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ABSTRACT

Consider mobile targets moving in a plane and their movesiast
ing monitored by a network such as a field of sensors. We dgvelo
distributed algorithms for in-network tracking and rangeedes
for aggregated data (for example returning the number getar
within any user given region). Our scheme stores the tagfetel
tion information locally in the network, and answers a queyy
examining the perimeter of the given range. The cost of upglat
data about mobile targets is proportional to the targetaigment.
The key insight is to maintain in the sensor network a fumctidth
respect to the target detection data on the graph edges thdif+
ferential one-fornsuch that the integral of this one-form along any
closed curve” gives the integral within the region bounded @y
The differential one-form has great flexibility making itpp-
priate for tracking mobile targets. The basic range query lwa
used to find a nearby target or any given identifiable target edast
O(d) whered is the distance to the target in question. Dynamic in-
sertion, deletion, coverage holes and mobility of sensdesa@an
be handled with only local operations, making the schemealsiei
for a highly dynamic network. It is extremely robust and dapa
of tolerating errors in sensing and target localization.e Du lim-
ited space, we only elaborate the advantages of diffetetias
in tracking of mobile targets. The same routine can be appte
organizing many other types of informations, for exampteas-
ing scalar sensor data (such as temperature data field)ppmigu
efficient range queries. We demonstrate through analysisiaru-
lations that this scheme compares favorably with existotgemes
that use location services for answering aggregated rangees
of target detection data.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocolsF.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problemsse-
ometrical problems and computations
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1. INTRODUCTION

Tracking mobile targets is a common application scenario in
modern society. People in motion need to maintain connggtiv
thus requiring location management. Other applicatioorsexam-
ple monitoring of traffic require real-time assessment ofiren-
ments of mobile devices. Mobile targets can be identifiafue,
example possessing unique identifiers or unique signahgiges,
or non-identifiable, for example for privacy concerns. Qegon
mobile targets may be about locating the current positioa ioio-
bile identifiable target, or aggregated information sucthasount
of targets in a user specified region. There is often a coadect
communication infrastructure spanning the space in wtacets
move. A major technical question is centered around theesgpr
tation of target motion that will allow the users easy aneeffe
access to the data. The possible solutions can be tailomiffeo
ent system requirements and assumptions.

Take an example of the location management schemes inagellul
systems. The problem is to find the current location of theitaob
user when receiving a call. There are two atomic operaticaied
paging and update respectively. Paging is used when thensyst
searches the cellular towers looking for the user. Upddtrgdo
mobile users informing the system of their current locatiofhe
full scheme uses a combination of paging and update, based on
user mobility patterns and call frequencies. This soluiesumes
the cooperation of the mobile users/targets and that they éggiéor
individual identifiable targets.

Targets may not always be so cooperative or capable of direct
communication with the system. In such cases the task ofifaga
tracking and querying for mobile targets is entirely on tbenmu-
nication infrastructure spanning the region. The targedy mot
be individually identifiable, but being able to detect thenfer of
targets in any region can still supply valuable informatiorhis
is motivated by the recent advances of large scale wireksssos
networks. As sensor networks intrude into the space whaglee
live and work, they form a sensing and communication inftest
ture that can provide real-time assessment of the livingremv
ment and the mobile objects therein. Indeed, tracking ofilmob
targets is identified as a major motivating application fensor
networks [4,15,17,19, 27,28, 30] from the very beginning: We
sensor network as a simple model for a distributed trackifrg$-



tructure but the solution is independent of the particuketiork

underneath. For example, wireless enabled devices caadiett
by wireless access points or other wireless devices. Ircéss, the
wireless infrastructure acts as the sensor network.

Consider the following scenario of wide-area deploymersieoi-
sors along major roads to track and monitor moving vehickss.
suitable sensor can detect the position and velocity ofgetavithin
its sensing range [21], the navigation system in a car maycals-
municate directly with the sensors. A target may or may netha
identifiable signatures. The moving vehicles come in swasis
the typical case of medium to heavy traffic situation. A usaym
use hand-held devices (smartphones, PDAs, etc) or the GRS
system to communicate with nearby sensors or other ponals a
inquire for the target distribution. Of particular intetés us are
rangequeries foraggregateddata, for example, the level of traffic
congestion in a specified neighborhood and its evolution tives.
Formally, we ask a counting range query: what is the number of
targets in any user-specified regi®? The topic for this paper is
to develop an efficient data processing and query schemeifbr s
applications. A desirable solution should have low querlayle
low communication costs, as well as low maintenance costeas t
targets move rapidly.

In sensor networks, the most adopted target tracking approa
arguably, is the sensors to record the detection eventsinldba
logger or report to a base station. The base station asseitainte
get trajectories for post-experiment analysis. This sofubears
the common problems of having a central server (bottleneck a
a single point of failure, not resilient to attacks), and artjular,
the data collection step makes it inappropriate for appioa with
stringent delay requirements. In many practical scenanas/e-
ments of targets are relevant only in the local region ana fefrort
period of time. For example, some cars turning on a particula
by-road is a relevant traffic information only while they amethe
neighborhood. It is difficult to justify the high communigat and
storage costs of updating a remote server for high volumesaf
fleeting pieces of data. Very often, users may be in a neighbor
hood of where the relevant data is generated. A centralizetion
would require both the data and query from the users to be-del
ered to a (possibly) remote server. This leads to unacdepdatay
and unnecessary network traffic.

Alternatively, the sensor in the proximity of a target carede
the target and can locally cache the detection event. Thisnse
has low maintenance cost as data is stored locally and oodf lo
updates are needed when target moves. But with such rawtidetec
data stored directly in the network it is not easy to answagea
queries. One has to flood all the nodes inside the rdhgefind out
the total number, the communication cost of which is praposl
to the area oR?, A(R).

The solution we propose in this paper uses local maintenance
but instead of storing raw detection data, stores targeemewnts
implicitly. Counting range queries have costs proportidnahe
perimeter of range?, P(R) < A(R). For this we use a novel
notion of differential one-form on the network. The key st is
to maintain in the sensor network a function on the edgesistet
co-vectorfield with respect to target detection data, which means
that the integral along any closed cuegives the integral of the
region bounded by'. Thus our scheme naturally supports efficient
range queries by touring along the boundary of the regionis Th
idea is introduced below.

Our approach: differential one-form. A differential form is com-
monly considered on smooth manifolds, where it is easierriew
explicit expressions for smooth forms. In this paper we uf®-a
mulation which can be considered an implicit representatmre-

sponding to smooth forms. This representation allows ute ¢
sider the concepts in a more discrete manner that is suifable
computations and dynamic modifications. This discretestéfftial
form is defined on a cell complex, for example, a decompasitfo
the plane into non-overlapping faces by a planar graph. péis
ticular representation of differential forms, while notnomon in
mathematics, its hints can be found in literature [10, 16].

