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ABSTRACT
Consider mobile targets moving in a plane and their movements be-
ing monitored by a network such as a field of sensors. We develop
distributed algorithms for in-network tracking and range queries
for aggregated data (for example returning the number of targets
within any user given region). Our scheme stores the target detec-
tion information locally in the network, and answers a queryby
examining the perimeter of the given range. The cost of updating
data about mobile targets is proportional to the target displacement.
The key insight is to maintain in the sensor network a function with
respect to the target detection data on the graph edges that is adif-
ferential one-formsuch that the integral of this one-form along any
closed curveC gives the integral within the region bounded byC.

The differential one-form has great flexibility making it appro-
priate for tracking mobile targets. The basic range query can be
used to find a nearby target or any given identifiable target with cost
O(d) whered is the distance to the target in question. Dynamic in-
sertion, deletion, coverage holes and mobility of sensor nodes can
be handled with only local operations, making the scheme suitable
for a highly dynamic network. It is extremely robust and capable
of tolerating errors in sensing and target localization. Due to lim-
ited space, we only elaborate the advantages of differential forms
in tracking of mobile targets. The same routine can be applied for
organizing many other types of informations, for example stream-
ing scalar sensor data (such as temperature data field), to support
efficient range queries. We demonstrate through analysis and simu-
lations that this scheme compares favorably with existing schemes
that use location services for answering aggregated range queries
of target detection data.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocols; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—Ge-
ometrical problems and computations
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1. INTRODUCTION
Tracking mobile targets is a common application scenario in

modern society. People in motion need to maintain connectivity,
thus requiring location management. Other applications, for exam-
ple monitoring of traffic require real-time assessment of environ-
ments of mobile devices. Mobile targets can be identifiable,for
example possessing unique identifiers or unique signal signatures,
or non-identifiable, for example for privacy concerns. Queries on
mobile targets may be about locating the current position ofa mo-
bile identifiable target, or aggregated information such asthe count
of targets in a user specified region. There is often a connected
communication infrastructure spanning the space in which targets
move. A major technical question is centered around the represen-
tation of target motion that will allow the users easy and effective
access to the data. The possible solutions can be tailored todiffer-
ent system requirements and assumptions.

Take an example of the location management schemes in cellular
systems. The problem is to find the current location of the mobile
user when receiving a call. There are two atomic operations,called
paging and update respectively. Paging is used when the system
searches the cellular towers looking for the user. Update refers to
mobile users informing the system of their current locations. The
full scheme uses a combination of paging and update, based on
user mobility patterns and call frequencies. This solutionassumes
the cooperation of the mobile users/targets and that the query is for
individual identifiable targets.

Targets may not always be so cooperative or capable of direct
communication with the system. In such cases the task of locating,
tracking and querying for mobile targets is entirely on the commu-
nication infrastructure spanning the region. The targets may not
be individually identifiable, but being able to detect the number of
targets in any region can still supply valuable information. This
is motivated by the recent advances of large scale wireless sensor
networks. As sensor networks intrude into the space where people
live and work, they form a sensing and communication infrastruc-
ture that can provide real-time assessment of the living environ-
ment and the mobile objects therein. Indeed, tracking of mobile
targets is identified as a major motivating application for sensor
networks [4,15,17,19,27,28,30] from the very beginning. We use
sensor network as a simple model for a distributed tracking infras-



tructure but the solution is independent of the particular network
underneath. For example, wireless enabled devices can be tracked
by wireless access points or other wireless devices. In thiscase, the
wireless infrastructure acts as the sensor network.

Consider the following scenario of wide-area deployment ofsen-
sors along major roads to track and monitor moving vehicles.A
suitable sensor can detect the position and velocity of a target within
its sensing range [21], the navigation system in a car may also com-
municate directly with the sensors. A target may or may not have
identifiable signatures. The moving vehicles come in swarmsas in
the typical case of medium to heavy traffic situation. A user may
use hand-held devices (smartphones, PDAs, etc) or the car’sGPS
system to communicate with nearby sensors or other portals and
inquire for the target distribution. Of particular interest to us are
rangequeries foraggregateddata, for example, the level of traffic
congestion in a specified neighborhood and its evolution over time.
Formally, we ask a counting range query: what is the number of
targets in any user-specified regionR? The topic for this paper is
to develop an efficient data processing and query scheme for such
applications. A desirable solution should have low query delay,
low communication costs, as well as low maintenance cost as the
targets move rapidly.

In sensor networks, the most adopted target tracking approach,
arguably, is the sensors to record the detection events in the data
logger or report to a base station. The base station assembles tar-
get trajectories for post-experiment analysis. This solution bears
the common problems of having a central server (bottleneck and
a single point of failure, not resilient to attacks), and in particular,
the data collection step makes it inappropriate for applications with
stringent delay requirements. In many practical scenarios, move-
ments of targets are relevant only in the local region and fora short
period of time. For example, some cars turning on a particular
by-road is a relevant traffic information only while they arein the
neighborhood. It is difficult to justify the high communication and
storage costs of updating a remote server for high volumes ofsuch
fleeting pieces of data. Very often, users may be in a neighbor-
hood of where the relevant data is generated. A centralized solution
would require both the data and query from the users to be deliv-
ered to a (possibly) remote server. This leads to unacceptable delay
and unnecessary network traffic.

Alternatively, the sensor in the proximity of a target can detect
the target and can locally cache the detection event. This scheme
has low maintenance cost as data is stored locally and only local
updates are needed when target moves. But with such raw detection
data stored directly in the network it is not easy to answer range
queries. One has to flood all the nodes inside the rangeR to find out
the total number, the communication cost of which is proportional
to the area ofR, A(R).

The solution we propose in this paper uses local maintenance,
but instead of storing raw detection data, stores target movements
implicitly. Counting range queries have costs proportional to the
perimeter of rangeR, P(R) ≪ A(R). For this we use a novel
notion of differential one-form on the network. The key insight is
to maintain in the sensor network a function on the edges thatis a
co-vectorfield with respect to target detection data, which means
that the integral along any closed curveC gives the integral of the
region bounded byC. Thus our scheme naturally supports efficient
range queries by touring along the boundary of the region. This
idea is introduced below.

