulation that the double rulings scheme provides reduced
communication costs and more balanced traffic load on the
sensors.

I. INTRODUCTION

The sensor network community has envisioned a large
variety of applications, from scientific data collection, to
environment monitoring, to smart sensing and distributed con-
trol. Early applications of sensor networks for scientific data
collection and habitat monitoring have mainly adopted a many-
to-one traffic pattern to deliver raw sensor readings towards
data loggers [1], [31]. Emerging applications that combine
distributed sensing and control observe more interesting traffic
patterns and impose more stringent delay requirements. In
this paper we focus on the type of applications where sen-
sor networks provide large-scale intense monitoring over the
environment, and/or tracking of interesting targets, as well as
delivering the relevant data to the interested parties. Multiple
nodes, with their low-level readings, may collaboratively arrive
at a high-level semantic event report, e.g., ‘elephant sightings’,
based on which corresponding authorities need to be notified
for response. Users of the sensor networks may well be
embedded in the same physical space and inject queries to the
network at any time searching for certain types of data. This
category of applications covers a large number of scenarios,
from target detection and response, to resource management
and coordination, to health-care applications.

These large-scale sense-and-respond applications impose
several requirements on data discovery and delivery protocols.
Data queried by users are often highly selective. Sensor nodes
may detect numerous events of different types, among which
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each user is only interested in a much smaller subset. Real-
time applications and distributed control systems often impose
a high requirement on the access delay at users to ensure event
reports or control commands being delivered on time, since
information ages fast and stale data is useless. Furthermore, the
arrival of queries may be spatially and temporally distributed.
In order to serve users across time and space, in-network
information storage is needed to support information aggre-
gation and reasoning. History data helps to maintain temporal
coherence and consistency, e.g., in target tracking applications.
Data collected at spatially distributed locations may need to be
integrated in order to come up with a global conclusion, e.g.,
the limited views from multiple spatially distributed cameras
are combined to derive the semantics of an event.

In this paper we formulate the problem as the problem of
information brokerage which, specifies how data is collected,
processed and stored as well as how queries are routed to
discover relevant data. We model the problem as the matching
of information producers (also known as sources), that perform
data acquisition and event detection, with information con-
sumers (also known as sinks) who search for this information.
Naturally in a sensor network there can be multiple producers
that generate a variety of data types as well as multiple
consumers, possibly mobile, that search for relevant informa-
tion. We aim to develop a scheme for large-scale networks
that support low-delay queries for multiple users that search
selectively for data types discovered and stored in the network.

A. Existing work

Early work on information discovery and routing follow two
basic approaches: data-centric routing [14] and data-centric
storage [29].

Data-centric routing takes a reactive approach, as in directed
diffusion [14] and TinyDB [23]. Little collaborative prepro-
cessing is performed. Thus the discovery of the desired infor-
mation usually relies on flooding the network. This approach
targets at infrequent queries for streaming data type so that the
cost of flooding can be justified and amortized by the following
long-term data delivery. For queries from multiple consumers
for the same data source, the performance deteriorates as
data sources might be re-discovered separately by multiple
consumers. The delay incurred by information discovery may
also be too high for real-time queries or delivery of control
demands.

Data-centric storage is proposed for large-scale networks
with many simultaneously detected events that are not neces-
sarily desirable for all users [29], [26], as in the applications
considered in this paper. A producer leaves data on rendezvous



nodes for consumers to retrieve. Thus data across space and
time can be aggregated at rendezvous nodes. The geographical
hash tables (GHTs) [26] is a celebrated pioneer work in
this category. In GHTs, data is hashed by its data type to
geographical locations. The node closest to the hashed location
is identified as the rendezvous (home) node where data is
replicated at a set of ‘perimeter nodes’ around the home
node. The consumer applies the same hash function and
retrieves data from these nodes. Data and query delivery to
the rendezvous node is implemented by geographical routing
such as GPSR [17]. Later, the PathDCS [8] method generalizes
GHTs to avoid using a routing infrastructure and bases routing
entirely on trees rooted at landmarks.

GHTs have greatly reduced the communication cost and
energy consumption by avoiding network-wide flooding for
information discovery. Its simplicity is also attractive. While
GHTs being a fundamental data storage scheme, one can
improve on GHTs in the following directions. First, the data
retrieval scheme in GHTs is not distance-sensitive. Even
when the consumer is close to the producer, it may have to
go to a far away rendezvous node. Second, the rendezvous
node for popular data queried by many consumers imposes a
communication bottleneck. This artifact in traffic patterns may
eventually hurt the network lifetime. Third, as the rendezvous
node and the replication nodes near the rendezvous node are
vulnerable to regional node failures, structured replications
on mirror nodes need to be adopted to improve the system
robustness, at a higher cost of communication. Fourth, to
achieve storage balancing, data is randomly scattered in the
network. But with uniformly randomly distributed data it is
difficult to support, in a communication efficient manner, effi-
cient structured data organization or queries that require cross-
type data aggregations. Improvement of the flat hashing by
hierarchical hashing has been investigated with hash locations
aware of data correlation, i.e., similar data is stored close
by, or query locality, i.e., nearby consumers should discover
producers more quickly [19], [20], [12].

B. Double rulings

Our approach is to develop what is called double rulings
scheme (also called quorum-based schemes), an extension of
the basic GHTs hashing. The idea is to choose the rendezvous
nodes along a continuous curve, instead of one or multiple
isolated sensor nodes, as in the case of GHTs. The motivation
is two-fold. Data delivery from data source to a rendezvous
node is implemented by multi-hop routing. Thus it is natural
to leave information hints along the trail that the data travels
on, at no extra communication cost. Furthermore, data hint
replication on multiple nodes provides more flexibility for a
consumer to discover relevant data — it is easier to encounter
a 1D curve than a 0D node.

A basic double-ruling scheme works as follows: data or
pointers are stored at nodes that follow a replication curve
while a data request travels along a retrieval curve. Any
retrieval curve intersects the replication curve for the desired
data. Thus successful retrieval can be guaranteed. For an easy
familiar case, assume the network is a two-dimensional grid
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Fig. 1. A simple double ruling scheme on a grid.

embedded in the plane with nodes located at all the lattice
points (see Figure 1). The information storage curves follow
the horizontal lines. The information retrieval curves follow
the vertical lines. To be differentiated with the double rulings
we will propose in this paper, we call this simple double
rulings scheme the rectilinear double rulings. Notice that the
data retrieval curves are independent of the location of the data
sources. In fact, a consumer traveling along the vertical line
through itself is guaranteed to hit all horizontal storage lines,
and thus is able to find all the data stored in the network.
This double-ruling scheme is also distance sensitive — if the
producer and consumer are actually near each other, they must
also be near each other along the path connecting them using
the horizontal and vertical lines. By replicating data on more
nodes that are not in close proximity with data sources or
hashed locations, double rulings scheme enables better fault
tolerance against geographically concentrated node failures.

