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ABSTRACT
We study the problem of information brokerage in sensor
networks, where information consumers (sinks, users) search
for data acquired by information producers (sources). In-
network storage such as geographical hash table (GHTs)
has been proposed to store data at rendezvous nodes for con-
sumers to retrieve. In this paper, we propose a double rulings
scheme which stores data replica at a curve instead of one
or multiple isolated sensors. The consumer travels along an-
other curve which guarantees to intersect with the producer
curve. The double rulings is a natural extension of the flat
hashing scheme such as GHTs with improved query local-
ity, i.e., consumers close to producers find the data quickly,
and structured aggregate queries, i.e., a consumer follow-
ing a curve is able to retrieve all the data. Further, by the
flexibility of retrieval mechanisms we have better routing ro-
bustness and data robustness. We show by simulation that
the double rulings scheme provide reduced communication
costs and more balanced traffic load on the sensors.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization ]: Computer-
Communication Networks—Network Protocols; E.1 [Data]:
Data Structures—graphs and networks

General Terms
Algorithms, Design

Keywords
Information Storage and Retrieval, Data-centric Routing,
Double Rulings, Sensor networks

1. INTRODUCTION
The sensor network community has envisioned a large

variety of applications, from scientific data collection, to
environment monitoring, to smart sensing and distributed
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control. Early applications of sensor networks for scientific
data collection and habitat monitoring have mainly adopted
a many-to-one traffic pattern to deliver raw sensor read-
ings towards data loggers [1, 26]. Emerging applications
that combine distributed sensing and control observe more
interesting traffic patterns and impose more stringent de-
lay requirements. In this paper we focus on the type of
applications where sensor networks provide large-scale in-
tense monitoring over the environment, and/or tracking of
interesting targets, as well as delivering the relevant data to
the interested parties. Multiple nodes, with their low-level
readings, may collaboratively arrive at a high-level seman-
tic event report, e.g., ‘elephant sightings’, based on which
corresponding authorities need to be notified for response.
Users of the sensor networks may well be embedded in the
same physical space and inject queries to the network at any
time searching for certain types of data. This category of
applications covers a large number of scenarios, from target
detection and response, to emergency rescue, to health-care
management applications.

These large-scale sense-and-respond applications impose
several requirements on data discovery and delivery proto-
cols. Data queried by users are often highly selective. At
the same time sensor nodes may detect numerous events of
different types, among which each user is only interested in a
much smaller subset. Emergency response applications and
distributed control systems often impose a high requirement
on the access delay at users to ensure event reports or con-
trol commands being delivered on time, since information
ages fast and stale data is useless. Furthermore, the arrival
of queries may be spatially and temporally distributed. In
order to serve users across time and space, in-network infor-
mation storage is needed to support information aggregation
and reasoning. History data helps to maintain temporal co-
herence and consistency, e.g., in target tracking applications.
Data collected at spatially distributed locations may need to
be integrated in order to come up with a global conclusion,
e.g., the limited views from multiple spatially distributed
cameras are combined to derive the semantics of an event.

In this paper we formulate the problem as the problem of
information brokerage which, specifies how data is collected,
processed and stored as well as how queries are routed to dis-
cover relevant data. We model the problem as the matching
of information producers (also known as sources), that per-
form data acquisition and event detection, with information
consumers (also known as sinks) who search for this infor-
mation. Naturally in a sensor network there can be multiple
producers that generate a variety of data types as well as



multiple consumers, possibly mobile, that search for relevant
information. We aim to develop a scheme for large-scale net-
works that support low-delay queries for multiple users that
search selectively for data types discovered and stored in the
network.

1.1 Existing work
Early work on information discovery and routing follow

two basic approaches: data-centric routing [11] and data-
centric storage [24].

Data-centric routing takes a reactive approach, as in di-
rected diffusion [11] and TinyDB [19]. Little collaborative
preprocessing is performed. Thus the discovery of the de-
sired information usually relies on flooding the network.
This approach targets at infrequent queries for streaming
data type so that the cost of flooding can be justified and
amortized by the following long-term data delivery. For
queries from multiple consumers for the same data source,
the performance deteriorates as data sources might be re-
discovered separately by multiple consumers. The delay in-
curred by information discovery may also be too high for
real-time queries in emergency response or delivery of con-
trol demands.

Data-centric storage is proposed for large-scale networks
with many simultaneously detected events that are not nec-
essarily desirable for all users [24, 21], as in the applications
considered in this paper. A producer leaves data on ren-
dezvous nodes for consumers to retrieve. Thus data across
space and time can be aggregated at rendezvous nodes. Prior
work includes geographical hash tables (GHTs) [21] where
data is hashed by its data type to geographical locations.
The node closest to the hashed location is identified as the
rendezvous node. The consumer applies the same hash func-
tion and retrieves data from the same rendezvous node.
Data and query delivery to the rendezvous node is imple-
mented by geographical routing such as GPSR [14]. GHTs
have greatly reduced the communication cost and energy
consumption by avoiding network-wide flooding for infor-
mation discovery. Its simplicity is also attractive. There
are a few weaknesses with GHTs though. First, the data
retrieval scheme is not distance-sensitive. Even when the
consumer is close to the producer, it may have to go to a
far away rendezvous node. Second, the rendezvous node for
popular data queried by many consumers imposes a com-
munication bottleneck. This artifact in traffic patterns may
eventually hurt the network lifetime. Third, the rendezvous
node is a single point of failure. Structured replications on
mirror nodes can be adopted to improve the system robust-
ness but at a high cost of communication. Fourth, the prop-
erty that data is randomly scattered in the network is good
for load balancing, but bad for structured data organiza-
tion and subsequently bad for queries that require cross-type
data aggregations. Improvement of the flat hashing by hier-
archical hashing has been investigated with hash locations
aware of data correlation, i.e., similar data is stored close
by, or query locality, i.e., nearby consumers should discover
producers more quickly [15, 16, 10].