Consider the simplest case. We have a planar graph embedded
in the plane, and one target lies within a fafeeand has a weight
of w, e.g., representing its size or other metrics of intereisé dif-
ferential one-form is represented by a functfoon directed edges.
The value foré(ab) must be the negation of the value f§fba).
We maintain the property that for the fagg the summation of all
the values of the edges on its boundary, in clockwise ordeu, i
and the summation of all the values of the boundary edgesan ea
other face i9). This ensures that any cycle containing the féige
will have a total summation af, and any cycle not containingj
will have a sum of0. In other words, one is able to answer range
queries by simply integrating the differential one-fornteng the
range boundary. The weight on an edge signifies we have draate
differential form whose integral over the edge sums to thaie.

The basic definition for one target can be generalized toipheilt
non-identifiable targets — such that the integral of a fa¢ckagotal
weight of the targets within the face. This way range queryloa
done for a swarm of targets with the same query cost. Usingeran
queries we can implement the query for locating a nearbgtanga
given identifiable target. The idea is to use exponentiailgging
range around the query node and once the range includesgkg ta
reduce the range by using divide and conquer. The cost forisuc
bounded byO(d), whered is the distance to the target in question,
representing locality sensitivity.

The differential one-form has great flexibility that allowsw
maintenance cost under both network dynamics and targe¢-mov
ments. When a target moves from one fggeo an adjacent face
f1, we only need to update the differential one-form on the edge
ab common tofo, f1. In particular&(ab) <+ £(ab) — w, for a tar-
get of weightw. This ensures that the property of the one-form is
maintained. The cost for the update is a constant and canr® do
locally. Network dynamics such as link addition and rempwal
node insertion and removal, can be handled in constant tivee.
also show that the differential one-form can be initializedinear
communication cost, i.e., constant cost per node. Furthisraids
in energy management. Sensors only need to be active if énere
targets nearby. A region of the network where there are ryetsr
need not perform any communications to maintain trackirtg,da
and can sleep or go to low power mode for extended periods.

The method is built on a planar decomposition of the sensng r
gion. The planar decomposition can come from a planar sphgra
of the communication graph, or just as a virtual decompmsitif
the domain, as long as the sensors maintain the counts anines
tual edges based on their sensing data. The method autaityatic
handles sensing holes — relatively large faces in the plgragph.

If a target moves deep inside a hole and is not detected byesmy s
sor, its contribution to the total count of a region enclgdime hole

is still correct. This is in contrast with the naive approa€bktoring
the target detection data locally where the range query toyrsng
up all sensor detections is incorrect and misses all thetsutgat
are ‘lost’ in the hole.

Although we present as the major application of differdifitiens
the tracking of targets in swarm, the same routine can beéeapfar
organizing streaming scalar sensor data (such as tempegsta
field), to support efficient range queries.

The rest of the paper is organized as follows. We review prior



related work on range queries of mobile target and elabdrate

have amortized update cost 6f(dlog d) when a target moves a

our scheme fits and compares with the state of the art schemesdistanced, and a query cost aD(d’) if the query node is of dis-

Then we introduce the definition of differential one-form thre
network. The algorithms for computing and maintaining the-o
form are described afterwards. We report simulation evilnos
and comparisons with prior work at the end.

2. RELATED WORK

There are a lot of previous works on tracking mobile targats a
on range queries of sensor data. We briefly review these wuatk a
compare with our approach.

Range queries. For a typical range query, we are given a query
region plus possibly a range of the sensor data, and thenoask f
all the the sensors in the query region whether any sensariglat
within the data range. This is a problem that has been stwdiet

in computational geometry. Centralized data structuregéomet-

ric range query on static points [3] or motion data [2], haeerb
developed. But they are obviously not a good fit for a distedu
sensor network setting. Various distributed schemes hese pro-
posed. In the case of a scalar field, one solution is to pantttie
information about large geographic regions into subseterding

to smaller ranges of the field value, and store these subseltf i
ferent nodes. This is the approach taken in the DIFS systdin [1
In the DIM system [23] a locality preserving hash functiomsed

to map portions of a multidimensional attribute space tosgen

tanced’ away from the target’s current location. In comparison, we
have better asymptotic bounds. Our update cost is worst@ése
and query cost is no more thal(d’). In addition, location services
do not support range queries very well. If there are multtpte
gets, they are handled separately. For range queries cegajgd
queries (such as density) one has to search for locatioersefor
all potential targets within the range, which can be higlmgfii-
cient. Note also that this method requires tracking dateetednt
and stored at far away nodes. Thus, even if targets are coatssh
only one region of the network, other nodes have to stay afake
storage and communication of the tracking data. In this page
evaluate the performance of using location services antyusirr
method for range queries in the simulation section. We slaw t
for both update and query cost, our method is substantialigb

Information gradients. The third approach is to define a potential
field centered at the target. Such information potential§iean be
either the natural gradients of physical phenomena, sirecsfatial
distribution of many physical quantities, e.g., tempeam®taeasure-
ments for heat, follows a natural diffusion law [6-8, 25], bwrilt
explicitly on a mobile target. One scheme in this family uses
monic function to build such information strength field [2dhich
satisfies the Laplace’s equati®* ®(z) = 0 with proper Dirichlet
boundary condition1( at the target location and at the network
boundary). Such an information field is guaranteed to beffora

so that all data needed to answer a range searching queryecan blocal minima. Thus every node can follow the lodaformation

located conveniently. In the fractional cascading apgidaz2], in-
formation is stored so that more detailed information isilalte
about data obtained in the spatio-temporal locality of t@essr
where the query is injected—but without sacrificing the iabiio
query distant regions or times as well.

gradientto arrive at the target. This works for both identifiable
(information fields are maintained separately) and nontifiable
targets (a single information field is maintained for albts). In
addition, the divergence-free property of harmonic gnadieand
Faraday’'s law of induction imply an easy solution for conogti

All of these schemes are designed to support range queries fo range queries — touring the boundary of a given range and sum-

static sensor data and essentially use a quadtree-typardfier
cal space decomposition. For mobile data, constant updatas

ming up the difference of the potential values on the edgessac
the region boundary provide the number of targets in theiotef

fixed space partitioning make these schemes too costly — smal the range. When a target moves, the information field neetle to
movement of a target may lead to updates up to a high level of ypdated to ensure the harmonic function property. The ditiin

the quadtree and possibly updatesatirsensors, if the mobile tar-
get happens to cross a high-level boundary. Location ssyias
described below, alleviate some of the shortcomings of mead
based schemes and are more appropriate for mobile datahisor t
reason we only compare with location services in the siranat
section. In addition, these range query schemes are maintgdt-
angular ranges only. Ranges of other shape must be firdiaetl
into smaller rectangular ranges, which are queried seglgrat

Location services. Existing solutions for tracking and searching
for mobile targets, termed dscation servicesfocus on the track-
ing and searching of a single target. The earliest work is\wgrA
buch and Peleg [5] and followed up in [1, 9, 22] to fine tune the
system. The location of a mobile target is updated to a chyefu
selected set of nodes, called the location servers, whaatakp
density cascades exponentially as we move away from thettarg
This allows ‘locality-sensitive’ queries, i.e., the costeoquery is
proportional to the distance to the target. When a targetesiov
information is updated on a location server, with the fretpyen-
versely proportional to the distance to the target. Thermé&iion

of a nearby location server is more up-to-date. Forwardiigtp
ers are left at the old position pointing to the current posibof
the target. A query far away from the target may first obtait ou
dated information pointing to a past location, from wheredery
can be delivered to the current position by following thexfard-
ing pointers. This family of schemes focused on the tracking
searching of an individual, identifiable target. Locati@rvices

of the scheme is that updating the potential field for molzitget

is costly by the global nature — nodes far away from the tdrgee

to update their information strength, while ideally we hapee-
strict the updates to be within a small neighborhood of thgeta

If we ‘rotate’ the gradient vectors 0°, the result is a differential
harmonic one-form. In our scheme we do not require the differ
tial one-form to be harmonic — thus one can not as easily aéwig
towards the target as in the scheme in [24]. However, theflbene
of using a relaxation as simply a differential one-form isattow
quick maintenance of the one-form under target motion. As we
have shown, the update is completely restricted to the tarjgh-
borhood.