Despite all these good properties, the rectilinear double
rulings idea is so far restricted on networks with nice graph
structures, e.g., those that resemble grids [22], [34], [30], due
to its rich geometric flavor. Recently Fang et al. [11] has
studied double rulings for general sensor field with non-trivial
topology. The idea is to combine double rulings with GHTs
on a two-level routing hierarchy that partitions the sensor field
into tiles with respect to the global topology [10]. GHTs are
adopted on the top level of the hierarchy and a data type is
hashed to a tile instead of a single node. Inside each tile, a
double rulings scheme is invented to hash data on routing paths
such that retrieval paths will intersect the replication paths for
sure. We note that rumor routing [3] can be considered as
a probabilistic double rulings scheme. Information producer
takes a walk (either a random walk or a straight trajectory)
and leaves data pointers on the trail. A consumer travels along
another walk hoping to encounter one of the data pointers.
Any two walks have a probability to intersect. The consumer
sends out enough retrieval walks to have a sufficiently high
probability to meet with one of the event curves. Essentially
the challenge of designing good double rulings is to find data
replication and retrieval paths that intersect, are not too long
each (not too many replications), and are evenly spread out
across the network.



C. Our contribution

Our work is motivated by GHTs and previous double rulings
schemes. In this paper we investigate double rulings schemes
with a focus on the flexibility of retrieval mechanisms. We
propose a simple double rulings scheme that actually has
GHTs as a subcase. Same as in GHTs, a data item is hashed
by its data type (also called key in GHTs) to a geographical
location. However, instead of traveling along the geographical
greedy path to the rendezvous node, the producer travels along
a circle that goes through itself and the rendezvous node and
replicates data or data pointers on the way. We show that this
simple modification to GHTs suddenly allows a large variety
of retrieval mechanisms. The consumer does not necessarily
travel to the hashed location to retrieve the data. It only needs
to hit the replication curve. And we show that there are many
such retrieval curves. Thus the consumer has great flexibility
to design its retrieval strategy subject to the current network
load and energy level. Among these retrieval schemes, several
have special properties:

• Distance-sensitive retrieval: if the consumer is of dis-
tance d from the producer, the consumer can discover
the data with a cost of O(d), although neither has the
knowledge of each other’s location or the bound on
d. This is an attractive feature in many applications,
as information will be most useful, thus queried more
frequently, in the spatiotemporal locale where it was
collected.

• Aggregated data retrieval: in GHTs, if a consumer is
interested in multiple data types, such as detections of
both vehicles and animals, the consumer has to visit
multiple rendezvous nodes for these data types to collect
all the data. In our double rulings scheme, we show there
is a simple rule based on which one can design a curve
(actually many such curves) that will surely intersect with
all replication curves of desired data types. Thus the
consumer travels along a simple curve and gathers all
the information.

• Double rulings retrieval: the most powerful retrieval
mechanism is to travel along any double ruling curve
(among many such curves) that will intersect all replica-
tion curves. Thus a user can discover all the information
discovered and stored in the network. This has further
applications in data collection by data mules.

Our double rulings scheme can be considered as a special
extension of GHTs. By modestly increased replication, it sup-
ports distance-sensitive retrieval and structured data retrieval.
In addition, the double rulings scheme has also improved
load balancing and robustness to node failures. With the
flexibility in retrieval curves, the rendezvous node is no longer
a bottleneck since retrieval curves may not necessarily visit it.
We show that the data storage admits a local recovery scheme.
If the sensors in a certain region are destroyed, then all the
relevant data are stored on the boundary and thus can be locally
recovered. Compared with structured replication in GHTs or
hierarchical hashing that aims to improve data robustness, the
double rulings scheme imposes much lower communication
cost for replication, since the replicas are organized along a

closed curve that are easy to visit.
We name this new double rulings scheme spherical double

rulings, to be differentiated from the simple double rulings
scheme with vertical/horizontal lines (which is denoted as
rectilinear double rulings). As it may not be apparent, the
spherical double rulings philosophically generalizes rectilinear
double rulings and contains it as a subcase. The key insight
about the difference between spherical and rectilinear double
rulings and why the spherical double rulings provide more nice
features will be discussed in subsection II-D, after the descrip-
tion of our design. We discuss the implementation issues in
section III and compare its performance with GHTs [26] and a
previous double rulings scheme [11] in the simulation section.

II. SPHERICAL DOUBLE RULINGS

In this section we will use a continuous domain for the intu-
ition and easy explanation. In a discrete network, a continuous
double ruling curve can be easily implemented by a path in the
network in a greedy fashion [25]. The implementation details
are presented in the next section. As in GHTs, we assume that
the sensor nodes know their geographical locations and a few
parameters of the sensor field such as the diameter and the
boundary. We consider this a reasonable assumption, as local-
ization is a fundamental component for network functionalities
and is important for the integrity of sensor readings.

A. Projective mapping

For an easy explanation, we use projective geometry to map
sensor nodes onto a sphere, in particular, the stereographic
projection [5]. We put a sphere with radius r tangent to the
plane at the origin. Denote this tangent point as the south pole
and its antipodal point as the north pole. A point h∗ on the
plane is mapped to the intersection of the line through h∗ and
the north pole with the sphere. See Figure 2. One can view
the north pole as the location of an observer and the plane as
the canvas. This provides a one-to-one mapping of the plane
to the sphere, in addition, with the north pole mapped to the
point of infinity. More details on projective geometry can be
found in [27]. Stereographic projection preserves circularity.
Any circle on the sphere, including great circles, is mapped to
a circle in the plane. It is also a conformal mapping, i.e., one
for which local (infinitesimal) angles on a sphere are mapped
to the same angles in the projection. It does not preserve
distances or area, however. The distortion around the north
pole can be high.
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Fig. 2. Stereographic projection.

Let the sphere be defined by the equation (x−p)·(x−p) =
r2 where p is the center of the sphere, and r its radius. The



straight line from a point q to the north pole of the sphere
(denoted by n), is given by l(t) = q + tv, where t is the
parameter and v = n−q. Then the intersections of the straight
line with the sphere are defined by the roots of the quadratic
equation

t2(v · v) + t(2v · (q− p)) + ((q− p) · (q− p)− r2) = 0.

One root corresponds to the north pole n, and the other is the
projection. Thus, given the sphere, and a point in the plane,
we can compute the mapping of the point on the sphere.

Conversely, given a point h on the sphere, its projection on
the plane will lie on the straight line l′(t) = h + tw, where
w = h − n. We define the plane by (x − o) · z = 0 where
o is the origin, and z is the unit vector perpendicular to the
plane. Then the projection of h on the plane is given by

h∗ = ρ(h) = h +
(o− h) · z

w · z w.

