Double Rulings for Information Brokerage in Sensor Networks

Rik Sarkar Xianjin Zhu Jie Gao

MobiCom'06

Problem: Information Brokerage

- Information producers and information consumers need to find each-other.
 - Tourists in a park looking for animals, but sensors with animals in range do not know where tourists are.
- Challenges
 - Content based search
 - Spatial/Temporal separation
 - Limited network resources
- Easy solution : Flood
 Inefficient

Existing work: Geographic Hash Tables

- Data centric hashing.
 - Hashed node forms rendezvous
 - Enables brokerage
- Pros
 - Simple, works without flooding
- Cons
 - Nodes near hashed location become bottleneck.
 - Not distance-sensitive. Nearby producer and consumer may hash to far away nodes.

Reference: GHT [Ratnasamy, et.al. 2002].

Our Approach: Double Rulings

- Hash data to a 1-d curve, instead of a 0-d point
- Motivations for generalization
 - Data delivery uses multi-hop routing
 - Leave information along route at no extra cost
 - More flexible data retrieval
 - Easier to encounter a 1-d curve than a 0-d point

Simple Double Ruling

- Rectilinear Double Ruling
 - Producer stores data on horizontal lines
 - Consumer searches along vertical lines
 - Correctness : Every horizontal line intersects every vertical line

References: [Liu Huang Zhang 04], Rumor routing [Barginsky-Estrin 02], Quorumbased routing [Stojmenovic99].

This Paper: A New Double Rulings Scheme

- Producer follows a circle to the hashed location
 - Includes GHT as a sub-case
 - Allows a large variety of retrieval mechanisms
- Improves on GHT
 - Load balancing for popular data types
 - Distance sensitivity
 - Flexible data retrieval schemes improve system robustness

Double Rulings on a Sphere

- Stereographic projection maps a projective plane to a sphere
 - Circles map to circles
 - May incur distortion

- For a finite sensor field
 - Can choose location and size of sphere such that distance distortion is bounded by $1 + \epsilon$.

Spherical Double Rulings

- Any two great circles intersect
 - Use great circles in place of vertical/horizontal lines

Spherical Double Rulings

- One major difference with rectilinear double rulings:
 - Infinitely many great circles through a point
 - A lot more flexibility

Data Replication

- Data centric hash function $h(T_i) = h_i$.
- Producer p replicates data along the great circle C(p, h_i).

Data Replication

- Different producers with the same data type hash to different great circles, all passing through *h*, and its antipodal point *h*.
 - Allow aggregation.

Replication Curve Examples

Data Retrieval

- Flexible retrieval rules
 - 1. GHT Style Retrieval
 - 2. Distance Sensitive Retrieval
 - 3. Aggregated Data Retrieval
 - 4. Full Power Data Retrieval

1. GHT Style Retrieval

- GHT still works
- Consumer q wants data T_i

Consumer goes to hashed node *h* or its antipodal, whichever is closer.

- Distance Sensitive : If producer is at distance *d* from *q*, consumer should find data with cost *O(d)*.
 - Consumes less network resources
 - Users are likely to be more interested in immediate vicinity.
 - Lower delay --- Important in emergency response.

• Rotate the sphere so that hashed node is at the north pole.

If q is d away from p, the distance from q along latitude curve is $\leq d \cdot \pi/2$.

Distance Sensitive : If producer is at distance *d* from *q*, consumer should find data with cost *O(d)*.

Consumer q follows the circle with fixed distance to the hashed location.

- Wrong direction ?
 - Handled using a doubling technique
 - A random choice of direction works well in practice (we use this in simulations).

3. Aggregated Data Retrieval

- Consumer wants data of several Data Types {*T_i*}
 - E.g., monkey & elephant detections.

Follow a closed curve that separates h_i and its antipodal point, for each data type T_i

- Correctness: Any closed cycle that separates h_i from its antipodal intersects the producer curve.
- Many such retrieval curves! → more freedom for consumers and better load balancing.

3. Aggregate Data Retrieval

4. Full Power Data Retrieval

Consumer wants all the data in the network

Follow a great circle, retrieve all data.

- Correctness : Any two great circles intersect
- Many such great circles!

4. Full Power Data Retrieval

Local Data Recovery upon Node Failures

• When a group of nodes are destroyed,

All the data on those nodes are available on the boundary of destroyed region.

Local Data Recovery upon Node Failures

Implementation

- How to forward data on a virtual curve ?
 - Use "Geographic Greedy forwarding

on a Curve"

Badri Nath and D. Niculescu. Routing on a curve. *SIGCOMM Comput. Commun. Rev.*, 2003.

The question of density

- Is it always possible to forward ?
- Simulation : A suitable 2-hop neighbor exists with high probability, for networks with avg degree \geq 5.

1 unit

Simulation: Distance Sensitivity

4200 nodes with average degree 8 per node.

Distance Sensitivity of queries

GLIDER based scheme : Q. Fang et. al. Landmark-based information storage ²⁶ and retrieval in sensor networks. *INFOCOM* 2006.

Simulation: Storage/Retrieval Tradeoff

Nodes on replication curve can store the data or a pointer to the actual data.

Simulation: Storage/Retrieval Tradeoff

More storage, Lower retrieval cost.

Discussion

- Data collection by mobile data mules.
 - Physically move along any retrieval curve.
- Advanced hashing schemes.
 - E.g., similar data types are placed nearby.
- Networks with holes.
 - Require special care.

Summary

- Flexibility in choice of retrieval method
 - Easier to hit a curve than a point.
 - many retrieval curves possible
- Better distance sensitivity
 - Even with sparse replication on producer path
- Better load balancing
- Better response to aggregate query:
 - Consistent performance with structured aggregate queries
 - GHT's cost increases linearly with number of data types
- Better average consumer costs

£

Comments..

References

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A geographic hash table for data-centric storage in sensornets. In Proc. 1st ACM Workshop on Wireless Sensor Networks and Applications, 2002.

Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage and retrieval in sensor networks. In The 25th Conference of the IEEE Communication Society (INFOCOM'06), April 2006.

B. Nath and D. Niculescu. Routing on a curve. *SIGCOMM Comput. Commun. Rev.*, 2003.