1.2 Our approach
Our approach is to develop what is called double rulings

scheme, an extension of the basic GHTs hashing. The idea
is to choose the rendezvous nodes along a continuous curve,
instead of one or multiple isolated sensor nodes, as in the

case of GHTs [21]. The motivation is two-fold. Data delivery
from data source to a rendezvous node is implemented by
multi-hop routing. Thus it is natural to leave information
hints along the trail that the data travels on, at no extra
communication cost. Furthermore, data hint replication on
multiple nodes provides more flexibility for a consumer to
discover relevant data — it is easier to encounter a 1D curve
than a 0D node.

q

p

Figure 1: A simple double ruling scheme on a grid.

A basic double-ruling scheme works as follows: data or
pointers are stored at nodes that follow a replication curve
while a data request travels along a retrieval curve. Any
retrieval curve intersects the replication curve for the desired
data. Thus successful retrieval can be guaranteed. For an
easy familiar case, assume the network is a two-dimensional
grid embedded in the plane with nodes located at all the
lattice points (see Figure 1). The information storage curves
follow the horizontal lines. The information retrieval curves
follow the vertical lines. To be differentiated with the double
rulings we will propose in this paper, we call this simple
double rulings scheme the rectilinear double rulings. Notice
that the data retrieval curves are independent of the location
of the data sources. In fact, a consumer traveling along the
vertical line through itself is guaranteed to hit all horizontal
storage lines, and thus is able to find all the data stored
in the network. This double-ruling scheme is also distance
sensitive — if the producer and consumer are actually near
each other, they must also be near each other along the
path connecting them using the horizontal and vertical lines.
By replicating data on more nodes that are not in close
proximity with data sources or hashed locations as in GHTs,
double rulings scheme enables better fault tolerance against
geographically concentrated node failures.

Despite all these good properties, the rectilinear double
rulings idea is so far restricted on networks with nice graph
structures, e.g., those that resemble grids [18, 29, 25], due to
its rich geometric flavor. Recently Fang et al. [9] has stud-
ied double rulings for general sensor field with non-trivial
topology. The idea is to combine double rulings with GHTs
on a two-level routing hierarchy that partitions the sensor
field into tiles with respect to the global topology [8]. GHTs
is adopted on the top level of the hierarchy and a data type
is hashed to a tile instead of a single node. Inside each tile,
a double rulings scheme is invented to hash data on routing
paths such that retrieval paths will intersect the replication
paths for sure. At last we note that rumor routing [3] can
be considered as a probabilistic double rulings scheme. In-
formation producer takes a walk (either a random walk or
a straight trajectory) and leaves data pointers on the trail.



A consumer travels along another walk hoping to encounter
one of the data pointers. Any two walks have a probabil-
ity to intersect. The consumer sends out enough retrieval
walks to have a sufficiently high probability to meet with one
of the event curves. Essentially the challenge of designing
good double rulings is to find data replication and retrieval
paths that intersect, are not too long each (not too many
replications), and are evenly spread out across the network.

In this paper we further investigate double rulings schemes
with a focus on the flexibility of retrieval mechanisms. We
propose a simple double rulings scheme that actually has
GHTs as a subcase. Same as in GHTs, a data item is hashed
by its data type (also called key in GHTs) to a geographical
location. However, instead of traveling along the geographi-
cal greedy path to the rendezvous node, the producer travels
along a circle that goes through itself and the rendezvous
node and replicates data or data pointers on the way. We
show that this simple modification to GHTs suddenly allows
a large variety of retrieval mechanisms. The consumer does
not necessarily travel to the hashed location to retrieve the
data. It only needs to hit the replication curve. And we
show that there are many such retrieval curves. Thus the
consumer has great flexibility to design its retrieval strategy
subject to the current network load and energy level. Among
these retrieval schemes, several have special properties:

• Distance-sensitive retrieval: if the consumer is of
distance d from the producer, the consumer can dis-
cover the data with a cost of O(d), although neither has
the knowledge of each other’s location or the bound on
d. This is an attractive feature in many applications,
as information will be most useful, thus queried more
frequently, in the spatiotemporal locale where it was
collected.

• Aggregated data retrieval: in GHTs, if a consumer
is interested in multiple data types, such as detections
of both vehicles and animals, the consumer has to visit
multiple rendezvous nodes for these data types to col-
lect all the data. In our double rulings scheme, we
show there is a simple rule based on which one can
design a curve (actually many such curves) that will
surely intersect with all replication curves of desired
data types. Thus the consumer travels along a simple
curve and gather all the information.

• Double rulings retrieval: the most powerful re-
trieval mechanism is to travel along any double ruling
curve (among many such curves) that will intersect
all replication curves. Thus a user can discover all
the information discovered and stored in the network.
This has further applications in data collection by data
mules.

Our double rulings scheme improves the weaknesses of
GHTs, with modestly increased replication. As explained
above, it supports distance-sensitive retrieval and structured
data retrieval. In addition, the double rulings scheme has
substantially improved load balancing and robustness to node
failures. With the flexibility in retrieval curves, the ren-
dezvous node is no longer a bottleneck since retrieval curves
may not necessarily visit it. We show that the data storage
admits a local recovery scheme. If the sensors in a certain
region are destroyed, then all the relevant data are stored
on the boundary and thus can be locally recovered. Com-
pared with structured replication in GHTs or hierarchical

hashing that aims to improve data robustness, the double
rulings scheme imposes much lower communication cost for
replication, since the replicas are organized along a closed
curve that are easy to visit.

The next section describes the design of our double rul-
ings mechanism. We also compare its performance with
GHTs [21] and the previous double rulings scheme [9] in
the simulation section.