The stereographic projection maps an infinite plane onto
a sphere. For a sensor network field, the area in which the
sensor nodes lie correspond to a finite region of the plane. Let
this region be called S. Thus, any point in S maps to a point
h = (x, y, z) on the sphere where z ≤ k for some 0 < k < 2r.
The radius r can be adjusted for a suitable value of k in this
range. The distance from the origin to the point h∗ = ρ(h) is
given by 2r

√
z/(2r − z). Also, the distance from the origin

to the point (x, y, 0) is given by
√

z(2r − z).
With the knowledge of the sensor field, we can place the

sphere at the center of the sensor field. Suppose the furthest
sensor node is of distance D from the origin (the south pole
of the sphere). Then the parameter k, i.e., the z-value of the
highest projection on the sphere, is at most 2r · D2

4r2+D2 . At the
end of this subsection we show that for a finite region, we can
choose r such that the mapping gives a constant distortion on
the distances. Specifically, we choose r as D/(2

√
ε), ε > 0.

k = 2rε/(1 + ε). Recall that circles on the sphere map to
circles in the plane. The next theorem shows that the lengths
on the circle on the sphere is not too much different from the
lengths on the circle in the plane. The proof is in the appendix.

Theorem 2.1. Consider any two points p1 and p2 on the sphere
with their projections on the plane, ρ(p1) and ρ(p2). If the
distance from p1 to p2 along a circle is d, and the distance
between ρ(p1) and ρ(p2) along the projection of the circle is
`, then we have

`

d
≤ 2r

2r − k
= 1 + ε.

When ε = 1, all the points map to the bottom half sphere.
We usually take ε as a constant larger than 1. For any two
points in S, their distance in S along a circle is within a
constant factor of the distance between their mappings on the
sphere along the corresponding circle.

We use d(·, ·) to represent the geodesic shortest distance
between two points on the sphere and | · | to represent the
Euclidean distance in the plane. Thus we have,

Corollary 2.2. |p∗q∗| ≤ (1 + ε)d(p, q).

Proof: The shortest distance between p, q on the sphere
must be along a circle. The distance between p∗ and q∗ along
the projected circle in the plane is bounded by (1 + ε)d(p, q).
Further, the Euclidean distance of two points is always smaller
than the distance along any circle. Thus |p∗q∗| ≤ (1 +
ε)d(p, q).

With this mapping specified, we will explain our replication
and retrieval schemes on a sphere. The above theorems imply
that we can focus on the distances on the sphere. The real
distances travelled in the sensor field are bounded by at most
a constant multiplicative factor1.

B. Data replication

For points on a sphere, there is an intuitive double ruling
scheme — any two great circles of the sphere must intersect.
Thus we can use great circles as the double rulings to replace
the horizontal and vertical lines in rectilinear double rulings.
There is one difference however. In rectilinear double rulings,
the replication curves and the retrieval curves purely depend on
the locations of producers and consumers. Through each node,
there is a unique horizontal line and a unique vertical line. A
point on a sphere, however, stays on infinitely many great
circles. This property implies that the producer and consumer
curves can have a lot of flexibilities, as we will see in the
following.

We design a double rulings scheme that actually includes
GHTs as a special case. Each data type is hashed to a
geographical location h∗ as in GHTs. When a producer
routes towards the hashed location, instead of following the
geographical greedy route as in GHTs, it follows the great
circle defined by its own location p and the hashed location
h, denoted by C(p, h). Data from different producers with
the same data type will be routed to the same hashed location
where information aggregation can be performed. All the great
circles with type C(∗, h) pass through the hashed location h,
as well as the antipodal point h̄. Thus there are actually two
rendezvous nodes, h and h̄, located far away in the network
that have all the information of the same data type. Notice that
the hashed location h depends only on the data type. Thus the
location h̄ can be derived by a simple geometric computation.
See Figure 3 for an example.

By the properties of stereographic mapping, a great circle
is mapped to a circle in the plane. In particular, the image of
any great circle of the sphere encloses the tangent point of the
sphere and the projected plane. These circles, i.e., replication
curves, may have different sizes and centers. Figure 4 shows
the actual routes followed by multiple producers.

The hash function picks two geographical locations h∗ and
h̄∗. The rendezvous nodes are selected as those closest to these
locations and can be discovered by greedy forwarding in a
similar way as in GHTs [26] (more details in next section). We
abuse the notation a little bit and use h∗ and h̄∗ to represent the
hashed rendezvous nodes as well. The data is always replicated

1This is subject to the assumption that the projective curve is within the
sensor field and the sensors are dense enough such that the hop count of the
path is proportional to its Euclidean length.
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Fig. 3. A point in the plane h∗ is projected to a point h on the sphere.
The great circles for two producers p, p′ are drawn in red.
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Fig. 4. Replication curves of multiple producers with the same data
type. The hashed location is denoted by the dark triangle. Both the
virtual replication circles and the actual routing paths are shown.

at the hashed rendezvous nodes h∗ and h̄∗. Data of the same
type from multiple producers is aggregated at the rendezvous
nodes h∗ and h̄∗. Dependent on the storage requirement, other
nodes on the replication curve either store the real data or
simply a pointer to where the real data is stored.

C. Data retrieval

With this new routing strategy from producers to hashed
locations, the retrieval scheme for the consumer q can be more
flexible than that in GHTs. Observe that the mapping described
in section II-A leaves an empty region near the north pole of
the sphere that projects to points outside the network, and
it is possible that a curve chosen by the consumer on the
sphere intersects the replication curve in this region. However,
it is possible to set up the projection in a way such that the
consumer always has a guaranteed strategy to retrieve the data.

Lemma 2.3. Any two great circles g1 and g2 on the sphere S2,
will have an intersection in the closed lower hemisphere Hl.

Proof: The sphere S2 is a double cover2 of the real
projective plane RP2 [24], with the great circles corresponding
to the geodesics of the projective plane. In particular, consider
2 copies of RP2 glued along the equator to form S2. By
definition, any two geodesics in the projective plane must
intersect. Therefore, great circles g1 and g2 on S2 must have
an intersection in each of the hemispheres, in particular, they
must have an intersection in Hl.

Theorem 2.4. If the sensor field fully contains a disk of radius
2R, then the projective sphere of radius R placed at the center
of this disk guarantees that any pair of great circles will have an
intersection that projects to a point inside the sensor field.

Proof: A point at the equator of the sphere corresponds
to a point in the plane that is at a distance of 2R from the
south pole, by similarity of triangles. Therefore, projection of
the disk of radius 2R centered at the south pole completely
covers the lower hemisphere of the projective sphere. By the
lemma above, any two great circles will have an intersection
in the lower hemisphere, which will thus project to a point
inside the sensor field.

Depending on the requirements of the application and the
specifications of the user, it may be desirable to use different
data retrieval strategies. We present a number of such retrieval
rules as well as their properties.

1) GHT retrieval: Obviously the same retrieval rule as in
GHTs can still be used, with two rendezvous nodes though.

Definition 2.5. GHTs retrieval rule: the same as in GHTs, the
consumer can route to the hashed location h∗ or h̄∗, whichever
is closer, to retrieve all the data of the same type.