To summarize, the scheme proposed in this paper complements
the state of the art data processing methods in a sensor nketwo
by providing low-maintenance, low cost range query schemae f
large number of non-identifiable mobile targets.

3. DIFFERENTIAL ONE-FORM ON CELL
COMPLEXES

The differential one-form is defined oncall complexinduced
by a planar grapldz in the plane in our case. The vertices, edges
and faces of the planar graph are thd and2 dimensional ele-
ments created by the planar graph. In algebraic topologseths
called theD-cells, 1-cells and2-cells respectively. See Figure 1 for
examples. The composition of the different dimensiondkazv-



ering the deployment region is calleadell complex The idea of a
cell complex extends up te-cells for arbitraryk. A more detailed
treatment of cell complexes can be found in [16].

Figure 1.0, 1, 2-cells.

Our focus is to track targets in the plane as they move between

faces g-cells) of the planar graph — which is2acomplex in the
plane. We assign and update weights of the edgjezl(s) of the
complex. The idea however extends to suitable complexeighbéh
dimensions.

For ease of explanation, we assume for now that the targets ar
accurately tracked by nearby sensors. Various targettilaeschemes
and signal processing primitives have been developed iliténa-
ture [21]. In the algorithm and simulation sections we addrie
issues of sensing holes and target detection errors. Galegyras-
signs values to edges of the planar graph, and changes tiless v
as the target moves. We introduce the following definitiond a
notations to represent the related faces, edges and values.

3.1 Boundaries and Boundary Chains

A face is demarcated by the edgesilecells that surround it.
Such a set of edges form theundaryof the cell. For an edggg,
we use the ordered paip, ¢) to represent a directed edge whose
direction or orientation is fromp to ¢q. We use—(p, ¢) to represent
the same edge with orientati¢q, p). For brevity, we can represent
(p,q) and (¢,p) ase and —e respectively. In a diagram, when
an edge is labeled simply as an arrowhead is used to represent
the intended orientation. The opposite orientation wiliunally
correspond to-e.

Definition 3.1. Edge chain or1-chain. Supposeu,b,c... are
oriented edges or-cells, then a chain on these edges is a formal
sumMhia + A2b+ Asc + ..., where eaclh; is an integer.

This chain simply signifies; occurrences aof, A2 occurrences of

b etc. The advantage of the summation notation will be clear in
short while. Note that in many cases we consider, the eddesavi
adjacent to each other and form a connected path. But thistis n
necessary in general, and the edges in an edge chain can befac
any set of edges from the complex.

We can also associate orientations witkells or faces. These
correspond to traversing the boundary cycle of a face in sdime
rection, clockwise or counter-clockwise. In this paper wsume
that all faces are oriented in the clockwise direction. Saawon-
sistent orientation of cells is made possible by the fact tia 2-
dimensional plane isrientable[20]. Thus, given a celb repre-
sented as an ordered tupte= (p, ¢, 1, s,t), as shown in Figure 2,
we understand that the order corresponds to a clockwisertahof
edges(p, q), (q,7), (r,s), (s,t) and(t,p). Correspondingly—o
is the same cell with the opposite orientatierg = (¢, s, 7, ¢, p).
Observe that the orientation of a cell implies a specificraagon
for each edge on its boundary.

Definition 3.2. Boundary operator 0. The boundary operater
acts on &-cell or a faces to produce a chaif(oc) = a + b +
c... wherea,b,c... are the edges on the boundaryagfwith
orientations inherited from the clockwise orientationcof For a
set of faced/ = {o, 7 ...}, we extend to operate on it a8U =

Z Jo.

oeU

S

Figure 2. Action of boundary operator on a faeewill give a
chain of its boundary edges with orientations inheritednfrthe
orientationo.

The idea behind this definition is shown in Figure 3. The two
neighboring faces andr have boundarie8c = a + b + ¢ and
Ot = d+e+(—c), respectively. Note that a shared edge tikeust
always appear with opposite orientation, and therefore logpo-
site signs for the two faces. Thus the resultant boun@gey 7} =
a + b+ d + e is exactly the boundary of the union of two faces.
This applies more generally to any set of faces. We referahdar
to [20] for more details on the algebra of chains.

-~

A

Figure 3. Action of the boundary operata? on facess and
produces the boundary of the union of the two.

3.2 One-Forms and Tracking Forms

In this subsection we define functions over edge chains am sh
how they help in tracking a target.

We consider a functiorf that assigns a value to each directed
edge in the planar grapR. The function is defined to have the
property thatf(—e) —f(e). We extend this function to edge
chains by making it distributive over summatiofi(a + b + ¢ +
...) = f(a)+ f(b) + f(c) + .... Let us refer to such functions
as1-formsor edge formsA 1-form f can be extended toZform
df on the faces of the planar graph, if we let it take the valuehen t
boundary of that face, that idf (o) = f(90).

Now suppose there is a single tar@ebf weightw in the do-
main. Then at any given time this target resides in singleusmi
face of the planar grap *. Then we define a one-form on the
faces and edges such that it is non-zero on this face anddsoner
every other face:

Definition 3.3. Tracking form &. A tracking form¢ for a targetl’
of weightw is a one-form such that

{

Remember that on the facethe form is defined to take a value
equal to its sum on the boundary edgéS(c) = £(00). We can
extend the form to a sét of faces by simple summationil¢ (U) =

> dé(o).

ocU

w if o containsT’
0 otherwise

d¢(o)

1The degenerate cases of the target being on an edge or acamtex
be resolved locally by a predetermined policy between tloallo
nodes to assign the target to a face. Therefore, we ignoee the
cases to keep our discussion simple.



As a direct consequence of this definition, we know that td-eva
uate the presence of the target within a subsef faces, it suffices
to add the extended tracking-fordg on the faces irU. If a face
in U contains the targef’, thend{(U) sums tow, else it sums to
zero. The following lemma implies that it is sufficient to sune
form £ only on the edges that form the boundary of the et
obtaind¢(U).

Lemma 3.4. The sum of the form on the faces in a Beequals its
sum applied only to the boundary Of, that is:d(U) = £(0U).