2. DOUBLE RULINGS
In this section we will use a continuous domain for the

intuition and easy explanation. In a discrete network, a
continuous double ruling curve can be easily implemented
by a path in the network in a greedy fashion [20]. The
implementation details are presented in the next section.
As in GHTs, we assume that the sensor nodes know their
geographical locations and a few parameters of the sensor
field such as the diameter and the boundary. We consider
it a reasonable assumption that the sensor nodes acquire
their geographical locations by localization algorithms, not
only because localization is a fundamental component for
network functionalities but also that location information is
important for the integrity of sensor readings.

2.1 Projective mapping
For an easy explanation, we use projective geometry to

map sensor nodes onto a sphere. There are several ways
of projecting points on a sphere one-to-one to points in the
plane. One commonly used mapping is stereographic projec-
tion [5]. Specifically, we put a sphere with radius r tangent
to the plane at the origin. Denote this tangent point as
the south pole and its antipodal point as the north pole.
A point h∗ on the plane is mapped to the intersection of
the line through h∗ and the north pole with the sphere. See
Figure 2 (i). This provides a one-to-one mapping of the pro-
jective plane P2 to the sphere, with the north pole mapped
to the point of infinity. More details on projective geome-
try can be found at [22]. Stereographic projection preserves
circularity. Any circle on the sphere, including great circles,
is mapped to a circle in the plane. It is also a conformal
mapping, i.e., one for which local (infinitesimal) angles on a
sphere are mapped to the same angles in the projection. It
does not preserve distances or area, however. The distortion
around the north pole can be high.

Another category of spherical mapping is called area pre-
serving mapping, in which areas on a sphere, and the areas
of any features contained on it, are mapped to the plane in
such a way that two are related by a constant scaling factor.
For example, the Lambert azimuthal equal-area projection
as shown in Figure 2 (ii), where the distance from a point
h on the sphere to the tangent point (south pole) is equiva-
lent to the distance from its image h∗ to the tangent point.
This mapping is not conformal. In fact, it is known that
no projection can be both equal-area and conformal. We
use stereographic projection in our scheme and remark that
other spherical mapping can also be used.

Let the sphere be defined by the equation (x−p)·(x−p) =
r2 where p is the center of the sphere, and r its radius. The
straight line from a point q to the north pole of the sphere
(denoted by n), is given by l(t) = q + tv, where t is the
parameter and v = n − q. Then the intersections of the
straight line with the sphere are defined by the roots of the
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Figure 2: Spherical projection (i) stereographic projection; (ii) equal area projection.

quadratic equation

t2(v · v) + t(2v · (q− p)) + ((q− p) · (q− p)− r2) = 0.

One root corresponds to the north pole n, and the other
is the projection. Thus, given the sphere, and a point in
the plane, we can compute the mapping of the point on the
sphere.

Conversely, given a point h on the sphere, its projection
on the plane will lie on the straight line l′(t) = h+tw, where
w = h− n. We define the plane by (x− o) · z = 0 where o
is the origin, and z is the unit vector perpendicular to the
plane. Then the projection of h on the plane is given by

h∗ = ρ(h) = h +
(o− h) · z

w · z w.

The stereographic projection maps an infinite plane onto
a sphere. For a sensor network field, the area in which the
sensor nodes lie correspond to a finite region of the plane.
Let this region be called S. Thus, any point in S maps to
a point h = (x, y, z) on the sphere where z ≤ k for some
0 < k < 2r. The radius r can be adjusted for a suitable
value of k in this range. The distance from the origin to
the point h∗ = ρ(h) is given by 2r

p
z/(2r − z). Also, the

distance from the origin to the point (x, y, 0) is given byp
z(2r − z).
With the knowledge of the sensor field, we can place the

sphere at the center of the sensor field. Suppose the furthest
sensor node is of distance D from the origin (the south pole
of the sphere). Then the parameter k, i.e., the z-value of the

highest projection on the sphere, is at most 2r · D2

4r2+D2 . At
the end of this subsection we show that for a finite region, we
can choose r such that the mapping gives a constant distor-
tion on the distances. Specifically, we choose r as D/(2

√
ε),

ε > 0. k = 2rε/(1 + ε). Recall that circles on the sphere
map to circles in the plane. The next Lemma shows that the
lengths on the circle on the sphere is not too much different
from the lengths on the circle in the plane.

Theorem 1. Consider any two points p1 and p2 on the
sphere with their projections on the plane, ρ(p1) and ρ(p2).
If the distance from p1 to p2 along a circle is d, and the
distance between ρ(p1) and ρ(p2) along the projection of the
circle is `, then we have

`

d
≤ 2r

2r − k
= 1 + ε.

Proof. The proof simply follows from the properties of
triangle similarity.

When ε = 1, all the points map to the bottom half sphere.
We usually take ε as a constant larger than 1. For any two

points in S, their distance in S along a circle is within a
constant factor of the distance between their mappings on
the sphere along the corresponding circle.

We use d(·, ·) to represent the geodesic shortest distance
between two points on the sphere and | · | to represent the
Euclidean distance in the plane. Thus we have,

Corollary 2. |p∗q∗| ≤ (1 + ε)d(p, q).

Proof. The shortest distance between p, q on the sphere
must be along a circle. The distance between p∗ and q∗

along the projected circle in the plane is bounded by (1 +
ε)d(p, q). Further, the Euclidean distance of two points is
always smaller than the distance along any circle. Thus
|p∗q∗| ≤ (1 + ε)d(p, q).

With this mapping specified, we will explain our replica-
tion and retrieval schemes on a sphere. The above theorems
imply that we can focus on the distances on the sphere. The
real distances travelled in the sensor field are bounded by at
most a constant multiplicative factor1.