This retrieval scheme, as in GHTs, suffers from two disad-
vantages. It is not distance sensitive. Even when the consumer
is actually close to producer, the hashed location might be
far. On the other hand, popular data items will create com-
munication bottleneck around the rendezvous nodes that hold
them. With the simple modification of the replication curve,
we show in this section several retrieval schemes that are
distance sensitive and also alleviate traffic hot spot for popular
data. Besides, it is attractive to have the flexibility of different
data retrieval schemes, simply for load balancing and routing
robustness.

2) Distance-sensitive retrieval: Assume that the distance
between a producer and a consumer on the sphere is d, we
would like to have a retrieval scheme where the distance
traveled by the consumer is O(d). Such a retrieval scheme
is named distance-sensitive. Notice that the consumer does
not know where the producer is and vice versa. The goal of
the retrieval scheme is to travel along a curve that hits the
replication curve as quickly as possible.

If we rotate the sphere so that the hashed location h is at
the north pole, then the replication curve is exactly a longitude
curve. The distance-sensitive retrieval scheme follows the

2That is, the sphere can be thought of as a union of two copies of the
projective plane. The two copies are glued together at the boundaries to form
the sphere, and diametrically opposite points on the sphere are the same point
on the projective plane.
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Fig. 5. The consumer follows the circle with fixed distance (dashed
circle) to the hashed location h to retrieve all the data with the same
data type.

latitude curve searching for a replication curve. We denote
by L(q, h) this latitude curve. It is not necessarily a great
circle. There are two intersections, u, v, between the retrieval
curve and the replication curve, as shown in Figure 5. Now
we claim that the closer one, in this case, u, is of distance
at most d · π/2 from the consumer along the latitude curve
L(q, h). Obviously, the minimum distance from a point q to a
set of points C(p, h) is always smaller than the distance from
q to one point in this set, for example p. The following lemma
says that the distance between q and u along the latitude curve
L(q, h) is at most a factor of π/2 of this shortest distance. The
proof of the lemma appears in the appendix.

Lemma 2.6. Take a longitude curve C through the north pole
h and a latitude curve L(q, h) through a point q. Assume that
u is the closer intersection of C and L(q, h) to q. Denote by k′

the distance between q and u along L(q, h) and k the shortest
distance from q to C on the sphere. Then k′/k ≤ π/2.

The consumer, however, does not know which direction to
go to on L(q, h) to find the closer intersection u. This can be
easily solved by a doubling trick, where the consumer chooses
a direction randomly and travels a distance 2i, with i initially
set as 0. If the consumer has not encountered an intersection
with C(p, h), it turns around, increases i by 1 and travels a
distance 2i along the opposite direction from q. The process
stops when the consumer discovers an intersection. Suppose
at this point we have a parameter i, then dπ/2 ≥ k′ > 2i−2,
where k′ is the distance from q to u along L(q, h) and d =
d(p, q), the shortest distance between p, q on the sphere. The
total distance traveled by the consumer is bounded by

2 ·
i−1∑

j=0

2j + k′ ≤ 9k′ − 2 ≤ 9πd/2− 2.

In summary, we have

Definition 2.7. Distance-sensitive retrieval rule: the con-
sumer travels along the circle on the sphere with equal distance
to the hashed location h, and uses a doubling trick to discover
the closer intersection with the replication curve. The distance
traveled by the consumer is at most O(d), if the distance
between producer and consumer is d on the sphere.

The bound on the consumer cost is for the worst case
scenario. We show by simulation later that the performance

is pretty good if we just choose a random direction. We
note that here we focus on the continuous replication and
retrieval curves. In a discrete network, the curves are realized
by routing paths. When two continuous curves intersect, the
corresponding routing paths may either have a common node,
or have a pair of crossing links. We remark that under a unit
disk graph model, if there are two crossing links, then one
node must have links to all the other three nodes. With wireless
broadcasting, all the nodes in the neighborhood can hear the
message and are able to respond if they have the data. In
practice, a consumer can also explicitly check the neighbors
along the retrieval path or a producer explicitly store pointers
on the neighbors along the replication path.

3) Aggregated data retrieval: The data replication scheme
enables a number of interesting retrieval schemes for aggre-
gated data. If the consumer travels along the latitude curve
L(q, h) with h as the north pole, it actually can discover all
the data with the same data type. In fact, any closed curve
that separate the hashed location h from its antipodal point
h̄ will intersect all the replication curves with the same data
type. Thus a consumer is given great flexibility in choosing the
retrieval curve according to the current network traffic load and
energy consumption level. We formalize the data retrieval rule
for aggregated data of several data types {Ti}, i = 1, · · · , m.

Definition 2.8. Aggregated data retrieval rule: the consumer
searching for all the data with data type {Ti}, i = 1, · · · ,m,
can follow a data retrieval curve that, for each data type Ti,
• either goes through the hashed location h = h(Ti) or h̄,

where the aggregates are computed and stored;
• or is a closed curve that separates h from h̄, collects all the

relevant data and computes the aggregates.

We remark that the above retrieval rule does not specify a
unique retrieval curve but allow infinitely many possibilities.
In fact, this is one of the advantages provided by this double
rulings scheme. The design of a retrieval curve satisfying
this rule can be performed at each consumer node. All the
information needed is the data type and their hashed locations.
Thus multiple consumers searching for the same data type may
choose, by their own decisions, different routes. This flexibility
of data retrieval rule enables load balanced traffic patterns and
routing robustness.

4) Double rulings retrieval: The double rulings property
enables a full power retrieval scheme. A consumer q following
any great circle will definitely cross all the producer curves.

Definition 2.9. Full power data retrieval rule: the consumer
travels along any great circle and is able to retrieve all the data
stored in the network.

5) Locality-aware data recovery: The idea of replicat-
ing on a 1-dimensional curve, rather than a 0-dimensional
point, greatly enhances the system robustness to failures. In
GHTs, geographical routing with the combination of greedy
forwarding and perimeter routing is used to deliver data to
the hashed node. A planar subgraph, such as the relative
neighborhood graph or the Gabriel graph, is extracted from
the connectivity graph. When greedy forwarding can not find a
neighbor closer to the destination, perimeter routing is adopted
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Fig. 6. (i) Consumer latitude curve. (ii) Consumer great circle curve. Dark triangle denotes the hashed location; the red paths denote producer
replication curves; dashed blue paths denote retrieval curves; yellow square denotes one producer and magenta square denotes one consumer.

to traverse the face in the planar graph. Specifically, the hashed
geographical location, most likely, does not have a sensor
node right there. Thus perimeter routing will be adopted to
tour around the face that encloses the hashed location. The
basic GHTs scheme relieves data loss at the home node, the
one closest to the hashed location, by replicating the data
around these perimeter nodes. However all the perimeter nodes
are still in geographical proximity thus a ‘block error’ that
destroys the sensors in a nearby region may destroy all the
replicas. Structured replication can be used to improve the
system robustness and relieve the traffic bottleneck at the home
rendezvous node, in cases when too many events with the
same key are detected in the network. Producers only put
data at a nearby mirror node, while consumers may need to
access multiple mirror nodes until they get what they want.
The mirror nodes are chosen in a hierarchical way by using
quad-tree structure. For the 1-level replication, the sensor field
is partitioned into 4 equal size quadrants. The hashed location
falls in one of them. 3 mirror nodes are chosen as those
with the same relative locations inside other quadrants. More
replication can be made in a recursive way. Such structured
replication is costly since the mirror nodes are chosen to be
geographically sparse. Replication along a curve improves the
robustness without paying extra communication cost. Further
we show that our replication rule supports local recovery when
a group of nodes die.