PROOF This follows directly from the definitions that

dEU) = ) dé(o) from definition 3.3
= oij £(00) from defnition ofd¢
oeU
= ¢ <Z (80)) by distributivity of ¢ over+
= g(ac[r]E)U by definition 3.2

O

This lemma is equivalent to Stokes’ theorem [10]. Its signifi
cance becomes clear in Figure 4. Given any cycla P, it is
possible to detect if the targ@&t is inside the loop or not, by sim-
ply adding the tracking form along. If T is in the interior, then
&(L) = w, and ifT" is not in the interior, theg(L) = 0. In either

Figure 4. Query for atargef” insideL. (a)T is insideL, therefore
&(L) = w. (b) T is not insideL, thereforef (L) = 0.

case, the query does not need to visit the nodes in the intdrio.
A simple walk on the loop suffices to find the answer. Furthes, t
works exactly the same way for any arbitrary lobgand position
of the targetr".

Multiple Targets. This idea extends to any number of targets in the
domain. Suppose targéefs, Ts, . . ., Tx of weightswy, wa, . . . , wy,
individually give rise to tracking formsgi, &2, ..., . Then we
can construct a combined tracking form as the sum of tgese
&1+ & + -+ & on each edge. Given any lodp the sumg(L)
will provide the total weight of targets inside

The weights assigned to targets can be adjusted to suit s ne
of the system. For example, if all weights are equal, theh)
provides the count of targets inside. If each individuagj¢af; is
given weight2¢, then fromé&(L) it is possible to deduce exactly
which ones are located inside This is equivalent to maintaining
a form for each individual target. It is possible to imagirbes
scenarios where targets are assigned different weightsding to
their importance, for example, objects can be classifiedrdany
to needs and weights assigned according to their types.

Given the weights and target locations, it is always possiol
create a suitable tracking form. In the next section we véfiatibe
an efficient algorithm.

Updating tracking forms for mobile targets. When a target moves
from one face to another, we need to update the tracking form b
changing its value on the directed edges. Without loss ofigity,

Figure 5. TargetT of weight w moves from facer to facer.
Modify £(c) < &(c) — w to obtain the new form.

we consider the example in Figure 5, whé&tenoves from facer

to an adjacent face. Let us say, the shared edge that was crossed
by T appears asin do, and as—c in d7. In the initial configura-
tion, we hadd{ (o) = w andd{(r) = 0. After the move, we need

to have a final configuration witt (o) = 0, andd{(7) = w. This

is achieved by the following simple modification to the formtbe
shared edge:

£(c) == ¢(c) —w. @)

The same assignment can alternately be written from the pbin
view of T as:

§(=¢) = &(=0) +w. @

Evidently, these two are the same operation, sffeec) = —£(c).
The following theorem says that this indeed is the correetap
tion that achieves the desired result.

Theorem 3.5. If o andr are adjacent faces with shared edgend
d¢ has valuesié(o) = u anddé(T) = v, then the modification
described in equation (1) or (2) resultsdg(c) = v — w and
dé(t) = v+ w.

PROOF Suppose, the boundary efis 0o = e1 +e2 + -+ +
¢ + ---. In the initial configuration we had¢(c) = &(e1) +
&(e2) + -+ +&(e) + -+ = u. After the modification, we have
dé(0) = E(er) + E(ea) + -+ (E() —w) + -+ = u —w.
Similarly, after the modification, we haw¢(7) = &(ex) +
E(ensr) + o+ (E(—0) +w) + - = v+ w. 0

In the proof above we take the initial values toibandv instead
of w and zero so that the same proof applies to scenarios with mul-
tiple targets, and any preexisting weights on the faces dgés
For a system with a single target, the final valueséére = 0 and
&(7) = w, asrequired. In general, the weightfs removed from
the weight ofo and added to the weight of

4. ALGORITHMS

In this section, we describe the algorithms for constryctine
tracking form, and for supporting range queries and otherigs.

4.1 Planar graph for tracking

As a first step we compute a planar graph. The planar graph can
be either a subgraph of the communication graph of the sensor
a virtual graph chosen for the tracking application.

In the first case, consider the sensor network as the nodes em-
bedded in a region in the plane, and an associated commianicat
graphG. We obtain a planar subgragh C G that contains all the
nodes, but is drawn in the plane without crossing edges. We ca
apply planarization techniques to extract a planar grap fthe
network connectivity graph. Such methods have been dewélop



the past [11, 13, 26, 29]. Any such algorithm can be used for ou
purpose.

Alternatively, we can also consider a virtual planar grapbsen
for the tracking application. For example, the virtual @lagraph
can represent any convenient space decompositions, sstfeets
and blocks, any other meaningful districts, or simply a glajrid
overlayed on the region. For each virtual edge we can apjoint
nearby sensor or all the nearby sensors (e.g., those whosege
ranges cover part of the edge) to ‘maintain’ the value on tlgee
In this case we only assume that a target crossing an edge of th
virtual graph can be detected by at least one sensor and the ne
differential form value is updated. Such virtual planargirs can
be made to create finer subdivisions as required. When thdamob
entities can detect their own locations, they can on their oatify
the system when they cross an edge of the graph.

4.2 Constructing one-form

In this subsection, we show how to initialize a tracking doem
in the network. First, we describe the simple case where ¢te n
work is empty of targets to start with, and all targets ertteoigh
the outer boundary. Next we will see that the ideas from tagec
provide a mechanism for initializing the more general cabere
targets may be present at the time of initialization.

Starting with an empty field. In this case, we initialize all edges
to zero, that is for every edge € P,£(e) = 0. Now, suppose
that a targefl” of weightw enters the network. It crosses the edge
¢ € Ot to enter the face. Then we modify¢(c) := £(c) + w.
Clearly, after this modificationfé(7) = w. As T moves, we can
adaptively modify the form according to equation (1) or (2).

@)

Figure 6. The entry of a target’ into the network. (a) As it moves
from face to face, it leaves a trail of edges that it modifiedoven
in bold blue. (b) The trail in the dual graph. The edges of thal d
graph are shown as dotted lines, and the dual trail of thetaga
solid blue path.

The process is shown in Figure 6(a). As the target moves from
face to face, it modifieg on the shared edges between adjacent
faces. Creating a trail of edges with non-zero values.

Now, let us look a complexP that is the dual complex of.

A vertex (sayz) in P corresponds to a face)in P. An edgeé
between vertices iR represents the shared edgbetween corre-
sponding faces of. The trail of edges i thus results in a dual
trail, which is a path inP, shown in Figure 6(b). For a more com-
plete picture, we can regard the region outside of the plgraph
as aface at infinity and then the dual trail df is a path from this
face to the current position @f.

Initializing a field with targets. The idea of the dual trail directly
leads to a simple algorithm to initialize targets in the fialde take

a dual path to the face at infinity and add the suitable weight t
edges ofP whose dual are on the path.

More formally, for a targef’, we select any simple directed path
« in P from the current face of" to the face at infinity. Ife =
(7,7)isona, ande € 9o, then we do the following modification:

£(e) :==&(e) +w, (©)

wherew is the weight ofT". Quite clearly, any simple directed
clockwise loop that containg' passes through one such edge. In
cases where the loop has more than one such edges, the @alditio
edges appear in oppositely oriented pairs and the valuekemn t
cancel out each other.