2.2 Data replication
For points on a sphere, there is an intuitive double ruling

scheme — any two great circles of the sphere must inter-
sect. Thus we can use great circles as the double rulings to
replace the horizontal and vertical lines in rectilinear double
rulings. There is one difference however. In rectilinear dou-
ble rulings, the replication curves and the retrieval curves
purely depend on the locations of producers and consumers.
Through each node, there is a unique horizontal line and a
unique vertical line. A point on a sphere, however, stays on
infinitely many great circles. This property implies that the
producer and consumer curves can have a lot of flexibilities,
as we will see in the following.

We design a double rulings scheme that actually includes
GHTs as a special case. Each data type is hashed to a
geographical location h∗ as in GHTs. When a producer
routes towards the hashed location, instead of following the
geographical greedy route as in GHTs, it follows the great
circle defined by its own location p and the hashed location
h, denoted by C(p, h). Data from different producers with
the same data type will be routed to the same hashed loca-
tion where information aggregation can be performed. All
the great circles with type C(∗, h) pass through the hashed
location h, as well as the antipodal point h̄. Thus there are
actually two rendezvous nodes, h and h̄, located far away in
the network that have all the information of the same data

1This is subject to the assumption that the projective curve
is within the sensor field and the sensors are dense enough
such that the hop count of the path is proportional to its
Euclidean length.



type. Notice that the hashed location h depends only on the
data type. Thus the location h̄ can be derived by a simple
geometric computation. See Figure 3 for an example.

h̄∗

h

p
h∗

C(p′, h)

C(p, h)

p′

h̄

Figure 3: A point in the plane h∗ is projected to a point

h on the sphere. The great circles for two producers p,

p′ are drawn in blue.

By the properties of stereographic mapping, a great circle
is mapped to a circle in the plane. In particular, the image
of any great circle of the sphere encloses the tangent point of
the sphere and the projected plane. These circles, i.e., repli-
cation curves, may have different sizes and centers. Figure 4
shows the actual routes followed by multiple producers.

0

0

Figure 4: Replication curves of multiple producers with

the same data type. The hashed location is denoted by

the dark triangle. Both the virtual replication circles

and the actual routing paths are shown.

The hash function picks two geographical locations h∗ and
h̄∗. The rendezvous nodes are selected as those closest to
these locations and can be discovered by greedy forwarding
in a similar way as in GHTs [21] (more details in next sec-
tion). We abuse the notation a little bit and use h∗ and
h̄∗ to represent the hashed rendezvous nodes as well. The
data is always replicated at the hashed rendezvous nodes h∗

and h̄∗. Data of the same type from multiple producers is

aggregated at the rendezvous nodes h∗ and h̄∗. Dependent
on the storage requirement, other nodes on the replication
curve either store the real data or simply a pointer to where
the real data is stored.

2.3 Data retrieval
With this new routing strategy from producers to hashed

locations, the retrieval scheme for the consumer q can be
more flexible than that in GHTs. Observe that the map-
ping described in section 2.1 leaves an empty region near
the north pole of the sphere that projects to points out-
side the network, and it is possible that a curve chosen by
the consumer on the sphere intersects the replication curve
in this region. However, circular curves on the sphere will
have two intersections on the producer curve, and we se-
lect our retrieval curves in ways that ensure that atleast one
of the intersections projects to a point inside the network.
We present a number of such retrieval rules as well as their
properties.

2.3.1 GHT retrieval
Obviously the same retrieval rule as in GHTs can still be

used, with two rendezvous nodes though.

Definition 3. GHTs retrieval rule: the same as in
GHTs, the consumer can route to the hashed location h or
h̄, whichever is closer, to retrieve all the data of the same
type.

This retrieval scheme, as in GHTs, suffers from two dis-
advantages. It is not distance sensitive. Even when the
consumer is actually close to producer, the hashed location
might be far. On the other hand, popular data items will cre-
ate communication bottleneck around the rendezvous nodes
that hold them. With the simple modification of the replica-
tion curve, we show in this section several retrieval schemes
that are distance sensitive and also alleviate traffic hot spot
for popular data. Besides, it is attractive to have the flex-
ibility of different data retrieval schemes, simply for load
balancing and routing robustness.

2.3.2 Distance-sensitive retrieval
Assume that the distance between a producer and a con-

sumer on the sphere is d, we would like to have a retrieval
scheme where the distance traveled by the consumer is O(d).
Such a retrieval scheme is named distance-sensitive. Notice
that the consumer does not know where the producer is and
vice versa. The goal of the retrieval scheme is to travel along
a curve that hits the replication curve as quickly as possible.

If we rotate the sphere so that the hashed location h is at
the north pole, then the replication curve is exactly a longi-
tude curve. The distance-sensitive retrieval scheme follows
the latitude curve searching for a replication curve. We de-
note by L(q, h) this latitude curve. It is not necessarily a
great circle. There are two intersections, u, v, between the
retrieval curve and the replication curve, as shown in Fig-
ure 5. Now we claim that the closer one, in this case, u, is
of distance at most d ·π/2 from the consumer along the lat-
itude curve L(q, h). Obviously, the minimum distance from
a point q to a set of points C(p, h) is always smaller than
the distance from q to one point in this set, for example p.
The following lemma says that the distance between q and
u along the latitude curve L(q, h) is at most a factor of π/2
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Figure 5: The consumer follows the circle with fixed dis-

tance (dashed circle) to the hashed location h to retrieve

all the data with the same data type.

of this shortest distance. The proof of the lemma appears
in the appendix.

Lemma 4. Take a longitude curve C through the north
pole h and a latitude curve L(q, h) through a point q. Assume
that u is the closer intersection of C and L(q, h) to q. Denote
by k′ the distance between q and u along L(q, h) and k the
shortest distance from q to C on the sphere. Then k′/k ≤
π/2.