In our spherical double rulings scheme, the hashed node
is no longer the single point of failure. If the nodes in the
neighborhood of the hashed node h∗ are destroyed, the nodes
on the boundary of the destroyed region contain all the relevant
information and can be used to recover the aggregates. This
is possible as long as the destroyed region does not include
both the hashed location h∗ and its antipodal point h̄∗. Since
h∗ and h̄∗ are geographically fairly apart in the network, a

local disaster is not likely to cover such a large region. All
replication curves for this data type will leave data replicas
on a curve connecting h∗ and h̄∗, thus intersect the boundary
of the destroyed region. So all the data replicated inside the
destroyed region have their corresponding replica on some
boundary nodes. These boundary nodes can be detected by
a local greedy sweeping as in [9], or by using a topological
method as in [33].

D. Spherical and rectilinear double rulings

After the detailed description on spherical double rulings
and the various nice features it provides for data retrieval and
recovery, we will give some insights on the key difference
between spherical and rectilinear double rulings and why
replacing vertical/horizontal lines with circles suddenly makes
our lives so much easier. The following discussion is on a
philosophical and mathematically abstract level and the goal
is to help the readers better understand the essence of our
design.

Let us begin with some superficial differences between
spherical and rectilinear double rulings. Through each point in
a plane, there is only a unique horizontal and vertical line. Data
replica are left on the horizontal line through the producer,
which depends completely on the producer location. Different
producers (not on the same horizontal line) with the same data
type store data on parallel horizontal lines. Thus data items
with the same type do not encounter each other and can not
be aggregated in-network. The nice feature of spherical double
rulings is to introduce a hash location that brings the producer
curves with the same data type together at the hashed node.
This allows data aggregation at the hashed location, consistent
aggregated data query, etc.

Note that this has particular advantage in aggregation of
dynamic data. If new events of a particular type take place



during the network operation, then the rectilinear double ruling
will simply store this information along a horizontal line,
without aggregating it with existing data of that type. In
the spherical double ruling case, this information will get
aggregated with the other data of that type at the common
hash node, at no additional expense.

From a projective geometry’s point of view, however, two
horizontal lines do intersect — at the point of infinity. We
can consider the rectilinear double rulings a special case of
spherical double ruling — with all data types hashed to the
point of infinity! Obviously there is no reason that all data
types be hashed to the same node (point of infinity, i.e.,
the north pole of the sphere). In addition hashing to the
point of infinity is not feasible in a finite sensor field. The
spherical double ruling scheme essentially makes two natural
modifications to rectilinear double rulings to do it right: we
distribute hash locations grouped by data types and bring all
hashed locations back to be within a finite sensor field.

III. IMPLEMENTATION

We present a number of implementation issues of the double
rulings scheme for a sensor networks, from the aspect of
information stored at a sensor and the implementation of the
replication and retrieval paths.

A. Information stored at a node

The information kept at a node is very small. Each node
stores its own location and a few parameters about the stereo-
graphic projection used in the scheme. Every node keeps the
global content-based hash function that takes a data type, e.g.,
types of target detections, and outputs a hashed location on
the sphere. The hash function can be either a random function
or a function that is locality-sensitive, i.e., similar data is
hashed to similar locations [6]. The choice of this function
is dependent on the applications. As mentioned earlier, data is
either replicated on all the nodes along the replication curves;
or, for the sake of saving storage, data is only replicated
selectively on some nodes (say, uniformly sampled) along the
curve and pointers are left on the rest of them pointing to the
closest replica on the curve. A retrieval path hits the replication
curve, gets the pointer and travels to the closest replica to
find the data. More replication reduces data retrieval cost. We
evaluate this tradeoff in the simulation section.

B. Greedy routing on a curve

The replication curve and retrieval curve are implemented
as routing paths in the sensor field. We use the mechanism
described in [25] to allow producers and consumers to re-
spectively replicate and retrieve data along a curve. A node
is passed a parametric equation of the curve in terms of a
parameter t, and the direction along the curve for forwarding
the message. Using the coordinates of its neighbors, a node
finds a neighbor that is further along the curve than itself in
the required direction, and sends the message to this neighbor.
This can be done by taking a uniform sampling along the
curve within a certain distance of the node, and computing
the nearest such sample for every neighbor. Further, we use

the greedy version of this scheme, that is, the message is
forwarded to the neighbor who advances furthest along the
curve in the required direction. This ensures that replication
or retrieval is completed in the fewest number of steps. We
also require that the next hop is not too far from the virtual
curve, say within 1 unit. For example, in Fig 7 the node S,
when forwarding messages along curve C in the direction
indicated, can only forward messages to its neighbors in the
shaded region.

1 unit

S

C

Fig. 7. Routing on a curve.

In networks with relatively low density of nodes, it is
possible for a message to arrive at a node that has no neighbor
in this region. When that happens, we perform a local flooding
and search 2-hop neighbors. In a network with uniformly
randomly deployed sensor nodes, simulation results show that
the chance of finding a greedy neighbor is high even in
networks with average degree as low as 5 or 6. It is easy

Avg degree 5 6 7 8
Avg 2-hop Neighbor 12 15 18 21
Min Success Prob. 0.94 0.97 0.985 0.992

TABLE I. Average number of 2-hop neighbors and the minimum
probability of finding a 2-hop neighbor for greedy forwarding for
different node degrees.

to see that the feasible region for forwarding always contains
a sector of angle θ1 = π

2 − arcsin ( 1
2(c+1) ), where c is the

radius of the circle along which routing is done. If we consider
a 2-hop neighborhood, then the corresponding sector is given
by an angle θ2 = π

2 − arcsin ( 2
2(c+1) ). Thus, the probability

of finding a suitable neighbor within a 2-hop neighborhood
is at least 1 − ( 2π−θ2

2π )n2 where n2 is the number of 2-
hop neighbors. Table I shows the average number of 2-hop
neighbors for different node degrees in a poisson distribution,
and the corresponding worst case probabilities of a node
finding a suitable 2-hop neighbor. For small values of c, the
curve is small, and a search in a small neighborhood will
always yield the results. The values in table I were computed
with c = 3. For larger values of c, the probability can only be
larger.