Our approach: differential one-form. A differential form is com-
monly considered on smooth manifolds, where it is easier to write
explicit expressions for smooth forms. In this paper we use afor-
mulation which can be considered an implicit representation corre-

sponding to smooth forms. This representation allows us to con-
sider the concepts in a more discrete manner that is suitablefor
computations and dynamic modifications. This discrete differential
form is defined on a cell complex, for example, a decomposition of
the plane into non-overlapping faces by a planar graph. Thispar-
ticular representation of differential forms, while not common in
mathematics, its hints can be found in literature [10,16].

Consider the simplest case. We have a planar graph embedded
in the plane, and one target lies within a facef0 and has a weight
of w, e.g., representing its size or other metrics of interest. The dif-
ferential one-form is represented by a functionξ on directed edges.
The value forξ(ab) must be the negation of the value forξ(ba).
We maintain the property that for the facef0, the summation of all
the values of the edges on its boundary, in clockwise order, is w,
and the summation of all the values of the boundary edges on each
other face is0. This ensures that any cycle containing the facef0
will have a total summation ofw, and any cycle not containingf0
will have a sum of0. In other words, one is able to answer range
queries by simply integrating the differential one-forms along the
range boundary. The weight on an edge signifies we have created a
differential form whose integral over the edge sums to that value.

The basic definition for one target can be generalized to multiple
non-identifiable targets – such that the integral of a face isthe total
weight of the targets within the face. This way range query can be
done for a swarm of targets with the same query cost. Using range
queries we can implement the query for locating a nearby target or a
given identifiable target. The idea is to use exponentially enlarging
range around the query node and once the range includes the target,
reduce the range by using divide and conquer. The cost for such is
bounded byO(d), whered is the distance to the target in question,
representing locality sensitivity.

The differential one-form has great flexibility that allowslow
maintenance cost under both network dynamics and target move-
ments. When a target moves from one facef0 to an adjacent face
f1, we only need to update the differential one-form on the edge
ab common tof0, f1. In particular,ξ(ab)← ξ(ab)− w, for a tar-
get of weightw. This ensures that the property of the one-form is
maintained. The cost for the update is a constant and can be done
locally. Network dynamics such as link addition and removal, or
node insertion and removal, can be handled in constant time.We
also show that the differential one-form can be initializedin linear
communication cost, i.e., constant cost per node. Further,this aids
in energy management. Sensors only need to be active if thereare
targets nearby. A region of the network where there are no targets
need not perform any communications to maintain tracking data,
and can sleep or go to low power mode for extended periods.

The method is built on a planar decomposition of the sensing re-
gion. The planar decomposition can come from a planar subgraph
of the communication graph, or just as a virtual decomposition of
the domain, as long as the sensors maintain the counts on these vir-
tual edges based on their sensing data. The method automatically
handles sensing holes — relatively large faces in the planargraph.
If a target moves deep inside a hole and is not detected by any sen-
sor, its contribution to the total count of a region enclosing the hole
is still correct. This is in contrast with the naive approachof storing
the target detection data locally where the range query by summing
up all sensor detections is incorrect and misses all the targets that
are ‘lost’ in the hole.

Although we present as the major application of differential forms
the tracking of targets in swarm, the same routine can be applied for
organizing streaming scalar sensor data (such as temperature data
field), to support efficient range queries.

The rest of the paper is organized as follows. We review prior



related work on range queries of mobile target and elaboratehow
our scheme fits and compares with the state of the art schemes.
Then we introduce the definition of differential one-form onthe
network. The algorithms for computing and maintaining the one-
form are described afterwards. We report simulation evaluations
and comparisons with prior work at the end.

2. RELATED WORK
There are a lot of previous works on tracking mobile targets and

on range queries of sensor data. We briefly review these work and
compare with our approach.

Range queries. For a typical range query, we are given a query
region plus possibly a range of the sensor data, and then ask for
all the the sensors in the query region whether any sensor data is
within the data range. This is a problem that has been studieda lot
in computational geometry. Centralized data structures for geomet-
ric range query on static points [3] or motion data [2], have been
developed. But they are obviously not a good fit for a distributed
sensor network setting. Various distributed schemes have been pro-
posed. In the case of a scalar field, one solution is to partition the
information about large geographic regions into subsets according
to smaller ranges of the field value, and store these subsets in dif-
ferent nodes. This is the approach taken in the DIFS system [14].
In the DIM system [23] a locality preserving hash function isused
to map portions of a multidimensional attribute space to sensors
so that all data needed to answer a range searching query can be
located conveniently. In the fractional cascading approach [12], in-
formation is stored so that more detailed information is available
about data obtained in the spatio-temporal locality of the sensor
where the query is injected—but without sacrificing the ability to
query distant regions or times as well.

All of these schemes are designed to support range queries for
static sensor data and essentially use a quadtree-type hierarchi-
cal space decomposition. For mobile data, constant updatesto a
fixed space partitioning make these schemes too costly — small
movement of a target may lead to updates up to a high level of
the quadtree and possibly updates onall sensors, if the mobile tar-
get happens to cross a high-level boundary. Location services, as
described below, alleviate some of the shortcomings of quadtree
based schemes and are more appropriate for mobile data. For this
reason we only compare with location services in the simulation
section. In addition, these range query schemes are mainly for rect-
angular ranges only. Ranges of other shape must be first partitioned
into smaller rectangular ranges, which are queried separately.

Location services. Existing solutions for tracking and searching
for mobile targets, termed aslocation services, focus on the track-
ing and searching of a single target. The earliest work is by Awer-
buch and Peleg [5] and followed up in [1, 9, 22] to fine tune the
system. The location of a mobile target is updated to a carefully
selected set of nodes, called the location servers, whose spatial
density cascades exponentially as we move away from the target.
This allows ‘locality-sensitive’ queries, i.e., the cost of a query is
proportional to the distance to the target. When a target moves,
information is updated on a location server, with the frequency in-
versely proportional to the distance to the target. The information
of a nearby location server is more up-to-date. Forwarding point-
ers are left at the old position pointing to the current position of
the target. A query far away from the target may first obtain out-
dated information pointing to a past location, from where the query
can be delivered to the current position by following the forward-
ing pointers. This family of schemes focused on the trackingand
searching of an individual, identifiable target. Location services

have amortized update cost ofO(d log d) when a target moves a
distanced, and a query cost ofO(d′) if the query node is of dis-
tanced′ away from the target’s current location. In comparison, we
have better asymptotic bounds. Our update cost is worst caseO(d)
and query cost is no more thanO(d′). In addition, location services
do not support range queries very well. If there are multipletar-
gets, they are handled separately. For range queries or aggregated
queries (such as density) one has to search for location servers for
all potential targets within the range, which can be highly ineffi-
cient. Note also that this method requires tracking data to be sent
and stored at far away nodes. Thus, even if targets are concentrated
only one region of the network, other nodes have to stay awakefor
storage and communication of the tracking data. In this paper we
evaluate the performance of using location services and using our
method for range queries in the simulation section. We show that
for both update and query cost, our method is substantially better.