The consumer, however, does not know which direction to
go to on L(q, h) to find the closer intersection u. This can
be easily solved by a doubling trick, where the consumer
chooses a direction randomly and travels a distance 2i, with
i initially set as 0. If the consumer has not encountered an
intersection with C(p, h), it turns around, increases i by 1
and travels a distance 2i along the opposite direction from q.
The process stops when the consumer discovers the closer
intersection. Suppose at this point we have a parameter
i, then dπ/2 ≥ k′ > 2i−2, where k′ is the distance from
q to u along L(q, h) and d = d(p, q), the shortest distance
between p, q on the sphere. The total distance traveled by
the consumer is bounded by

2 ·
i−1X
j=0

2j + k′ ≤ 9k′ − 2 ≤ 9πd− 2.

In summary, we have

Definition 5. Distance-sensitive retrieval rule: the
consumer travels along the circle on the sphere with equal
distance to the hashed location h, and uses a doubling trick
to discover the closer intersection with the replication curve.
The distance traveled by the consumer is at most O(d), if the
distance between producer and consumer is d on the sphere.

The bound on the consumer cost is for the worst case sce-
nario. We show by simulation later that the performance is
pretty good if we just choose a random direction. We note
that here we focus on the continuous replication and re-
trieval curves. In a discrete network, the curves are realized
by routing paths. When two continuous curves intersect,
the corresponding routing paths may either have a common
node, or have a pair of crossing links. We remark that under
a unit disk graph model, if there are two crossing links, then
one node must have links to all the other three nodes. With
wireless broadcasting, all the nodes in the neighborhood can

hear the message and are able to respond if they have the
data. In practice, a consumer can also explicitly check the
neighbors along the retrieval path or a producer explicitly
store pointers on the neighbors along the replication path.

2.3.3 Aggregated data retrieval
The data replication scheme enables a number of inter-

esting retrieval schemes for aggregated data. If the con-
sumer travels along the latitude curve L(q, h) with h as the
north pole, it actually can discover all the data with the
same data type. In fact, any closed curve that separate the
hashed location h from its antipodal point h̄ will intersect
all the replication curves with the same data type. Thus a
consumer is given great flexibility in choosing the retrieval
curve according to the current network traffic load and en-
ergy consumption level. We formalize the data retrieval rule
for aggregated data of several data types {Ti}, i = 1, · · · , m.

Definition 6. Aggregated data retrieval rule: the con-
sumer searching for all the data with data type {Ti}, i =
1, · · · , m, can follow a data retrieval curve that, for each
data type Ti,

• either goes through the hashed location h = h(Ti) or h̄,
where the aggregates are computed and stored;

• or is a closed curve that separates h from h̄, collects
all the relevant data and computes the aggregates.

We remark that the above retrieval rule does not specify a
unique retrieval curve but allow infinitely many possibilities.
In fact, this is one of the advantages provided by this dou-
ble rulings scheme. The design of a retrieval curve satisfying
this rule can be performed at each consumer node. All the
information needed is the data type and their hashed loca-
tions. Thus multiple consumers searching for the same data
type may choose, by their own decisions, different routes.
This flexibility of data retrieval rule enables load balanced
traffic patterns and routing robustness.

2.3.4 Double rulings retrieval
The double rulings property enables a full power retrieval

scheme. A consumer q following any great circle will defi-
nitely cross all the producer curves.

Definition 7. Full power data retrieval rule: the con-
sumer travels along any great circle and is able to retrieve
all the data stored in the network.

2.3.5 Locality-aware data recovery
The idea of replicating on a 1-dimensional curve, rather

than a 0-dimensional point, greatly enhances the system ro-
bustness to failures. In GHTs, geographical routing with
the combination of greedy forwarding and perimeter rout-
ing is used to deliver data to the hashed node. A planar
subgraph, such as the relative neighborhood graph or the
Gabriel graph, is subtracted from the connectivity graph.
When greedy forwarding can not find a neighbor closer to
the destination, perimeter routing is adopted to traverse
the face in the planar graph. Specifically, the hashed geo-
graphical location, most likely, does not have a sensor node
right there. Thus perimeter routing will be adopted to tour
around the face that encloses the hashed location. The ba-
sic GHTs scheme relieves data loss at the home node, the
one closest to the hashed location, by replicating the data
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Figure 6: (i) Consumer latitude curve. (ii) Consumer great circle curve. Dark triangle denotes the hashed location;

the red paths denote producer replication curves; dashed blue paths denote retrieval curves; yellow square denotes

one producer and magenta square denotes one consumer.

around these perimeter nodes. However all the perimeter
nodes are still in geographical proximity thus a ‘block error’
that destroys the sensors in a nearby region may destroy all
the replicas. Structured replication can be used to improve
the system robustness and relieve the traffic bottleneck at
the home rendezvous node, in cases when too many events
with the same key are detected in the network. Producers
only put data at a nearby mirror node, while consumers may
need to access multiple mirror nodes until they get what they
want. The mirror nodes are chosen in a hierarchical way by
using quad-tree structure. For the 1-level replication, the
sensor field is partitioned into 4 equal size quadrants. The
hashed location falls in one of them. 3 mirror nodes are
chosen as those with the same relative locations inside other
quadrants. More replication can be made in a recursive way.
Such structured replication is costly since the mirror nodes
are chosen to be geographically sparse. Replication along
a curve improves the robustness without paying extra com-
munication cost. Further we show that our replication rule
supports local recovery when a group of nodes die.

In our spherical double rulings scheme, the hashed node is
no long the single point of failure. If the nodes in the neigh-
borhood of the hashed node h are destroyed, the nodes on
the boundary of the destroyed region contain all the relevant
information and can be used to recover the aggregates. This
is possible as long as the destroyed region does not include
both the hashed location h and its antipodal point h̄. Since
h and h̄ are geographically fairly apart in the network, a
local disaster is not likely to cover such a large region. All
replication curves for this data type will leave data replicas
on a curve connecting h and h̄, thus intersect the boundary
of the destroyed region. So all the data replicated inside the
destroyed region have their corresponding replica on some
boundary nodes. These boundary nodes can be detected by

a local greedy sweeping as in [7], or by using a topological
method as in [28].