C. Dealing with sensor field boundaries

Recall that in a finite sensor field, we choose the location
and size of the sphere so that the distance distortion of the
projective mapping is bounded by a constant. Since the sphere
maps to an infinite plane we actually chop off the region
around the north pole, as no sensors are mapped there. The
parameters used in the projective mapping (section II-A) do



make sure that the bottom half sphere are within the sensor
field.

A great circle that goes near the north pole may not be
completely within the sensor field. The intersection of two
great circles, if close to the north pole, may also be outside
the sensor field. In our implementation, a producer sends out
replication data packets along both directions of the replication
circle, which, when hit the network boundary, simply stop
there. In other words, we only keep the replication curve that is
within the finite sensor field. Still the actual replication curve,
either a complete circle or not, partitions the sensor field in
two parts, inside and outside the circle, such that any curve
that visits the two parts will have to cross the replication curve.

Now we show that an incomplete replication circle is not
much of a problem for data retrieval. To see this, assume
the sensor field is circular and the sphere is placed at the
center (how to deal with irregular sensor field and holes is
challenging and will be discussed separately). Equivalently,
the sensor field maps to the sphere except the cap above a
certain latitude curve. First, any two great circles have two
intersections. If one of the intersections is outside the sensor
field (thus on the top half sphere), the other one must be on the
bottom half sphere and be within the sensor field. This show
that full power retrieval can always find an intersection inside
the sensor field and thus retrieve the data. Similarly, among the
hashed location and its antipodal point, one of them must be
inside the sensor field. Thus any closed curve that separates
the hashed location and its antipode will certainly intersect
the (possibly incomplete) replication curve. This includes the
distance sensitive retrieval curves and aggregated data retrieval
curves.

D. Networks of low density

In a network with low density it is possible that routing on
a curve will fail at small local holes, where it is not possible
to find a neighbor that makes progress or all such neighbors
are far from the curve. This can be handled using a variation
of face routing. In this variation, we simply follow the face
boundary until we detect a second crossing with the curve, and
then take up the curve again. We always follow the boundary
in a fixed orientation (clockwise/counterclockwise). This will
guarantee that for any two curves that intersect in the interior
of the face, the corresponding paths will intersect.

IV. SIMULATIONS

We show that simulation results confirm our assertions on
the properties of double rulings. In this section, we compare
the performance of double rulings and GHTs for both retrieval
quality and load balancing.

A. Simulation setup

We simulated double rulings, GLIDER and GHTs on a
network with 4225 nodes in a square field of size 35 × 35
units. The communication radius of each node was taken to be
1 unit, hence the connectivity was that of a unit disk graph. The
average number of neighbors was 9.5. Nodes were arranged
in a grid model with perturbation. Each node deviates from its
grid position by a random distance less than 0.5 units along

each axis. Producer and consumer costs were measured in the
number of hops each had to take along their respective curves.
Greedy routing along a curve was used for replication as well
as for retrieval. The parameter θ in the parametric form of
a circle was used as the parameter for routing. To prevent
the greedy forwarding from straying a large distance from
the actual curve, forwarding was restricted to within a unit
distance of the curve on the plane. For both distance-sensitive
retrieval or full power double rulings retrieval, the consumer
selects the retrieval curve, chooses a random direction and
tours along the circle until it hits the desired replication
curve(s). Once data is discovered, it is delivered back to the
consumer in one of three ways: (i) finish up the remaining
circle and get back to the consumer; (ii) turn around and follow
the reversed path back to the consumer; (iii) use any routing
scheme available in the system to deliver the data back to the
consumer. Producers need only to replicate data, hence the
cost for a producer is that of following a great circle producer
curve.

B. Distance sensitive queries

It is desirable that consumer nodes are able to access
data from nearby producers at a low cost. In GHTs, the
consumer has to communicate with the same rendezvous
node irrespective of the relative location of the producer. We
simulated both schemes with pairs of producers and consumers
at varying distances.

We also simulated the scheme of [11]. This is a scheme
integrated with the GLIDER [10] landmark based routing
protocol. Essentially a set of landmarks is selected in a
preprocessing stage and the network is partitioned into Voronoi
tiles, each formed by a landmark and all the nodes nearer to
it than other landmarks (in the connectivity graph sense). This
Voronoi tiling and its dual combinatorial Delaunay complex, in
which two landmarks are joined by an edge if and only if their
respective Voronoi tiles share common boundary, are used to
aid routing. In [11] a distributed hash table is used to hash
data into a tile, data storage inside the tile is implemented by
a double-ruling scheme, which ensures information retrieval
within each tile. As the producer travels to the hashed tile
using GLIDER, and in every tile traversed, it replicates data on
a “finger tree” with 3 arms. This guarantees that any retrieval
trajectory passing through the tile will intersect the one of
the arms. Thus, the consumer can find the information before
reaching the hashed tile, and for a nearby producer, it is likely
that the consumer will not need to travel all the way to the
hash location.

It was mentioned in section II-B that in a double ruling
scheme, actual data may be stored at a few nodes, while other
nodes on producer curve store pointers to these. This saves cost
of storing data, but increases communication cost for retrieval.
We simulated the effects of this form of data replication.

For a particular distance value, we randomly select 100
pairs of producer/consumer. Figure 8(a) shows the simulation
results averaging on 100 values for each plot. The different
plots for double ruling are for different intervals of replication
of the data. In all schemes we assume that data is delivered
back to the consumer along the reversed data discovery path.



For GHTs, in which the average cost of retrieval is not
related to the distance between producer and consumer, the
consumer incurs the same cost in accessing local data as
that for accessing remote data. The GLIDER based scheme
is more distance sensitive, but the cost increases rapidly with
increasing distance, and in the worst case is as bad as GHTs.
With double ruling, the consumer searched for data along a
latitude circle with respect to the hash location. There are two
observations, the consumer cost in double rulings scheme is
consistently smaller than that in GHTs, and is smaller than
the GLIDER based scheme in almost all cases, except when
the replication interval is very large. The average cost and
the distance between producer and consumer exhibit a linear
correlation for distances up to about half the length of the field,
beyond that, the average cost does not increase. The glider
based scheme performs well at short distances, because there
the producer and consumer are likey to lie in the same tile,
thus the consumer finds an intersection in the first tile itself. As
the distance increases, the expected distance between the tiles
on the producer’s curve and those on the consumer’s curve
increases.

In networks of low density, we need to use face routing to
guarantee delivery, as described in section III-D. We simulated
this effect on networks of various densities by varying the
number of nodes in fixed area. The plot in fig. 8(b) shows
the average cost for 100 queries in networks with average
number of neighbors per node varying between 4 and 12. The
result shows that the expected cost does not really escalate
too much. Note that, since at an average degree of 4 or 6, the
network contains many holes, these results are representative
of networks with non-trivial topologies.
C. Double rulings retrieval for aggregated data

With queries involving different data types, double rulings
scheme searches for data in a great circle, and can retrieve data
at a fixed cost of 77.5 irrespective of the number of producers
or data type. Whereas in GHTs, the cost is proportional to
the number of different data types required, if we make a
round trip to the hash location for each type3. Table II shows

No. Data Type 2 3 4 5
Consumer Cost 107.26 145.24 201.38 248.46

TABLE II. Average consumer costs for GHTs with aggregate queries
for different types of data.

the consumer cost with aggregate queries for varying different
types of data. The value is averaged on 100 randomly selected
consumers for each column. It shows that for aggregated
queries that search for more than 1 data types, it is almost
always beneficial to adopt double rulings scheme instead of
GHTs.