Information gradients. The third approach is to define a potential
field centered at the target. Such information potential fields can be
either the natural gradients of physical phenomena, since the spatial
distribution of many physical quantities, e.g., temperature measure-
ments for heat, follows a natural diffusion law [6–8, 25], orbuilt
explicitly on a mobile target. One scheme in this family useshar-
monic function to build such information strength field [24], which
satisfies the Laplace’s equation∇2Φ(x) = 0 with proper Dirichlet
boundary condition (1 at the target location and0 at the network
boundary). Such an information field is guaranteed to be freefrom
local minima. Thus every node can follow the localinformation
gradient to arrive at the target. This works for both identifiable
(information fields are maintained separately) and non-identifiable
targets (a single information field is maintained for all targets). In
addition, the divergence-free property of harmonic gradients and
Faraday’s law of induction imply an easy solution for counting
range queries — touring the boundary of a given range and sum-
ming up the difference of the potential values on the edges across
the region boundary provide the number of targets in the interior of
the range. When a target moves, the information field needs tobe
updated to ensure the harmonic function property. The limitation
of the scheme is that updating the potential field for mobile target
is costly by the global nature – nodes far away from the targethave
to update their information strength, while ideally we hopeto re-
strict the updates to be within a small neighborhood of the target.
If we ‘rotate’ the gradient vectors by90◦, the result is a differential
harmonic one-form. In our scheme we do not require the differen-
tial one-form to be harmonic – thus one can not as easily navigate
towards the target as in the scheme in [24]. However, the benefit
of using a relaxation as simply a differential one-form is toallow
quick maintenance of the one-form under target motion. As we
have shown, the update is completely restricted to the target neigh-
borhood.

To summarize, the scheme proposed in this paper complements
the state of the art data processing methods in a sensor network
by providing low-maintenance, low cost range query scheme for a
large number of non-identifiable mobile targets.

3. DIFFERENTIAL ONE-FORM ON CELL
COMPLEXES

The differential one-form is defined on acell complex, induced
by a planar graphG in the plane in our case. The vertices, edges
and faces of the planar graph are the0, 1 and2 dimensional ele-
ments created by the planar graph. In algebraic topology these as
called the0-cells,1-cells and2-cells respectively. See Figure 1 for
examples. The composition of the different dimensional cells cov-



ering the deployment region is called acell complex. The idea of a
cell complex extends up tok-cells for arbitraryk. A more detailed
treatment of cell complexes can be found in [16].

Figure 1. 0, 1, 2-cells.

Our focus is to track targets in the plane as they move between
faces (2-cells) of the planar graph – which is a2-complex in the
plane. We assign and update weights of the edges (1-cells) of the
complex. The idea however extends to suitable complexes of higher
dimensions.

For ease of explanation, we assume for now that the targets are
accurately tracked by nearby sensors. Various target detection schemes
and signal processing primitives have been developed in thelitera-
ture [21]. In the algorithm and simulation sections we address the
issues of sensing holes and target detection errors. Our strategy as-
signs values to edges of the planar graph, and changes these values
as the target moves. We introduce the following definitions and
notations to represent the related faces, edges and values.

3.1 Boundaries and Boundary Chains
A face is demarcated by the edges or1-cells that surround it.

Such a set of edges form theboundaryof the cell. For an edgepq,
we use the ordered pair(p, q) to represent a directed edge whose
direction or orientation is fromp to q. We use−(p, q) to represent
the same edge with orientation(q, p). For brevity, we can represent
(p, q) and (q, p) as e and−e respectively. In a diagram, when
an edge is labeled simply ase, an arrowhead is used to represent
the intended orientation. The opposite orientation will naturally
correspond to−e.

Definition 3.1. Edge chain or1-chain. Supposea, b, c . . . are
oriented edges or1-cells, then a chain on these edges is a formal
sumλ1a+ λ2b+ λ3c+ . . . , where eachλi is an integer.

This chain simply signifiesλ1 occurrences ofa, λ2 occurrences of
b etc. The advantage of the summation notation will be clear ina
short while. Note that in many cases we consider, the edges will be
adjacent to each other and form a connected path. But this is not
necessary in general, and the edges in an edge chain can in fact be
any set of edges from the complex.

We can also associate orientations with2-cells or faces. These
correspond to traversing the boundary cycle of a face in somedi-
rection, clockwise or counter-clockwise. In this paper we assume
that all faces are oriented in the clockwise direction. Sucha con-
sistent orientation of cells is made possible by the fact that the 2-
dimensional plane isorientable[20]. Thus, given a cellσ repre-
sented as an ordered tupleσ = (p, q, r, s, t), as shown in Figure 2,
we understand that the order corresponds to a clockwise traversal of
edges(p, q), (q, r), (r, s), (s, t) and(t, p). Correspondingly,−σ
is the same cell with the opposite orientation,−σ = (t, s, r, q, p).
Observe that the orientation of a cell implies a specific orientation
for each edge on its boundary.

Definition 3.2. Boundary operator ∂. The boundary operator∂
acts on a2-cell or a faceσ to produce a chain∂(σ) = a + b +
c . . . wherea, b, c . . . are the edges on the boundary ofσ, with
orientations inherited from the clockwise orientation ofσ. For a
set of facesU = {σ, τ . . . }, we extend∂ to operate on it as∂U =
∑

σ∈U

∂σ.

σ

p

s

t r

p

s

t r

q q

∂

Figure 2. Action of boundary operator on a faceσ will give a
chain of its boundary edges with orientations inherited from the
orientationσ.

The idea behind this definition is shown in Figure 3. The two
neighboring facesσ andτ have boundaries∂σ = a + b + c and
∂τ = d+e+(−c), respectively. Note that a shared edge likec must
always appear with opposite orientation, and therefore have oppo-
site signs for the two faces. Thus the resultant boundary∂{σ, τ} =
a + b + d + e is exactly the boundary of the union of two faces.
This applies more generally to any set of faces. We refer the reader
to [20] for more details on the algebra of chains.

σ τ

b

a

c −c

d

e

b

a e

d

Figure 3. Action of the boundary operator∂ on facesσ and τ
produces the boundary of the union of the two.