3. IMPLEMENTATION
We present a number of implementation issues of the dou-

ble rulings scheme for a sensor networks, from the aspect of
information stored at a sensor and the implementation of
the replication and retrieval paths.

3.1 Information stored at a node
The information kept at a node is very small. Each node

stores its own location and a few parameters about the stere-
ographic projection used in the scheme. Every node keeps
the global content-based hash function that takes a data
type, e.g., types of target detections, and outputs a hashed
location on the sphere. The hash function can be either a
random function or a function that is locality-sensitive, i.e.,
similar data is hashed to similar locations [6]. The choice
of this function is dependent on the applications. As men-
tioned earlier, data is either replicated on all the nodes along
the replication curves; or, for the sake of saving storage, data
is only replicated selectively on some nodes (say, uniformly
sampled) along the curve and pointers are left on the rest of
them pointing to the closest replica on the curve. A retrieval
path hits the replication curve, gets the pointer and travels
to the closest replica to find the data. More replication re-
duces data retrieval cost. We evaluate this tradeoff in the
simulation section.

3.2 Greedy routing on a curve
The replication curve and retrieval curve are implemented

as routing paths in the sensor field. We use the mechanism
described in [20] to allow producers and consumers to re-
spectively replicate and retrieve data along a curve. A node



is passed a parametric equation of the curve in terms of a
parameter t, and the direction along the curve for forward-
ing the message. Using the coordinates of its neighbors, a
node finds a neighbor that is further along the curve than
itself in the required direction, and sends the message to this
neighbor. This can be done by taking a uniform sampling
along the curve within a certain distance of the node, and
computing the nearest such sample for every neighbor. Fur-
ther, we use the greedy version of this scheme, that is, the
message is forwarded to the neighbor who advances furthest
along the curve in the required direction. This ensures that
replication or retrieval is completed in the fewest number
of steps. We also require that the next hop is not too far
from the virtual curve, say within 1 unit. For example, in
Fig 7 the node S, when forwarding messages along curve C
in the direction indicated, can only forward messages to its
neighbors in the shaded region.

1 unit

S

C

Figure 7: Routing on a curve.

In networks with relatively low density of nodes, it is pos-
sible for a message to arrive at a node that has no neigh-
bor in this region. When that happens, we perform a local
flooding and search 2-hop neighbors. In a network with uni-
formly randomly deployed sensor nodes, simulation results
show that the chance of finding a greedy neighbor is high
even in networks with average degree as low as 5 or 6. It

Avg degree 5 6 7 8
Avg 2-hop Neighbor 12 15 18 21
Min Success Prob. 0.94 0.97 0.985 0.992

Table 1: Average number of 2-hop neighbors and the

minimum probability of finding a 2-hop neighbor for

greedy forwarding for different node degrees.

is easy to see that the feasible region for forwarding always
contains a sector of angle θ1 = π

2
− arcsin ( 1

2(c+1)
), where

c is the radius of the circle along which routing is done. If
we consider a 2-hop neighborhood, then the corresponding
sector is given by an angle θ2 = π

2
− arcsin ( 2

2(c+1)
). Thus,

the probability of finding a suitable neighbor within a 2-hop
neighborhood is at least 1− ( 2π−θ2

2π
)n2 where n2 is the num-

ber of 2-hop neighbors. Table 1 shows the average number
of 2-hop neighbors for different node degrees in a poisson
distribution, and the corresponding worst case probabilities
of a node finding a suitable 2-hop neighbor. For small values
of c, the curve is small, and a search in a small neighbor-

hood will always yield the results. The values in table 1 were
computed with c = 3. For larger values of c, the probability
can only be larger.

4. SIMULATIONS
We show that simulation results confirm our assertions

on the properties of double rulings. In this section, we com-
pare the performance of double rulings and GHTs for both
retrieval quality and load balancing.

4.1 Simulation setup
We simulated double rulings and GHTs on a network with

4225 nodes in a square field of size 35× 35 units. The com-
munication radius of each node was taken to be 1 unit, hence
the connectivity was that of a unit disk graph. Average num-
ber of neighbors of each node was 9.5. Nodes were arranged
in a grid model with perturbation. Each node deviates from
its grid position by a random distance less than 0.5 units
along each axis. Producer and consumer costs were mea-
sured in the number of hops each had to take along their
respective curves. Greedy routing along a curve was used
for replication as well as for retrieval. The parameter θ
in the parametric form of a circle was used as the param-
eter for routing. To prevent the greedy forwarding from
straying a large distance from the actual curve, forwarding
was restricted to within a unit distance of the curve on the
plane. For both distance-sensitive retrieval or full power
double rulings retrieval, the consumer selects the retrieval
curve, chooses a random direction and tours along the cir-
cle until it hits the desired replication curve(s). Once data
is discovered, it is delivered back to the consumer in one of
three ways: (i) finish up the remaining circle and get back to
the consumer; (ii) turn around and follow the reversed path
back to the consumer; (iii) use any routing scheme avail-
able in the system to deliver the data back to the consumer.
Producers need only to replicate data, hence the cost for a
producer is that of following a great circle producer curve.

4.2 Distance sensitive queries
It is desirable that consumer nodes are able to access data

from nearby producers at a low cost. In GHTs, the con-
sumer has to communicate with the same rendezvous node
irrespective of the relative location of the producer. We sim-
ulated both schemes with pairs of producers and consumers
at varying distances.