D. Replication cost and tradeoff between storage and commu-
nication costs

In GHTs, structured replication can be used for data repli-
cation at several hash locations. The network is partitioned

3One can also seek for the minimum tour visiting all hashed locations. This
is the traveling salesman problem and is NP-hard to solve.

recursively by a quad-tree. For a given hashed location and
a given hierarchy depth d, we can compute 4d − 1 mirror
images, for each square in the quad-tree with depth d. In our
simulation, we set d to 1 and divide the entire network region
into 4 quadrants. Thus, for each point, there are 3 mirrors in the
other 3 quadrants. Producers replicate data at both the original
hashed location and mirrors, so that consumers can retrieve
data by accessing the closest location. Double rulings, on the
other hand, selects a curve, and replicates data at nodes along
this curve. We compared the performance of GHTs (with and
without replication) against that of double rulings where the
consumer uses a latitude curve as well as where the consumer
uses a great circle to retrieve data. All of the simulations run
over 500 producer/consumer pairs.

Table III shows the producer and consumer costs for double
rulings and GHTs. In GHT, producer cost higher than the
one way consumer cost (note that table III represents round-
trip costs), because the producer always replicates data in
perimeter mode while consumers stop as soon as they reach
any perimeter node. In a bad case, the perimeter may turn
out to be the outer perimeter of the network, increasing
the average producer cost by a large number. Structured
replication improves consumer cost in GHTs at the expense
of increasing producer cost several times. The producer cost
in our double rulings scheme is better than that for the GHTs
with replication, and worse when no replication is used. For
the consumer cost, the average cost in our scheme is better
than that for the GHTs without replication, and worse when
1-depth structured replication is used.

We simulated the effect of storing data at regular intervals
(one node in every R hops stores the data) along the producer
curve, and at h and h̄ with 100 pairs of randomly chosen
producers and consumers. The retrieval process, after meeting
the producer curve, travels to the nearest replication point to
obtain data.

Figure 8(c) shows the relation between storage costs and
average additional communication incurred by the consumer.
When storage cost is decreased, that is, the interval of repli-
cation is increased, the additional cost of communication
increases linearly with it. Beyond a certain value that depends
on the size of the field, the replication interval does not affect
the communication costs. This is because in such cases, h and
h̄ become the actual points of retrieval in almost all cases.

Figure 8(a) shows the effect of different replication intervals
on the distance sensitiveness of retrievals. Larger replication
intervals increase consumer cost at all distances, but the
scheme is still desirable compared to GHTs, and is better than
the GLIDER based scheme except at very large intervals of
replication. However, we should note that the GLIDER based
scheme incurs high storage cost, by replicating on all branches
of the finger tree.

E. Non unit disk graphs

We applied our method to quasi unit disk graphs. In a quasi
unit disk graph [18] with parameter d ≤ 1, if two nodes are
within distance d, then the edge between the two exists, if
they are at a distance more than 1, the edge does not exist;
while for other distances, the existence of the edge is uncertain.
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Fig. 8. (a) Distance between producer and consumer v.s. the average cost incurred by the consumer to retrieve information in GHTs, the
GLIDER based scheme and in double ruling with different replication intervals. (b) Average degree Vs Average retrieval cost. (c) Additional
communication required to retrieve actual data from nearest replication point for different replication intervals.

Producer cost Consumer cost (round trip)
GHTs without structured replication 44.9 45.6

GHTs with 1-depth structured replication 172.5 17.4
Double Ruling with latitude consumer curve 77.5 29.0

Double Ruling with great circle consumer curve 77.5 34.6

TABLE III. Average producer and consumer costs for GHTs and double rulings. The consumer cost includes the cost of returning the data
to the consumer, assuming that data is returned along the identical reversed path.

The quasi-UDG graph was computed on the same network of
about 4225 nodes. We varied the node density to keep the
average node degree fixed at 9.5. In such a case, success rate
was extremely high, above 96% for all values of d. Therefore,
we do not plot this result. However, if density is constant,
with varying d, the average degree varies between 5 at d = 0
and 9.5 at d = 1. Figure 9 shows the percentage of successful
queries against the parameter d. The discussion above suggests
that the drop in performance is more due to the low degree
than any particular property of the quasi-UDG.
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F. Load balancing

In a sensor network, it is important to have schemes that
balance the load of operation across the nodes in the network.
This avoids bottlenecks and improves the network lifetime.
To evaluate load balancing properties of GHT and double
ruling schemes, we simulated a scenario where there is a single
producer, and 500 different consumers searching for the data.

Figure 10 (i) is a plot of loads across the network when
using double rulings. The load of each node is measured by the
number of messages passing through it. We used the distance-
sensitive retrieval mechanism. The load is seen to be well

distributed across the network with no particular preference
for occurrence of peaks signifying high loads. Further, the
node suffering the highest traffic has a load of only 18. The
highest load created by GHTs is an order of magnitude higher
(126). Figure 10 (ii) shows the load distributions with GHTs.
Nodes near the hashed location suffer much higher loads than
the rest of the network, which is likely to result in a bottleneck
slowing down the network, and also draining the batteries of
these nodes rapidly.

V. CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper we propose a simple replication mechanism
that supports flexible retrieval mechanisms. In the future, we
would like to combine the data replication mechanism with
mobile data collectors such as data mules. Another direction
is to investigate natural double rulings mechanisms in sensor
field with irregular geometry.

A. Double rulings with mobile nodes

Information collection and delivery can explicitly use mo-
bile nodes, such as data mules [15], [21], [32], [16], [28]. This
is motivated by the observation that nodes around static sinks
suffer from unbalanced traffic and energy consumption. Fur-
thermore, controlled mobility helps to get around fundamental
capacity problems imposed by insufficient sensor density. In
an extreme case, such as a disconnected network, mobile
nodes have to be involved to deliver information between
two disconnected components. However, designing the moving
trajectory for data mule is challenging. One obvious metric
is to have the data mule travel a short distance. Finding the
shortest path that visits all the communication ranges of the
nodes with data is a traveling sales man problem and is NP-
hard [2].

We observe that data mules can be naturally combined with
double ruling approaches to shorten the traveling distance of



the data mule, with a modest in-network storage and aggrega-
tion. A mobile node physically traveling along a consumer
curve is able to retrieve all the data in the network. This
substantially decreases the distance traveled by the data mule.
If the network is uniformly deployed in a squared region of n
nodes. The shortest traveling salesman path is roughly O(n)
(visiting each node), but the double ruling curve has length
roughly O(

√
n).