3.2 One-Forms and Tracking Forms
In this subsection we define functions over edge chains and show

how they help in tracking a target.
We consider a functionf that assigns a value to each directed

edge in the planar graphP . The function is defined to have the
property thatf(−e) = −f(e). We extend this function to edge
chains by making it distributive over summation:f(a + b + c +
. . . ) = f(a) + f(b) + f(c) + . . . . Let us refer to such functions
as1-formsor edge forms. A 1-form f can be extended to a2-form
df on the faces of the planar graph, if we let it take the value on the
boundary of that face, that is,df(σ) = f(∂σ).

Now suppose there is a single targetT of weightw in the do-
main. Then at any given time this target resides in single unique
face of the planar graphP 1. Then we define a one-form on the
faces and edges such that it is non-zero on this face and is zero on
every other face:

Definition 3.3. Tracking form ξ. A tracking formξ for a targetT
of weightw is a one-form such that

dξ(σ) =

{

w if σ containsT
0 otherwise

Remember that on the faceσ the form is defined to take a value
equal to its sum on the boundary edges,dξ(σ) = ξ(∂σ). We can
extend the form to a setU of faces by simple summation :dξ(U) =
∑

σ∈U

dξ(σ).

1The degenerate cases of the target being on an edge or a vertexcan
be resolved locally by a predetermined policy between the local
nodes to assign the target to a face. Therefore, we ignore these
cases to keep our discussion simple.



As a direct consequence of this definition, we know that to eval-
uate the presence of the target within a subsetU of faces, it suffices
to add the extended tracking-formdξ on the faces inU . If a face
in U contains the targetT , thendξ(U) sums tow, else it sums to
zero. The following lemma implies that it is sufficient to sumthe
form ξ only on the edges that form the boundary of the setU to
obtaindξ(U).

Lemma 3.4. The sum of the form on the faces in a setU equals its
sum applied only to the boundary ofU , that is:dξ(U) = ξ(∂U).

PROOF. This follows directly from the definitions that

dξ(U) =
∑

σ∈U

dξ(σ) from definition 3.3

=
∑

σ∈U

ξ(∂σ) from defnition ofdξ

= ξ

(

∑

σ∈U

(∂σ)

)

by distributivity of ξ over+

= ξ(∂U) by definition 3.2

�

This lemma is equivalent to Stokes’ theorem [10]. Its signifi-
cance becomes clear in Figure 4. Given any cycleL in P , it is
possible to detect if the targetT is inside the loop or not, by sim-
ply adding the tracking form alongL. If T is in the interior, then
ξ(L) = w, and ifT is not in the interior, thenξ(L) = 0. In either

T

L

ξ(L) = w

TL

ξ(L) = 0

(a) (b)

Figure 4. Query for a targetT insideL. (a)T is insideL, therefore
ξ(L) = w. (b)T is not insideL, thereforeξ(L) = 0.

case, the query does not need to visit the nodes in the interior of L.
A simple walk on the loop suffices to find the answer. Further, this
works exactly the same way for any arbitrary loopL and position
of the targetT .

Multiple Targets. This idea extends to any number of targets in the
domain. Suppose targetsT1, T2, . . . , Tk of weightsw1, w2, . . . , wk,
individually give rise to tracking formsξ1, ξ2, . . . , ξk. Then we
can construct a combined tracking form as the sum of theseξ =
ξ1 + ξ2 + · · ·+ ξk on each edge. Given any loopL, the sumξ(L)
will provide the total weight of targets insideL.

The weights assigned to targets can be adjusted to suit the needs
of the system. For example, if all weights are equal, thenξ(L)
provides the count of targets inside. If each individual targetTi is
given weight2i, then fromξ(L) it is possible to deduce exactly
which ones are located insideL. This is equivalent to maintaining
a form for each individual target. It is possible to imagine other
scenarios where targets are assigned different weights according to
their importance, for example, objects can be classified according
to needs and weights assigned according to their types.

Given the weights and target locations, it is always possible to
create a suitable tracking form. In the next section we will describe
an efficient algorithm.

Updating tracking forms for mobile targets. When a target moves
from one face to another, we need to update the tracking form by
changing its value on the directed edges. Without loss of generality,

b
τσ

−c

T

c

a e

d

Figure 5. TargetT of weight w moves from faceσ to faceτ .
Modify ξ(c)← ξ(c)− w to obtain the new form.

we consider the example in Figure 5, whereT moves from faceσ
to an adjacent faceτ . Let us say, the shared edge that was crossed
by T appears asc in ∂σ, and as−c in ∂τ . In the initial configura-
tion, we haddξ(σ) = w anddξ(τ ) = 0. After the move, we need
to have a final configuration withdξ(σ) = 0, anddξ(τ ) = w. This
is achieved by the following simple modification to the form on the
shared edge:

ξ(c) := ξ(c)− w. (1)

The same assignment can alternately be written from the point of
view of τ as:

ξ(−c) := ξ(−c) + w. (2)

Evidently, these two are the same operation, sinceξ(−c) = −ξ(c).
The following theorem says that this indeed is the correct opera-

tion that achieves the desired result.

Theorem 3.5. If σ andτ are adjacent faces with shared edgec, and
dξ has valuesdξ(σ) = u anddξ(τ ) = v, then the modification
described in equation (1) or (2) results indξ(σ) = u − w and
dξ(τ ) = v + w.

PROOF. Suppose, the boundary ofσ is ∂σ = e1 + e2 + · · · +
c + · · · . In the initial configuration we haddξ(σ) = ξ(e1) +
ξ(e2) + · · · + ξ(c) + · · · = u. After the modification, we have
dξ(σ) = ξ(e1) + ξ(e2) + · · ·+ (ξ(c)− w) + · · · = u− w.

Similarly, after the modification, we havedξ(τ ) = ξ(ek) +
ξ(ek+1) + · · ·+ (ξ(−c) + w) + · · · = v + w. �

In the proof above we take the initial values to beu andv instead
of w and zero so that the same proof applies to scenarios with mul-
tiple targets, and any preexisting weights on the faces and edges.
For a system with a single target, the final values areξ(σ) = 0 and
ξ(τ ) = w, as required. In general, the weight ofT is removed from
the weight ofσ and added to the weight ofτ .

4. ALGORITHMS
In this section, we describe the algorithms for constructing the

tracking form, and for supporting range queries and other queries.