We also simulated the scheme of [9]. This is a scheme inte-
grated with the Glider [8] landmark based routing protocol.
Essentially a set of landmarks is selected in a preprocessing
stage and the network is partitioned into Voronoi tiles, each
formed by a landmark and all the nodes nearer to it than
other landmarks (in the connectivity graph sense). This
Voronoi tiling and its dual combinatorial Delaunay complex,
in which two landmarks are joined by an edge if and only
if their respective Voronoi tiles share common boundary,
are used to aid routing. In [9] a distributed hash table is
used to hash data into a tile, data storage inside the tile is
implemented by a double-ruling scheme, which ensures in-
formation retrieval within each tile. As the producer travels
to the hashed tile using Glider, and in every tile traversed,
it replicates data on a “finger tree” with 3 arms. This guar-
antees that any retrieval trajectory passing through the tile
will intersect the one of the arms. Thus, the consumer can
find the information before reaching the hashed tile, and for



a nearby producer, it is likely that the consumer will not
need to travel all the way to the hash location.

For a particular distance value, we randomly select 100
pairs of producer/consumer. Figure 8 shows the simula-
tion results averaging on 100 values for each plot. In all
schemes we assume that data is delivered back to the con-
sumer along the reversed data discovery path. For GHTs, in
which the average cost of retrieval is not related to the dis-
tance between producer and consumer, the consumer incurs
the same cost in accessing local data as that for accessing
remote data. The Glider based scheme is more distance
sensitive, but the cost increases rapidly with increasing dis-
tance, and in the worst case is as bad GHTs. With double
ruling, the consumer searched for data along a latitude circle
with respect to the hash location. There are two observa-
tions, the consumer cost in double rulings scheme is consis-
tently smaller than that in GHTs, and is smaller than the
Glider based scheme in almost all cases. The average cost
and the distance between producer and consumer exhibit a
linear correlation for distances up to about half the length
of the field, beyond that, the average cost does not increase.
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Figure 8: Distance between producer and consumer v.s.

the average cost incurred by the consumer to retrieve

information in GHTs and in double ruling.

4.3 Double rulings retrieval for aggregated data
With queries involving different data types, double rulings

scheme searches for data in a great circle, and can retrieve
data at a fixed cost of 77.5 irrespective of the number of
producers or data type. Whereas in GHTs, the cost is pro-
portional to the number of different data types required, if
we make a round trip to the hash location for each type2.
Table 2 shows the consumer cost with aggregate queries for

No. Data Type 2 3 4 5
Consumer Cost 107.26 145.24 201.38 248.46

Table 2: Average consumer costs for GHTs with aggre-

gate queries for different types of data.

2One can also seek for the minimum tour visiting all hashed
locations. This is the traveling salesman problem and is
NP-hard to solve.

varying different types of data. The value is averaged on
100 randomly selected consumers for each column. It shows
that for aggregated queries that search for more than 1 data
types, it is almost always beneficial to adopt double rulings
scheme instead of GHTs.

4.4 Replication cost and tradeoff between
storage and communication costs

The basic GHTs scheme chooses only one hashed home
node. As we mentioned before, structured replication can be
used for data replication at several hash locations. The net-
work is partitioned recursively by a quad-tree. For a given
hashed location and a given hierarchy depth d, we can com-
pute 4d − 1 mirror images, for each square in the quad-tree
with depth d. In our simulation, we set d to 1 and divide the
entire network region into 4 quadrants. Thus, for each point,
there are 3 mirrors in the other 3 quadrants. Producers repli-
cate data at both the original hashed location and mirrors,
so that consumers can retrieve data by accessing the closest
location. Double rulings, on the other hand, selects a curve,
and replicates data at nodes along this curve. We compared
GHTs with and without replication against double rulings
where the consumer uses a latitude curve as well as where
the consumer uses a great circle to retrieve data. All of the
simulations run over 500 producer/consumer pairs.

Table 3 shows that consumer cost for double rulings is less
than that of GHTs. In GHT, producer cost is higher than
that of consumer, because the producer always replicates
data in perimeter mode while consumers stop as soon as they
reach any perimeter node. In a bad case, the perimeter may
turn out to be the outer perimeter of the network, increas-
ing the average producer cost by a large number. Structured
replication improves consumer cost in GHTs but at the ex-
pense of increasing producer cost several times.

It was mentioned in section 2.2 that in a double ruling
scheme, actual data may be stored at a few nodes, while
other nodes on producer curve store pointers to these. This
saves cost of storing data, but increases communication cost
for retrieval.

We simulated the effect of storing data at regular inter-
vals (one node in every R hops stores the data) along the
producer curve, and at h and h̄ with 100 pairs of randomly
chosen producers and consumers. The retrieval process, af-
ter meeting the producer curve, travels to the nearest repli-
cation point to obtain data.

Figure 9 shows the relation between storage costs and av-
erage additional communication incurred by the consumer.
When storage cost is decreased, that is, the interval of repli-
cation is increased, the additional cost of communication
increases linearly with it. Beyond a certain value that de-
pends on the size of the field, the replication interval does
not affect the communication costs. This is because in such
cases, h and h̄ become the actual points of retrieval in almost
all cases.

Figure 10 shows the effect of different replication intervals
on the distance sensitiveness of retrievals. Larger replication
intervals increase consumer cost at all distances, but the
scheme is still desirable compared to GHTs, and is better
than the Glider based scheme except at very large intervals
of replication. However, we should note that the Glider
based scheme incurs high storage cost, by replicating on all
branches of the finger tree.



Producer cost Consumer cost
GHTs without structured replication 44.9 45.6

GHTs with 1-depth structured replication 172.5 17.4
Double Ruling with latitude consumer curve 77.5 29.0

Double Ruling with great circle consumer curve 77.5 34.6

Table 3: Average producer and consumer costs for GHTs and double rulings.
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Figure 9: Additional communication required to re-
trieve actual data from nearest replication point for
different replication intervals.