The following theorem shows that the algorithm above create
correct tracking form.

Theorem 4.1. Supposelé (o) = u, then after the algorithm above
is executed,

1. If afaceo contains target’, thendé (o) = u + w,

2. Elsedé(o) = u.

PROOF Supposél” € o, theng € « and has an outgoing edge
e. Therefore, after the algorithm is executéathanges or € do
by £(e) := £(e) + w. All other edges oo remain unchanged.
Therefore, after the modificatiog(c) = w + w. This proves the
first claim.

Supposél’ ¢ o, if & is not on the traiky, then of course nothing
changes, and¢(c) = u. So, the only case we need to consider
is wheng is on the patho. We know thata is a path from the
current face ofl" to the face at infinity, and is neither of these.
Thereforeg has degree exactlyin a. Suppose the incoming and
outgoing edges ar@ ande; respectively. Then the algorithm will
have made the following modifications{{—e1) = £(—e1) + w
and&(ez2) = &(e2) + w. Therefore, the original sundé (o) =
a+---+&(e1)+E&(e2) + - -+ = uremains unchangedds (o) =
a+---+ (&(er) —w) + (£(e2) +w) + - - - = u. This proves the
second claim. O

Once again, the proof works for domains with multiple tasg&ve
execute this once for each target in the domain or for eaoh fac
containing targets with the total weight of these targetsusTpro-
ducing the correct form for initialization. The same prasedcan

be executed in case a target appears in the middle of the riesitvo
any time during the operation.

In cases where there are many targets in the field, creatiag a t
to the boundary for each can be expensive. In such cases,iwe pe
form the initialization as a sweep on the network. We dis¢hiss
further in section 4.8.

4.3 Containment queries

Given a one-form on the planar graph, we can query the number
of targets inside any loop on the planar graph. This sulmecti
extends it to queries of a geometric range. In the followirgguse
the example of user specified squares. Other geometricsamage
be handled in a similar manner.

For now, let us assume that the network is sufficiently dense s
that every point within it is covered (sensed) by one or mere s
sors, in particular that every point in a face is within a dmah-
stant distancé of some vertex of the face. Let us also assume that
the density is bounded, that is, inside any disk of raditlee num-
ber of nodes is bounded by some constantThis is not a very
restrictive assumption. In a very dense network, we carcsele
sample of bounded density that still covers the region. \deras
geographic face routing [18] is used to follow the faces ther-
sect a given geometric curve.



Let us use the notatiofi, () to denote the square of side length
2r, centered at point. We sometimes useto denote both a node
and its location. We define treze ofS,(r) to ber. The goal is
to compute the weight of targets inside this box, or equiviiye
compute the sum of the tracking form on the bound@¥, (r)].

Consider the faces oP that intersect this boundary. By the
assumptions above, there are at most a constant numbersef the
within a unit distance of any point anS,(r). Therefore, the num-
ber of faces intersected by the boundarpigd.S, (r)|) or O(r).

Let @ represent this set of faces at the boundary. For a suffi-
ciently large box queried® is an annulus an@Q has 2 different
connected components — s&y) = S + v where each is a con-
nected edge chain, in fact a cycle. One of theseskgs outside
Sp(r) and g lies inside. We say thaf and— 3 respectively form
the outer and inner approximations@$,, (). The reason for tak-
ing — 3 is that3 by default is oriented counter clockwise, therefore
we reverse the orientation to match our conventig{s-3) gives
a lower bound on the weight of targets inside the box, wfite)
gives an upper bound.

We can now find the answer to our query. First, we fite 3).
Next, for every facer € @, we manually check the total weight
of targets insider N S, (7). The sum of these values wig{—z)
gives the answer.

Note that this entire computation can be done in a distribute
manner by a single walk along the cy@&,(r). The size of the
sub-complex induced b§ and therefore the cost of this computa-
tionisO(r).

4.4 Search queries

In this section, we build an algorithm to answer queries ef th
type “Find the targef” starting fromp." It is assumed that a differ-
ential form is maintained for the identifiable target that can be
used to search fdr, Similar ideas apply to find a target nearest to
p.

We search in two stages. First, we find the smallest $g®")
that containgl”. This is done by successively checkifig(2*) for
1 =20,1,2,3,.... Suppose thd is at a distancel, then the size
of the largest box tested in this proces&i¥(¥1. Denote this box
asBy(r). From section 4.3, the cost of checking a box of siie
bounded byur for some constani. Then the total cost of the test

[g(d)]
aboveisa »  2'=0(d).

=0

In the second step, we search within the l@x(r) recursively
for the actual location of the target. We partition the bBx(r)
into four quads, each of size/2, and check each of these for the
presence of a target. Each test castg2, therefore, the total test
for 4 quads cost8ar. This is done recursively until we arrive at a
node that ‘sees’ the target. Clearly, the cost of this reeeisearch
isdar(3 + 3+ % +---) = O(r). Sincer is at mose &1, we
have that the total cost of finding the nearest targéx(ig), that is
of the order of the distance to the target.

Our query cost is sensitive to the distance to the targeticblot
that whether we simply want to deliver a message to the tanget
obtain its location, the cost B8(d). Thus our query cost is asymp-
totically optimal.

4.5 Update costs

The network incurs a certain cost in updating the trackingifo
as a target moves. To be precise, every time the target maoves f
one face ofP to another, the form on that edge has to be updated.
Therefore, the total cost of the update equals the numbeacefsf
traveled by the target. By the arguments in section 4.3 amatta

moves along a straight line segment of lengitthe system requires
O(d) updates at nodes. If updating an edge requires communica-
tion between the endpoints, then the communication codse a
O(d). Note that in some cases this may not be necessary. If both
the sensors can detect a target entering a face, which cpemégr
example if the sensing range covers the entire edge, thetartet

is sensed by both these sensors, and each can update theofvie
the edge without any mutual communication. In such cases, th
update is carried out without any communication at all.

One can consider adversarial behavior, for example wheae a t
get repeatedly crosses an edge back and forth to induce npany u
dates in the nearby sensors. However, this sort of behavieasy
to detect, and can be handled separately. If we would likeeto r
duce maintenance cost, we can stop updating that edge fa&r som
time. That is, the edge is assumed not to exisPifor that dura-
tion. Note that this ‘hole’ in the graph does not affect anyghin
the rest of the network at all. Updates and queries can ptdoage
usual and the query result is not affected unless the qugpens
to use this edge. The edge can be reinstated when target ranvem
is infrequent.