4.1 Planar graph for tracking
As a first step we compute a planar graph. The planar graph can

be either a subgraph of the communication graph of the sensors, or
a virtual graph chosen for the tracking application.

In the first case, consider the sensor network as the nodes em-
bedded in a region in the plane, and an associated communication
graphG. We obtain a planar subgraphP ⊆ G that contains all the
nodes, but is drawn in the plane without crossing edges. We can
apply planarization techniques to extract a planar graph from the
network connectivity graph. Such methods have been developed in



the past [11, 13, 26, 29]. Any such algorithm can be used for our
purpose.

Alternatively, we can also consider a virtual planar graph chosen
for the tracking application. For example, the virtual planar graph
can represent any convenient space decompositions, such asstreets
and blocks, any other meaningful districts, or simply a global grid
overlayed on the region. For each virtual edge we can appointa
nearby sensor or all the nearby sensors (e.g., those whose sensing
ranges cover part of the edge) to ‘maintain’ the value on the edge.
In this case we only assume that a target crossing an edge of the
virtual graph can be detected by at least one sensor and the new
differential form value is updated. Such virtual planar graphs can
be made to create finer subdivisions as required. When the mobile
entities can detect their own locations, they can on their own notify
the system when they cross an edge of the graph.

4.2 Constructing one-form
In this subsection, we show how to initialize a tracking one-form

in the network. First, we describe the simple case where the net-
work is empty of targets to start with, and all targets enter through
the outer boundary. Next we will see that the ideas from this case
provide a mechanism for initializing the more general case where
targets may be present at the time of initialization.

Starting with an empty field. In this case, we initialize all edges
to zero, that is for every edgee ∈ P, ξ(e) = 0. Now, suppose
that a targetT of weightw enters the network. It crosses the edge
c ∈ ∂τ to enter the faceτ . Then we modifyξ(c) := ξ(c) + w.
Clearly, after this modification,dξ(τ ) = w. As T moves, we can
adaptively modify the form according to equation (1) or (2).

T

(a) (b)

Figure 6. The entry of a targetT into the network. (a) As it moves
from face to face, it leaves a trail of edges that it modified - shown
in bold blue. (b) The trail in the dual graph. The edges of the dual
graph are shown as dotted lines, and the dual trail of the target as a
solid blue path.

The process is shown in Figure 6(a). As the target moves from
face to face, it modifiesξ on the shared edges between adjacent
faces. Creating a trail of edges with non-zero values.

Now, let us look a complex̄P that is the dual complex ofP .
A vertex (sayσ̄) in P̄ corresponds to a face (σ) in P . An edgeē
between vertices in̄P represents the shared edgee between corre-
sponding faces ofP . The trail of edges inP thus results in a dual
trail, which is a path inP̄ , shown in Figure 6(b). For a more com-
plete picture, we can regard the region outside of the planargraph
as aface at infinity, and then the dual trail ofT is a path from this
face to the current position ofT .

Initializing a field with targets. The idea of the dual trail directly
leads to a simple algorithm to initialize targets in the field. We take
a dual path to the face at infinity and add the suitable weight to
edges ofP whose dual are on the path.

More formally, for a targetT , we select any simple directed path
α in P̄ from the current face ofT to the face at infinity. If̄e =
(σ̄, τ̄) is onα, ande ∈ ∂σ, then we do the following modification:

ξ(e) := ξ(e) + w, (3)

wherew is the weight ofT . Quite clearly, any simple directed
clockwise loop that containsT passes through one such edge. In
cases where the loop has more than one such edges, the additional
edges appear in oppositely oriented pairs and the values on them
cancel out each other.

The following theorem shows that the algorithm above creates a
correct tracking form.

Theorem 4.1. Supposedξ(σ) = u, then after the algorithm above
is executed,

1. If a faceσ contains targetT , thendξ(σ) = u+ w,

2. Elsedξ(σ) = u.

PROOF. SupposeT ∈ σ, thenσ̄ ∈ α and has an outgoing edge
ē. Therefore, after the algorithm is executed,ξ changes one ∈ ∂σ
by ξ(e) := ξ(e) + w. All other edges on∂σ remain unchanged.
Therefore, after the modification,ξ(σ) = u + w. This proves the
first claim.

SupposeT /∈ σ, if σ̄ is not on the trailα, then of course nothing
changes, anddξ(σ) = u. So, the only case we need to consider
is whenσ̄ is on the pathα. We know thatα is a path from the
current face ofT to the face at infinity, andσ is neither of these.
Therefore,̄σ has degree exactly2 in α. Suppose the incoming and
outgoing edges arēe1 andē2 respectively. Then the algorithm will
have made the following modifications :ξ(−e1) = ξ(−e1) + w
and ξ(e2) = ξ(e2) + w. Therefore, the original sumdξ(σ) =
a+ · · ·+ ξ(e1) + ξ(e2) + · · · = u remains unchanged :dξ(σ) =
a+ · · ·+ (ξ(e1)−w) + (ξ(e2) +w) + · · · = u. This proves the
second claim. �

Once again, the proof works for domains with multiple targets. We
execute this once for each target in the domain or for each face
containing targets with the total weight of these targets. Thus pro-
ducing the correct form for initialization. The same procedure can
be executed in case a target appears in the middle of the network at
any time during the operation.

In cases where there are many targets in the field, creating a trail
to the boundary for each can be expensive. In such cases, we per-
form the initialization as a sweep on the network. We discussthis
further in section 4.8.

4.3 Containment queries
Given a one-form on the planar graph, we can query the number

of targets inside any loop on the planar graph. This subsection
extends it to queries of a geometric range. In the following we use
the example of user specified squares. Other geometric ranges can
be handled in a similar manner.

For now, let us assume that the network is sufficiently dense so
that every point within it is covered (sensed) by one or more sen-
sors, in particular that every point in a face is within a small con-
stant distanceδ of some vertex of the face. Let us also assume that
the density is bounded, that is, inside any disk of radius1 the num-
ber of nodes is bounded by some constantk. This is not a very
restrictive assumption. In a very dense network, we can select a
sample of bounded density that still covers the region. We assume
geographic face routing [18] is used to follow the faces thatinter-
sect a given geometric curve.



Let us use the notationSp(r) to denote the square of side length
2r, centered at pointp. We sometimes usep to denote both a node
and its location. We define thesize ofSp(r) to ber. The goal is
to compute the weight of targets inside this box, or equivalently,
compute the sum of the tracking form on the boundary∂[Sp(r)].