4.5 Load balancing
In a sensor network, it is important to have schemes that

balance the load of operation across the nodes in the net-
work. This avoids bottlenecks and improves the network
lifetime. To evaluate load balancing properties of the two
schemes, we simulated a scenario where there is a single pro-
ducer, and 500 different consumers searching for the data.

Figure 11 (i) is a plot of loads across the network when
using double rulings. The load of each node is measured
by the number of messages passing through it. We used
the distance-sensitive retrieval mechanism. The load is seen
to be well distributed across the network with no particu-
lar preference for occurrence of peaks signifying high loads.
Further, the node suffering the highest traffic has a load of
only 18. The highest load created by GHTs is an order of
magnitude higher (126). Figure 11 (ii) shows the load distri-
butions with GHTs. Nodes near the hashed location suffer
much higher loads than the rest of the network, which is
likely to result in a bottleneck slowing down the network,
and also draining the batteries of these nodes rapidly.

5. CONCLUSION, DISCUSSION AND
FUTURE WORK

In this paper we propose a simple replication mechanism
that supports flexible retrieval mechanisms. In the future,
we would like to combine the data replication mechanism
with mobile data collectors such as data mules. Another
direction is to investigate natural double rulings mechanisms
in sensor field with irregular geometry.
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sumer v.s. the average cost incurred by the con-
sumer to retrieve information in GHTs, the Glider
based scheme and in double ruling with different
replication intervals.

5.1 Double rulings with mobile nodes
Information collection and delivery can explicitly use mo-

bile nodes, such as data mules [12, 17, 27, 13, 23]. This is
motivated by the observation that nodes around static sinks
suffer from unbalanced traffic and energy consumption. Fur-
thermore, controlled mobility helps to get around fundamen-
tal capacity problems imposed by insufficient sensor density.
In an extreme case, such as a disconnected network, mobile
nodes have to be involved to deliver information between two
disconnected components. However, designing the moving
trajectory for data mule is challenging. One obvious metric
is to have the data mule travel a short distance. Finding
the shortest path that visits all the communication ranges
of the nodes with data is a traveling sales man problem and
is NP-hard [2].

We observe that data mules can be naturally combined
with double ruling approaches to shorten the traveling dis-
tance of the data mule, with a modest in-network storage
and aggregation. A mobile node physically traveling along
a consumer curve is able to retrieve all the data in the net-
work. This substantially decreases the distance traveled by
the data mule. If the network is uniformly deployed in a
squared region of n nodes. The shortest traveling salesman
path is roughly O(n) (visiting each node), but the double
ruling curve has length roughly O(

√
n).

5.2 Sensor field with irregular shape
In this paper we focus on a double rulings mechanism for



0

20

40

60

80

100

120

0

20

40

60

80

100

120

(i) (ii)

Figure 11: (i) Load distribution in double rulings with 500 consumers and one producer with one data type. (ii) Load

distribution in GHTs with 500 consumers and one producer with one data type.

a nicely distributed sensor field. In the case that sensors are
deployed in an irregular shape with holes, the double ruling
curves may accumulate on the hole boundaries. Thus we
will need to take the global geometry into consideration and
define double ruling curves in a virtual coordinate system
that adhere to the underlying network geometry [9, 4]. For
example, in the virtual coordinate system defined by the
medial axis of the sensor field [4], there are natural double
rulings curves, those that are parallel to the medial axis and
those perpendicular to the medial axis.

Another approach to apply double rulings mechanism in
a sensor field with complex geometry is to partition the sen-
sor field into nicely shaped components and construct double
ruling curves for each piece. This is the approach taken in
the Glider-based scheme [9], in which the double rulings
scheme is in the virtual coordinate system defined by land-
mark distances. In that case a data mule collecting data
from the network only needs to visit each piece and pays a
traveling cost proportional to the minimum spanning tree
connecting all the segmented pieces.
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7. APPENDIX

7.1 Proof of Lemma 4
Proof. Suppose the longitude curve C(p, h) through p

and the north pole h. The latitude curve through q is de-
noted as L(q, h). u is the closer intersection of C(p, h) and
L(q, h) to q. Denote by k′ the distance between q and u
along L(q, h) and k the shortest distance from q to C. See
Figure 12. We want to argue that k′/k ≤ π/2.

We denote by o the center of the sphere and o′ the center
of the latitude circle L(q, h). The angle between the line oq
and the horizontal line is defined as θ, 0 ≤ θ ≤ π/2. Then
the radius of L(q, h), r′ = r cos θ, where r is the radius of
the sphere.

φ

C(p, h)p

u
q′

o′

θ

L(q, h)

o

h̄

q

h

Figure 12: Denote by k′ distance between q and u along

L(q, h) and k the shortest distance from q to C. Then

k′/k ≤ π/2.

Suppose the angle ∠qo′u = φ. 0 ≤ φ ≤ π/2. The dis-
tance between q and u on L(q, h), k′ = r′φ = rφ cos θ.
Take q′ as the mirror point of q′ reflected by the plane
defined by C(p, h). Since the minimum distance between
two points q, q′ must be along the great circle defined by
o, q, q′, which intersects C(p, h) at point w. Thus by symme-
try the minimum distance between q and C(p, h), is exactly
the distance between q and w, d(q, w). The Euclidean dis-
tance between q, q′, |qq′| = 2r′ sin φ = 2r cos θ sin φ. Thus
∠qow = ∠qoq′/2 = arcsin(|qq′|/(2r)) = arcsin(cos θ sin φ).
Therefore, k = d(q, w) = r∠qow = r arcsin(cos θ sin φ) ≥
r cos θ sin φ. The last inequality follows from the fact that
sin x ≤ x.

The claim then follows:

k′

k
=

φ cos θ

arcsin(cos θ sin φ)
≤ φ

sin φ
≤ π/2.

The function φ/ sin φ achieves its maximum value when φ =
π/2.