In general, when a part of the network is very active with many
and frequent movements, it may not be economical to tracuah
changes. Our scheme is sufficiently flexible and robust theking
can be turned off in such regions without any loss to othetspar
any overhead. Alternatively, it is possible to reduce tlaeking
resolution in that region by selectively removing nodes addes
so that the faces are larger and therefore incur fewer update

4.6 Network holes, fault tolerance and network
dynamics

If a network has coverage holes, a target entering the haatmi
be lost — no sensor detects its location. However, our rangeyq
result is not affected if the query range is either outsidettble
or encloses the hole completely. If the query range happeostt
through the hole, this is a pathological case that no methachc-
curately tell whether the target is inside or outside theyeardue
to limited sensing coverage. We can however get upper anerlow
bounds (such a&(y) and&(—p3) in section 4.3) by computing the
weights inside such uncovered faces. When initializing tavaik
with large holes, these are simply disregarded, that isctmee-
sponding vertex does not exist in the dual. The dual trailter
initialization therefore never goes through the hole.

The scheme is also fault tolerant and adaptive to network dy-
namics. If some nodes fail, or all nodes in a region fail evetuid-
ing those near the target, that does not affect the correxmiethe
tracking form. Thus, this permits dynamic networks wherdes
can be turned off arbitrarily. There is no overhead on maiirig
the tracking form on surviving sensors. Nodes can also lertied
into the network. This only requires refining the planar grapd
the tracking form locally. See Figure 7 for an example.

Figure 7. Suppose a nodeis inserted inside a fadg, g, , s, t} of
total weightw and the face is partitioned into three fadesq, z},
{q,7,s,2}, {p, z, s,t}, where the total weights within these faces
are w1, ws, w3 respectively,ws + wz + wg = w. We simply
set the values of the edgé€ér,p) = 0, &(x,q) = &(p,q) — wi,
£(x,s) = E(p,q) + £(g,7) +£(r,8) —wy — wn. One can verify
easily that these values conform to the definition of a tragkorm.



The effect of sensing noise is local. Suppose an edge gets up-means of another differential form, calculated on the flyt ue

dated incorrectly due to sensing or communication failuféis
only affects the evaluation of loops that actually passughothat
edge. All other loops still produce the correct results. Un sim-
ulation sections we evaluate the tracking results whenisgns
inaccurate.

4.7 Tracking without target locations
Up to this point, we have assumed that the location of theetarg

saye is the first edge traveled along, and sayr; ando, are the
faces adjoining=. Now, we choose arbitrary poinis € o1 and
p2 € o2 respectively. As we walk along, we maintain two other
one-formsy; andr:, these are theinding numbersroundp; and
p2 respectively.

For any edg€u, v) on L, we add the clockwise angléup;v to
n;. By clockwise anglave mean that iZup;v is oriented clock-
wise, we add its positive value, else we add its negativeevebuip-

can be sensed by the nearby sensors. We now show how to modifyP0Sep: is on the exterior ang, is on the interior of the region

the tracking scheme so that it can work without target laeaion.

Start from the simple case when the tar@eis detected by ex-
actly one sensor at a time. We initialize this scenario asvd.
Supposss is the sensor detectinf. Removes (and all incident
edges) fromP to get a new planar grapR’. Then inP’, T is
assumed to reside in the new face with the neighbors arf the
boundary. Now, we can initialize the form as usual on the dfial
P’. When the target moves fromto a neighboring node, we
first removet from P’ and then reinstate and its edges using the
method for inserting vertices.

The method naturally extends to cases where a target istelétec
by a set of sensors. In this case, we just remove all the degect
nodes, and when the target moves, we reinstate those thanger|
detect it.

4.8 Aggregation of signal over all nodes

Beyond tracking moving targets, differential forms carpdie
used to compute aggregates of arbitrary functions samplese-
sor network. Supposkis such a function. Since we have a method
for computing sums of values defined over facesPpfwe adapt
to make use of that existing method. For any nedeve apply
small perturbation to the location. That is, the valug) is as-
sumed to exist as an added weight in a fadacident ons, that is
dé(o) < d&(o) + h(s). Each node remembers to which face its
value was delegated.

First, we have to initialize the form over all faces. For gviace
o, we have to find a path to the face at infinity, in the dual graph
P. To build these paths, we construct an aggregationfrae P,
rooted at the vertex for the face at infinity. The path for sigis
then the path iff" betweerns and the face at infinity.

Next, starting at the leaves @f, we compute an aggregate at
each interior node by summing its value with those of itsdreih
in the the aggregation tree. Let us denote this function erdtial
nodes ag:.. For every nodé € 7, consider the edgeto its parent
in the aggregation tre€ and its duak in the original graphP. We
seté(e) = w(@). This initialization can be executed as a single
aggregation sweep on the trge Therefore, it can be computed at
a total communication cost @¥(n).

Now we reconsider the way the functiénis handled. We had
perturbedh and shifted the valug(s) to a neighboring face. This
perturbation can cause query results to be erroneous. Howhis
is easily rectified. Suppogeis the loop that bounds the closed area
over which we wish to compute the aggregate. Observe that for
loop not passing through, the contribution ofh(s) is estimated
correctly — since then both ando are either both inside or both
outside the loop. We only need to adjust carefully for looassing
throughs. Inthis case, we need to see whethés inside or outside
the query region. Iz is inside the region theh(s) is already
incorporated in§(L). If o is outside, then the value d@f(s) is
manually added tg§(L).

If L is traversed clockwise, then faces on the right of the path ar
inside, else the faces on the left are inside. Thereforehhbenge
is to find the orientation along which is traveled. This we do by

bounded byZ, then we havey; (L) = 0. The value ofijz2 (L) will
be either2w or —27 depending on the orientation &f

Thus we can reliably find the sum of values inside a closed loop
L in the planar graptP.

Changing values.Unlike the case of mobile targets, if an arbitrary
function h changes with time, local updates may not suffice. In
particular, the local update scheme works only when thetfomc
has certain local conservation properties, such as whearggehof
0 in a face always causes a chang&in an adjacent face.

Instead we simply re-initialize the form at regular intdsvar on
sufficient changes. With an initialization of ca9{n), we create
a network-wide one-form with which we can find the aggregate i
any region of the network.

4.9 Completely mobile networks

Consider a network where all nodes are mobile. That is, ketyon
the targets, the sensors themselves are mobile. Our mettiod n
rally extends to such scenarios. As a sensor moves, it mag ero
edge of the planar graph. Suppose thatosses an edgeto enter
a facer. Then we update the network simply by first discarding all
edges incident om, then by inserting into — as in Figure 7. Many
existing planarization algorithms work for mobile netwsrd 3].

We can use such methods to maintain the graph. In all cases, th
removal of an edge will not incur a cost, the insertion of agesd
will be made according to the idea in Figure 7.

Care needs to be taken in cases where we are considering forms
to monitor values defined on nodes. For example, when a mobile
network tracks its own nodes to be able to answer aggregatésco
and weighted sums inside regions. Suppose in such ascassses
an edge: € 07 to enterr. Then along with the usual insertion, the
valueh(s) must be reassigned to one of the new faces, for example
by £(e) := &(e) + h(s), as in section 4.8.
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5. SIMULATIONS

We conducted extensive simulation tests to see how the theo-
retical guarantees of our algorithm translate to a netwoalplg and
compare with LLS [1] in performance, particularly in ternfi€om-
munication costs. In addition, we conducted simulatiorte$d the



to have the target is in fact in error. However in such a cdse, t
target is guaranteed to be in one of the neighboring squtresn

be shown that this does not incur too high a cost. In fact,ef th
distance to the target i then the search finds the target at a cost
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Figure 9. Max update cost for any move.

robustness of the algorithm to sensing failures and inacies.
This section describes the findings.