Consider the faces ofP that intersect this boundary. By the
assumptions above, there are at most a constant number of these
within a unit distance of any point on∂Sp(r). Therefore, the num-
ber of faces intersected by the boundary isO(|∂Sp(r)|) or O(r).

Let Q represent this set of faces at the boundary. For a suffi-
ciently large box queried,Q is an annulus and∂Q has 2 different
connected components — say∂Q = β + γ where each is a con-
nected edge chain, in fact a cycle. One of these, sayγ lies outside
Sp(r) andβ lies inside. We say thatγ and−β respectively form
the outer and inner approximations of∂Sp(r). The reason for tak-
ing−β is thatβ by default is oriented counter clockwise, therefore
we reverse the orientation to match our conventions.ξ(−β) gives
a lower bound on the weight of targets inside the box, whileξ(γ)
gives an upper bound.

We can now find the answer to our query. First, we findξ(−β).
Next, for every faceσ ∈ Q, we manually check the total weight
of targets insideσ ∩ Sp(r). The sum of these values withξ(−β)
gives the answer.

Note that this entire computation can be done in a distributed
manner by a single walk along the cycle∂Sp(r). The size of the
sub-complex induced byQ and therefore the cost of this computa-
tion isO(r).

4.4 Search queries
In this section, we build an algorithm to answer queries of the

type “Find the targetT starting fromp." It is assumed that a differ-
ential form is maintained for the identifiable targetT , that can be
used to search forT , Similar ideas apply to find a target nearest to
p.

We search in two stages. First, we find the smallest boxSp(2
i)

that containsT . This is done by successively checkingSp(2
i) for

i = 0, 1, 2, 3, . . . . Suppose theT is at a distanced, then the size
of the largest box tested in this process is2⌈lg(d)⌉. Denote this box
asBp(r). From section 4.3, the cost of checking a box of sizer is
bounded byar for some constanta. Then the total cost of the test

above isa
⌈lg(d)⌉
∑

i=0

2i = O(d).

In the second step, we search within the boxBp(r) recursively
for the actual location of the target. We partition the boxBp(r)
into four quads, each of sizer/2, and check each of these for the
presence of a target. Each test costsar/2, therefore, the total test
for 4 quads costs2ar. This is done recursively until we arrive at a
node that ‘sees’ the target. Clearly, the cost of this recursive search
is 4ar( 1

2
+ 1

4
+ 1

8
+ · · · ) = O(r). Sincer is at most2⌈lg(d)⌉, we

have that the total cost of finding the nearest target isO(d), that is
of the order of the distance to the target.

Our query cost is sensitive to the distance to the target. Notice
that whether we simply want to deliver a message to the targetor
obtain its location, the cost isΩ(d). Thus our query cost is asymp-
totically optimal.

4.5 Update costs
The network incurs a certain cost in updating the tracking form

as a target moves. To be precise, every time the target moves from
one face ofP to another, the form on that edge has to be updated.
Therefore, the total cost of the update equals the number of faces
traveled by the target. By the arguments in section 4.3 as a target

moves along a straight line segment of lengthd, the system requires
O(d) updates at nodes. If updating an edge requires communica-
tion between the endpoints, then the communication cost is also
O(d). Note that in some cases this may not be necessary. If both
the sensors can detect a target entering a face, which can happen for
example if the sensing range covers the entire edge, then thetarget
is sensed by both these sensors, and each can update their view of
the edge without any mutual communication. In such cases, the
update is carried out without any communication at all.

One can consider adversarial behavior, for example where a tar-
get repeatedly crosses an edge back and forth to induce many up-
dates in the nearby sensors. However, this sort of behavior is easy
to detect, and can be handled separately. If we would like to re-
duce maintenance cost, we can stop updating that edge for some
time. That is, the edge is assumed not to exist inP for that dura-
tion. Note that this ‘hole’ in the graph does not affect anything in
the rest of the network at all. Updates and queries can proceed as
usual and the query result is not affected unless the query happens
to use this edge. The edge can be reinstated when target movement
is infrequent.

In general, when a part of the network is very active with many
and frequent movements, it may not be economical to track allsuch
changes. Our scheme is sufficiently flexible and robust that tracking
can be turned off in such regions without any loss to other parts or
any overhead. Alternatively, it is possible to reduce the tracking
resolution in that region by selectively removing nodes andedges
so that the faces are larger and therefore incur fewer updates.

4.6 Network holes, fault tolerance and network
dynamics

If a network has coverage holes, a target entering the hole might
be lost – no sensor detects its location. However, our range query
result is not affected if the query range is either outside the hole
or encloses the hole completely. If the query range happens to cut
through the hole, this is a pathological case that no method can ac-
curately tell whether the target is inside or outside the range, due
to limited sensing coverage. We can however get upper and lower
bounds (such asξ(γ) andξ(−β) in section 4.3) by computing the
weights inside such uncovered faces. When initializing a network
with large holes, these are simply disregarded, that is, thecorre-
sponding vertex does not exist in the dual. The dual trail forthe
initialization therefore never goes through the hole.

The scheme is also fault tolerant and adaptive to network dy-
namics. If some nodes fail, or all nodes in a region fail even includ-
ing those near the target, that does not affect the correctness of the
tracking form. Thus, this permits dynamic networks where nodes
can be turned off arbitrarily. There is no overhead on maintaining
the tracking form on surviving sensors. Nodes can also be inserted
into the network. This only requires refining the planar graph and
the tracking form locally. See Figure 7 for an example.
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Figure 7. Suppose a nodex is inserted inside a face{p, q, r, s, t} of
total weightw and the face is partitioned into three faces{p, q, x},
{q, r, s, x}, {p, x, s, t}, where the total weights within these faces
arew1, w2, w3 respectively,w1 + w2 + w3 = w. We simply
set the values of the edgesξ(x, p) = 0, ξ(x, q) = ξ(p, q) − w1,
ξ(x, s) = ξ(p, q) + ξ(q, r) + ξ(r, s) − w1 − w2. One can verify
easily that these values conform to the definition of a tracking form.



The effect of sensing noise is local. Suppose an edge gets up-
dated incorrectly due to sensing or communication failure.This
only affects the evaluation of loops that actually pass through that
edge. All other loops still produce the correct results. In our sim-
ulation sections we evaluate the tracking results when sensing is
inaccurate.

4.7 Tracking without target locations
Up to this point, we have assumed that the location of the target

can be sensed by the nearby sensors. We now show how to modify
the tracking scheme so that it can work without target localization.