B. Alternative double ruling schemes

In this paper we introduced the spherical double rulings
scheme and compared with prior work on rectilinear double
rulings. There are many ways to design two families of
double rulings curves to support data storage and retrieval
in a network, for example, by using concentric circles and
radial lines, or by using gradient lines and iso-contours with
an artificial single peak potential field. The choice of proper
double rulings curves depends on application scenarios and
requirements. As suggested in this paper, special properties
of the double rulings curves may bring particular benefits for
improved efficiency and load balancing.

Networks of irregular shapes. In this paper we focus on
a double rulings mechanism for a nicely distributed sensor
field. In the case that sensors are deployed in an irregular
shape with holes, the double ruling curves may accumulate
on the hole boundaries. Thus we will need to take the global
geometry into consideration and define double ruling curves
in a virtual coordinate system that adheres to the underlying
network geometry. For example, in the virtual coordinate
system defined by the medial axis of the sensor field [4], there
are natural double rulings curves, those that are parallel to the
medial axis and those perpendicular to the medial axis.

Another approach to apply double rulings mechanism in a
sensor field with complex geometry is to partition the sensor
field into nicely shaped components and construct double
ruling curves for each piece. This is the approach taken in
the GLIDER-based scheme [11], in which the double rulings
scheme is in the virtual coordinate system defined by landmark
distances. In that case a data mule collecting data from the
network only needs to visit each piece and pays a traveling
cost proportional to the minimum spanning tree connecting all
the segmented pieces.

C. Advanced hashing

An additional variance that is not discussed in this paper
is the choice of data-centric hash functions. The choice of
hash functions is orthogonal to the double rulings scheme.
In this paper we had used a uniform random hash function.
Advanced hashing schemes, such as the one used in DIFS [13]
or any distance-sensitive hashing schemes [7] that preserve
data proximity can be directly incorporated. For example, we
may prefer to hash similar data types nearby that may facilitate
efficient aggregated data retrieval. The discussion of advanced
hashing mechanisms and their interaction with double rulings
will be interesting future work but is beyond the scope of this
paper.

APPENDIX A
PROOF OF THEOREM 2.1

Proof: The proof basically follows from the fact that
projective transformation preserves cross ratio. Denote by C
the segment along the circle on the sphere between p1 and p2

and C∗ the segment along the projected circle between ρ(p1)
and ρ(p2). The length of C is d, the length of C∗ is `. First
we notice that there is a one-to-one mapping under ρ between
points on C and points on C∗. Now d =

∫
C

dx, where dx is a
miniature segment on C. Similarly, ` =

∫
C∗ dx′, where dx′ is

the projection of dx in the plane. See Figure 11. Now we take

p′

C∗

C

S

N

p q

p∗ q∗

Fig. 11. The length of a segment of a circle on the sphere is bounded
from the length of its projection in the plane.

a tiny segment pq on C with length dx → 0, dx = |pq|. The
projection of pq, denoted by p∗q∗ has length dx′ = |p∗q∗|.
Denote by N is the north pole, S is the south pole and p′ is
the projection of p on line segment NS. We now have

dx

dx′
=

|pq|
|p∗q∗| =

|Np′|
|NS| .

This last equality can be argued as follows. The vector −→pq , the
tangent vector at p along C, can be decomposed as the sum of
a latitude component v1 (parallel to the plane) and a longitude
component v2 (derivative along the longitude curve through p).
Correspondingly v2 and v1 have projections as v∗2 along the
direction p∗S and v∗1 perpendicular to v∗2 , respectively. By the

one-to-one mapping we have
−−→
p∗q∗ = v∗1 + v∗2 .

For the latitude component v1, v1 is parallel to v∗1 . We have
||v1||/||v∗1 || = |Np|/|Np∗| = |Np′|/|NS|, by the property
of projection and similarity of triangle Npp′ and NpS. For
the longitude component one can verify that the equality
holds as well. Specifically, take the plane defined by N, p, S
and define S as the origin and Sp∗ as the positive x-axis.
Denote the coordinate of p∗ is (x, 0). Then the coordinate of
p is (4r2x/(x2 + 4r2), 2rx2/(x2 + 4r2)). We compute the
length of the tangent vector at p, which is 4r2/(x2 + 4r2) =
|Np′|/|NS|. Thus ||v2||/||v∗2 || = |Np′|/|NS|. Putting them
together we have

|pq|
|p∗q∗| =

||v1 + v2||
||v∗1 + v∗2 ||

=
|Np′|
|NS| .

Now, since p′ has height (z-coordinate) at most k, we have

|Np′|
|NS| ≥

2r − k

2r
=

1
1 + ε

.

Thus, d =
∫

C
dx ≥ ∫

C∗ dx′/(1+ε) = `/(1+ε). The theorem
is true.
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Fig. 10. (i) Load distribution in double rulings with 500 consumers and one producer with one data type. (ii) Load distribution in GHTs with
500 consumers and one producer with one data type.

APPENDIX B
PROOF OF LEMMA 2.6

Proof: Suppose the longitude curve C(p, h) through p
and the north pole h. The latitude curve through q is denoted
as L(q, h). u is the closer intersection of C(p, h) and L(q, h)
to q. Denote by k′ the distance between q and u along L(q, h)
and k the shortest distance from q to C. See Figure 12. We
want to argue that k′/k ≤ π/2.

φ

C(p, h)p

u
q′

o′

θ

L(q, h)

o

h̄

q

h

Fig. 12. Denote by k′ distance between q and u along L(q, h) and k
the shortest distance from q to C. Then k′/k ≤ π/2.

We denote by o the center of the sphere and o′ the center
of the latitude circle L(q, h). The angle between the line oq
and the horizontal line is defined as θ, 0 ≤ θ ≤ π/2. Then the
radius of L(q, h), r′ = r cos θ, where r is the radius of the
sphere.

Suppose the angle ∠qo′u = φ. 0 ≤ φ ≤ π/2. The
distance between q and u on L(q, h), k′ = r′φ = rφ cos θ.
Take q′ as the mirror point of q′ reflected by the plane
defined by C(p, h). Since the minimum distance between
two points q, q′ must be along the great circle defined by
o, q, q′, which intersects C(p, h) at point w. Thus by symmetry
the minimum distance between q and C(p, h), is exactly
the distance between q and w, d(q, w). The Euclidean dis-
tance between q, q′, |qq′| = 2r′ sin φ = 2r cos θ sin φ. Thus
∠qow = ∠qoq′/2 = arcsin(|qq′|/(2r)) = arcsin(cos θ sin φ).
Therefore, k = d(q, w) = r∠qow = r arcsin(cos θ sin φ) ≥
r cos θ sin φ. The last inequality follows from the fact that
sinx ≤ x.

The claim then follows:
k′

k
=

φ cos θ

arcsin(cos θ sinφ)
≤ φ

sin φ
≤ π/2.

The function φ/ sin φ achieves its maximum value when φ =
π/2.
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