The simulations were done with networks that are quasi usit d
graph$ of inner radiusl/+/2. This choice of parameters allows
local planarization algorithms [11, 26] to be used. The ulyidey
sensor networks have nodes in a perturbed grid distributibere
the node is placed uniformly randomly in the grid box assibtee
it. We consider networks without any significant coveragkeo
In all cases, the average degree was aliéuiand the size of the
network was varied betweetd0 nodes and 0, 000 nodes to test
the scaling properties.

To evaluate the update costs, we introduce moving targéteto
network domain. At each step, a target selects a randomtidinec
and moves up to a unit distance in that direction. After theeno
the initial and final position are compared and updates adema

5.1 Comparison with LLS

LLS scheme. This is a locality aware location service for mobile
networks. The principle here is to use location serversféredint
levels. At each level = 0,1,2,3, ... the network region is tiled

by squares of side’. The squares are aligned so that a square at
leveli is precisely covered by exactlysquares of level — 1. In
each square at each level, one node is designated to be #ti@toc
server for that square, and keeps track of more preciseidosadf
nodes in the square.

Location updates are performed in a certain lazy manner- Sup
pose mobile node was in a squaré; at leveli, and moves to a
neighboring square at that level. The scheme does not ufitate
location ofp to the respective location servers. Instead, it waits un-
til p has left this surrounding neighborhood$fbefore it actually
performs an update. Thus, aroufigdthere is a ring oB squares
moving where does not cause an update. As a compensation, LLS
keeps its location information at the location servers esthnodes
in addition toS;. The idea here is to delay updates to avoid unnec-
essary communication. On average, if a node moves a distance
then this scheme can be shown to have update cos¥$dlog d).

The cost is amortized. That is, the average cost is guahieze
low, but the update cost at a particular step can be arlbjtiaigh
compared to the movement at that step.

The location search for a particular node starts at some othe
node in a network, and proceeds by searching nearby locsgtiwers
at increasing levels. This goes on until some location seavthe
current or neighboring square for the current level claiokrtow
the target location square at that level. Then the searatepds
in that square, successively searching lower levels. Ofseguit

of O(d).

We compared costs with LLS in updates and query response.

The following are the important observations:

e Update costs.Our algorithm adapts to node movements very
efficiently. It has an average cost of ab@uimessages per
each unit distance move of the target, as compared to a cost
of 10 to 12 messages for LLS. The maximum update cost
for our scheme is about, while that for LLS is orders of
magnitude higher — &00 or 300 or more messages for a
single small move. Most importantly, the costs of our scheme
are independent of the network size, making it scalable to
very large networks.

e Search queries. In answering queries where the one node
searches for a specific target, our scheme performs slightly
worse — consuming abo@ttimes the messages compared
to LLS.

e Aggregate range queries.Given a geometric region such
as a rectangle or ellipse, this query asks for the number of
targets inside it. On this sort of queries, our scheme outper
forms LLS by an order of magnitude.
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5.1.1 Update costs

As a target moves, the tracking system has to update its data t

be consistent with the current target position. LLS does Hbyi
suitably sending updates to it location severs, while olneste

2A quasi unit disk graph is one where nodes more than unitrdista changes the weights on the nges crossed by the target.

away do not have an edge, nodes less than a distemeay always The results are shown in Figure 8. Our scheme is extremely ef-
have an edge, and for other distances, the presence of arisedge ficient, since a small move does not cross too many edgeshand t
uncertain. mean cost is abo per move. LLS is designed so that on certain

is possible that due to the lazy update scheme, a serverictaim
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moves, it does not require any updates. However, when the tar
get has undergone sufficient displacement, it has to upeatra
nearby lower level location severs - this incurs a reas@nabst.
Later on, after further displacement, a move may requirédrig
level servers further away to be updated, increasing thefoos
that move, as well as the mean cost. The distance of the $arthe
server that may be tracking a target is proportional to the/a
diameter. After a proportional displacement this servel néed
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The details of the methods are in section 4.3. With a locatewer
scheme, the process is a little more complicated.

LLS maintains a quad-tree hierarchy, and recursively saddes
inside the quads at different levels. To find the aggregateneed
to look at quads of different levels that intersect vith In particu-
lar, if a quadQ intersects the bounda@R, that means sub-quads
of @ need to be analyzed further, to see which targets in§ide
are actually insid&R. Therefore, the method boils down to finding

to be updated as well. Thus, the update costs of LLS depend onquads at all levels that contain targets and inter8@t This turns

the network size, though the amortized cost of LLS is stilteju
manageable, at abolif to 12 messages per move.

The worst case behavior of LLS is poor. This is because the
strategy of avoiding updates until necessary means thaipthetes
build up and on certain moves neighboring servers and seater
several levels of hierarchy need to be updated. Thus thaeipdat
of a single move can go into several hundred messages (stmown i
Figure 9). Our scheme, on the other hand, never has to updage m
thang edges.

Note that the costs in our scheme are taken to be proportional
the number of edge updates needed. In certain scenarios thise
target sensing does not require any communication, and thieee
is agreement among nodes on monitoring different parts gégd
it is possible to perform the updates at zero cost.

5.1.2 Search Costs.

Location service schemes are designed to answer quertestha
for the location of a specific mobile target, or to deliver assage
to the target. Our scheme of tracking forms on the other haasl w
designed with aggregate queries pertaining to groups gétsiin
mind. Nevertheless, we find that it is a good instrument farce
of specific targets, and has performance comparable to th&do
service scheme. We can maintain a tracking fgfrfor each target
T; and then use that to search for it starting from the query node
The scheme is described in section 4.4.

out to be reasonably costly.

Figure 12 shows the costs wh&his a random rectangle inside
the network region. Figure 13 shows the corresponding edsts
R is arandom circle. Clearly, location server based schenuess
a substantial cost in this type of query. Note that for tasgeirch-
ing LLS actually uses a different quadtree hierarchy fohdacget.
This would be impractically expensive in this sort of querpere
the presence of each targetiwill then have to be checked indi-
vidually, driving the costs very high. We therefore used momn
hierarchy where a location server can provide informatiooua all
targets in its quad region. Even with this modification, thets of
our scheme are still much lower, in principle only propantabto
the size of the boundary @®.

5.2 Effects of Target Detection Errors

Monitoring of mobile targets is not easy. Sensing errorsfaited
ures in communication can create difficulties for any traglkalgo-
rithm. Such failures occur at the physical layer and in effegply
the algorithm with incorrect input. A tracking algorithmafid be
robust, so that its performance degrades gracefully amdysigith
increasing sensing errors.