Start from the simple case when the targetT is detected by ex-
actly one sensor at a time. We initialize this scenario as follows.
Supposes is the sensor detectingT . Removes (and all incident
edges) fromP to get a new planar graphP ′. Then inP ′, T is
assumed to reside in the new face with the neighbors ofs on the
boundary. Now, we can initialize the form as usual on the dualof
P ′. When the target moves froms to a neighboring nodet, we
first removet from P ′ and then reinstates and its edges using the
method for inserting vertices.

The method naturally extends to cases where a target is detected
by a set of sensors. In this case, we just remove all the detecting
nodes, and when the target moves, we reinstate those that no longer
detect it.

4.8 Aggregation of signal over all nodes
Beyond tracking moving targets, differential forms can also be

used to compute aggregates of arbitrary functions sampled by sen-
sor network. Supposeh is such a function. Since we have a method
for computing sums of values defined over faces ofP , we adapt
to make use of that existing method. For any nodes, we apply
small perturbation to the location. That is, the valueh(s) is as-
sumed to exist as an added weight in a faceσ incident ons, that is
dξ(σ) ← dξ(σ) + h(s). Each node remembers to which face its
value was delegated.

First, we have to initialize the form over all faces. For every face
σ, we have to find a pathα to the face at infinity, in the dual graph
P̄ . To build these paths, we construct an aggregation treeT in P̄ ,
rooted at the vertex for the face at infinity. The path for sigma is
then the path inT between̄σ and the face at infinity.

Next, starting at the leaves ofT , we compute an aggregate at
each interior node by summing its value with those of its children
in the the aggregation tree. Let us denote this function on the dual
nodes asµ. For every nodēσ ∈ T , consider the edgēe to its parent
in the aggregation treeT and its duale in the original graphP . We
setξ(e) = µ(σ̄). This initialization can be executed as a single
aggregation sweep on the treeT . Therefore, it can be computed at
a total communication cost ofO(n).

Now we reconsider the way the functionh is handled. We had
perturbedh and shifted the valueh(s) to a neighboring faceσ. This
perturbation can cause query results to be erroneous. However, this
is easily rectified. SupposeL is the loop that bounds the closed area
over which we wish to compute the aggregate. Observe that fora
loop not passing throughs, the contribution ofh(s) is estimated
correctly – since then boths andσ are either both inside or both
outside the loop. We only need to adjust carefully for loops passing
throughs. In this case, we need to see whetherσ is inside or outside
the query region. Ifσ is inside the region thenh(s) is already
incorporated inξ(L). If σ is outside, then the value ofh(s) is
manually added toξ(L).

If L is traversed clockwise, then faces on the right of the path are
inside, else the faces on the left are inside. Therefore the challenge
is to find the orientation along whichL is traveled. This we do by

means of another differential form, calculated on the fly. Let us
saye is the first edge traveled alongL, and sayσ1 andσ2 are the
faces adjoininge. Now, we choose arbitrary pointsp1 ∈ σ1 and
p2 ∈ σ2 respectively. As we walk alongL, we maintain two other
one-formsη1 andη2, these are thewinding numbersaroundp1 and
p2 respectively.

For any edge(u, v) onL, we add the clockwise angle∠upiv to
ηi. By clockwise anglewe mean that if∠upiv is oriented clock-
wise, we add its positive value, else we add its negative value. Sup-
posep1 is on the exterior andp2 is on the interior of the region
bounded byL, then we haveη1(L) = 0. The value ofη2(L) will
be either2π or−2π depending on the orientation ofL.

Thus we can reliably find the sum of values inside a closed loop
L in the planar graphP .

Changing values.Unlike the case of mobile targets, if an arbitrary
function h changes with time, local updates may not suffice. In
particular, the local update scheme works only when the function
has certain local conservation properties, such as when a change of
δ in a face always causes a change−δ in an adjacent face.

Instead we simply re-initialize the form at regular intervals or on
sufficient changes. With an initialization of costO(n), we create
a network-wide one-form with which we can find the aggregate in
any region of the network.

4.9 Completely mobile networks
Consider a network where all nodes are mobile. That is, beyond

the targets, the sensors themselves are mobile. Our method natu-
rally extends to such scenarios. As a sensor moves, it may cross an
edge of the planar graph. Suppose thats crosses an edgee to enter
a faceτ . Then we update the network simply by first discarding all
edges incident ons, then by insertings into τ as in Figure 7. Many
existing planarization algorithms work for mobile networks [13].
We can use such methods to maintain the graph. In all cases, the
removal of an edge will not incur a cost, the insertion of an edge
will be made according to the idea in Figure 7.

Care needs to be taken in cases where we are considering forms
to monitor values defined on nodes. For example, when a mobile
network tracks its own nodes to be able to answer aggregate counts
and weighted sums inside regions. Suppose in such a cases crosses
an edgee ∈ ∂τ to enterτ . Then along with the usual insertion, the
valueh(s) must be reassigned to one of the new faces, for example
by ξ(e) := ξ(e) + h(s), as in section 4.8.
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Figure 8. Average update cost per move.

5. SIMULATIONS
We conducted extensive simulation tests to see how the theo-

retical guarantees of our algorithm translate to a network graph and
compare with LLS [1] in performance, particularly in terms of com-
munication costs. In addition, we conducted simulations totest the
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Figure 9. Max update cost for any move.

robustness of the algorithm to sensing failures and inaccuracies.
This section describes the findings.

The simulations were done with networks that are quasi unit disk
graphs2 of inner radius1/

√
2. This choice of parameters allows

local planarization algorithms [11, 26] to be used. The underlying
sensor networks have nodes in a perturbed grid distribution, where
the node is placed uniformly randomly in the grid box assigned to
it. We consider networks without any significant coverage holes.
In all cases, the average degree was about10, and the size of the
network was varied between400 nodes and10, 000 nodes to test
the scaling properties.

To evaluate the update costs, we introduce moving targets tothe
network domain. At each step, a target selects a random direction
and moves up to a unit distance in that direction. After the move,
the initial and final position are compared and updates are made.

5.1 Comparison with LLS
LLS scheme. This is a locality aware location service for mobile
networks. The principle here is to use location servers at different
levels. At each leveli = 0, 1, 2, 3, . . . the network region is tiled
by squares of side2i. The squares are aligned so that a square at
level i is precisely covered by exactly4 squares of leveli − 1. In
each square at each level, one node is designated to be the location
server for that square, and keeps track of more precise locations of
nodes in the square.