This subsection tests the effects of such failures on thétgua
of aggregate results returned by our method. As targets meve
compute the aggregate in arbitrary ranges using the trgdkim
and compare with the true aggregate of the range. We corisider

In this experiment, we chose random query nodes, and randomtypes of errors:

mobile targets. We execute a search for the target startitigea
query node. The two schemes use analogous methods of searchi
exponentially growing regions for presence of the targat i
the suitable region searching exponentially smaller gyibns until
reaching the target. The asymptotic costs are the sameefdwtin
schemes. The simulation results in Figures 10 and 11 show tha
with tracking forms it costs about twice that of LLS to search

In mobile environments, since updates are much more fréquen
than queries, the higher search costs of our method are evmpe
sated by the significantly lower update costs.

5.1.3 Aggregate Range Queries.

Given a regiorR, say a rectangle or an ellipse, we wish to find
the number of targets inside the region. With tracking fqrthis
is easy to do by summing the form in walk around the boundary.

1. Failure to detect a target crossing an edgeFor example,
a sensor monitoring the edge fails to detect the target pass-
ing. This can also happen when targets are responsible for
supplying their own tracking information. For example, a
targets crosses an edge into a new face, but its message noti-
fying this move gets lost. In such cases, the tracking form on
the edge will not be updated, and certain queries may return
incorrect results.

. Incorrect Estimation of Target Location. The location of
a target computed by the system may be incorrect. For ex-
ample, signal strength based localization may be erroneous
or even GPS based location computed by a target itself may
be off by several meters. In such cases, the object will be



estimated to be inside a different face than where it reglly i
and will contribute an error to the computed aggregate.

In these simulations we consider a variable number (bet@een
and300) of targets moving in the plane, and are tracked by a differ-
ential form on al00 x 100 unit grid. A target takes steps in random
directions and within a unit length as before. As targetsenae
execute queries to count the number of targets within a goite
chosen randomly within the grid. For each such query, we aéske
error the difference of the computed result with the actushber
of targets in the range. This error has a dependence on thkarum
of targets in the system. We measure tblative error— the ratio
of the error to the number of targets and see how that chanigies w
increasing number of targets.

To simulate the first type of errors, we select a probabjigs
the probability that a target is not detected when crossingdge.

The parametep in that sense represents the sensing accuracy of the

system. We vary over a wide range of values from05 to 0.70
that is, we vary it upto the the case whé&®% of edge crossings
are missed. For eaghand number of targets we execut® range
queries on random axis-aligned squares. We let the targaten
moves between successive queries.

The results are shown in Figure 14. The values of the errers ar
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Figure 14. Error induced by failure to detect targets crossing edges.

The error in counting relative to the total number of targpkstted

against the total number of targets; for counting numbeagdts

in random axis aligned squares. The paramgisrthe probability

that a targets crossing and edge is not detected.

300

very small. Even for severe valuespfeaching upt&0% or 70%,
the counting error is less tha¥ of the target count, and drops
rapidly to less than half of that for00 targets or more. For more
reasonable values pfsuch as 0% — 20%, the errors are just a few
percents.

The curve forp = 70% fits the pattern less tightly than the oth-
ers. Its high error rate causes it to fluctuate and behave nmure-
dictably at low number of targets. As number of targets iases,
it stabilizes better, and ends with a higher relative erabe than
the other curves with lower values, as expected.

The relative error decreases with increasing number oétarg
This is because statistically the effects of over countind ander
counting cancel each other, and this happens more reliaithy w
larger number of targets.

In simulation of the second type of errors, we assign each tar
get a location different from its true location and compdie true
and computed counts as before. The assigned location relede
to simulate the estimated and possibly incorrect locatfidhetar-
get. The estimation cannot be very far from its true locatgince
the location of sensors or access points that detect thettzaig be
used to restrict the region within which the target must Tikere-
fore we use a paramettcalization radius (LR)which limits the

maximum distance from the true location within which the-est
mated location must lie. The estimated location is takenet@b
random point within this radius. We vary LR frofl to 5.0 units.
And as before, we carry od00 random queries for each LR and
different number of targets, with the targets moving twieenieen
successive queries. The results are shown in Figure 15. &yyade,
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Figure 15. Error induced by incorrect localization of targets. The
error in counting relative to the total number of targetstteld
against the total number of targets; for counting numberwgjdts

in random axis aligned squares. The parameter LR is the nuemim
distance between true and estimated locations of targets.
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the we find that the relative error drops with increasing nends
targets. In this case, the error rates are even lower, gtdgiow
3%, and in most case at abolfto — 2% or lower.

The overall conclusion is that the method is extremely rotus
failures and sensing noises of different types. On avertaigeurs
only small output errors even with large probabilitiesdadls. The
errors degrade gracefully with increase in failures. ThiRrgely
the result of the local nature of the tracking mechanismniédge
is not updated, that failure does not affect a query unles®tlye
lies at the boundary of the query region.

6. DISCUSSIONS

Networks Without Locations. A range or neighborhoot a topo-
logical concept, and so is a range query. A differential fasna
topological construct and can be defined abstractly witlhisetof
coordinates. Therefore, this minimal scheme is applicaifitleout

the use of locations. It is possible to obtain a planar grajphout
using node locations [29]. After that it is possible to detere a
consistent orientation and create a tracking form abdyradthe
ideas from subsections 4.7 and 4.8 can then be used to track an
query the form inside any given loop.

Geometric data such as the locations of nodes and desariptio
of the range can be helpful is executing a query, but not ¢ssen
Existing methods [1, 12] commonly use hierarchical quatype
partitions that rigidly depend on a geometric processinthedata.
This makes such schemes unsuitable for use in a coordirege fr
environment.

Mobility Models of Targets. Throughout the paper we have as-
sumed that the target can move inabitrary manner. Since up-
dates are completely local, the cost is bounded by the tagal d
tance traveled by the targets, not how they move, assumaty th
small oscillating motions are handled in an efficient wayrasec-
tion 4.5. The performance of LLS is affected in some degree by
the mobility patterns of the targets. In particular, line@ation will
again drag the squares along leading to the worst-caseaipdsit

of ©(dlog d) whered is the total distance moved. But local os-
cillating type of motion when a target does not move too fanfr
its original location will keep the updates limited to lodatation



servers. Thus the maintenance cost can be lower than the uppe
bound.

Network Power Management.In a network with mobile entities,
it can be expected that targets move often. Our scheme Isaihdle
movements very efficiently and locally. There is never angdhi®
send updates to a distant point. This is also significant foomer
management point of view. If a target of interest is preserd i
part of the network, nearby nodes can be expected to be awake a
actively monitoring it. If all movements are handled logathen
relatively distant nodes can sleep or go to low power modeave s
energy without fear of interruptions.

Schemes that recruit distant location servers or a glob#tale
server for target tracking will need to keep most of the nekvwam
for target update at far away location servers and routirigetm.

7. CONCLUSIONS

In this paper we presented the use of differential one-farm i
the application of target tracking and range queries. Ththaak
is simple, has low maintenance cost under target movensex-i
tremely flexible and robust to network changes and node ihbil
The performance of our method is orders of magnitude béttar t
previous location services schemes for tracking mobilgetar We
expect that more applications can be found that use theetiffial
one-form for a diverse set of queries of aggregated datazhmwiae
will investigate in the future.
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