Location updates are performed in a certain lazy manner. Sup-
pose mobile nodep was in a squareSi at leveli, and moves to a
neighboring square at that level. The scheme does not updatethe
location ofp to the respective location servers. Instead, it waits un-
til p has left this surrounding neighborhood ofSi before it actually
performs an update. Thus, aroundSi there is a ring of8 squares
moving where does not cause an update. As a compensation, LLS
keeps its location information at the location servers of these nodes
in addition toSi. The idea here is to delay updates to avoid unnec-
essary communication. On average, if a node moves a distanced,
then this scheme can be shown to have update costs ofO(d log d).
The cost is amortized. That is, the average cost is guaranteed to be
low, but the update cost at a particular step can be arbitrarily high
compared to the movement at that step.

The location search for a particular node starts at some other
node in a network, and proceeds by searching nearby locationservers
at increasing levels. This goes on until some location server at the
current or neighboring square for the current level claims to know
the target location square at that level. Then the search proceeds
in that square, successively searching lower levels. Of course, it
is possible that due to the lazy update scheme, a server claiming

2A quasi unit disk graph is one where nodes more than unit distance
away do not have an edge, nodes less than a distancer away always
have an edge, and for other distances, the presence of an edgeis
uncertain.

to have the target is in fact in error. However in such a case, the
target is guaranteed to be in one of the neighboring squares.It can
be shown that this does not incur too high a cost. In fact, if the
distance to the target isd, then the search finds the target at a cost
of O(d).

We compared costs with LLS in updates and query response.
The following are the important observations:

• Update costs.Our algorithm adapts to node movements very
efficiently. It has an average cost of about2 messages per
each unit distance move of the target, as compared to a cost
of 10 to 12 messages for LLS. The maximum update cost
for our scheme is about7, while that for LLS is orders of
magnitude higher — at200 or 300 or more messages for a
single small move. Most importantly, the costs of our scheme
are independent of the network size, making it scalable to
very large networks.

• Search queries. In answering queries where the one node
searches for a specific target, our scheme performs slightly
worse — consuming about2 times the messages compared
toLLS.

• Aggregate range queries.Given a geometric region such
as a rectangle or ellipse, this query asks for the number of
targets inside it. On this sort of queries, our scheme outper-
forms LLS by an order of magnitude.
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Figure 10. Average cost per search query.
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Figure 11. Max cost for any search query.

5.1.1 Update costs
As a target moves, the tracking system has to update its data to

be consistent with the current target position. LLS does this by
suitably sending updates to it location severs, while our scheme
changes the weights on the edges crossed by the target.

The results are shown in Figure 8. Our scheme is extremely ef-
ficient, since a small move does not cross too many edges, and the
mean cost is about2 per move. LLS is designed so that on certain
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(a) (b)
Figure 12. Aggregation query costs for random rectangle regions.
(a) Average Costs, (b) Max costs

moves, it does not require any updates. However, when the tar-
get has undergone sufficient displacement, it has to update several
nearby lower level location severs - this incurs a reasonable cost.
Later on, after further displacement, a move may require higher
level servers further away to be updated, increasing the cost for
that move, as well as the mean cost. The distance of the farthest
server that may be tracking a target is proportional to the network
diameter. After a proportional displacement this server will need
to be updated as well. Thus, the update costs of LLS depend on
the network size, though the amortized cost of LLS is still quite
manageable, at about10 to 12 messages per move.

The worst case behavior of LLS is poor. This is because the
strategy of avoiding updates until necessary means that theupdates
build up and on certain moves neighboring servers and servers at
several levels of hierarchy need to be updated. Thus the update cost
of a single move can go into several hundred messages (shown in
Figure 9). Our scheme, on the other hand, never has to update more
than8 edges.

Note that the costs in our scheme are taken to be proportionalto
the number of edge updates needed. In certain scenarios, where the
target sensing does not require any communication, and whenthere
is agreement among nodes on monitoring different parts of edges,
it is possible to perform the updates at zero cost.

5.1.2 Search Costs.
Location service schemes are designed to answer queries that ask

for the location of a specific mobile target, or to deliver a message
to the target. Our scheme of tracking forms on the other hand was
designed with aggregate queries pertaining to groups of targets in
mind. Nevertheless, we find that it is a good instrument for search
of specific targets, and has performance comparable to the location
service scheme. We can maintain a tracking formξi for each target
Ti and then use that to search for it starting from the query node.
The scheme is described in section 4.4.

In this experiment, we chose random query nodes, and random
mobile targets. We execute a search for the target starting at the
query node. The two schemes use analogous methods of searching
exponentially growing regions for presence of the target, and in
the suitable region searching exponentially smaller subregions until
reaching the target. The asymptotic costs are the same for the two
schemes. The simulation results in Figures 10 and 11 show that
with tracking forms it costs about twice that of LLS to search.

In mobile environments, since updates are much more frequent
than queries, the higher search costs of our method are compen-
sated by the significantly lower update costs.

5.1.3 Aggregate Range Queries.
Given a regionR, say a rectangle or an ellipse, we wish to find

the number of targets inside the region. With tracking forms, this
is easy to do by summing the form in walk around the boundary.
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Figure 13. Aggregation query costs for random circular regions.
(a) Average Costs, (b) Max costs

The details of the methods are in section 4.3. With a locationsever
scheme, the process is a little more complicated.

LLS maintains a quad-tree hierarchy, and recursively tracks nodes
inside the quads at different levels. To find the aggregate, we need
to look at quads of different levels that intersect withR. In particu-
lar, if a quadQ intersects the boundary∂R, that means sub-quads
of Q need to be analyzed further, to see which targets insideQ
are actually insideR. Therefore, the method boils down to finding
quads at all levels that contain targets and intersect∂R. This turns
out to be reasonably costly.

Figure 12 shows the costs whenR is a random rectangle inside
the network region. Figure 13 shows the corresponding costswhen
R is a random circle. Clearly, location server based schemes incurs
a substantial cost in this type of query. Note that for targetsearch-
ing LLS actually uses a different quadtree hierarchy for each target.
This would be impractically expensive in this sort of query,where
the presence of each target inR will then have to be checked indi-
vidually, driving the costs very high. We therefore used a common
hierarchy where a location server can provide information about all
targets in its quad region. Even with this modification, the costs of
our scheme are still much lower, in principle only proportional to
the size of the boundary ofR.

5.2 Effects of Target Detection Errors
Monitoring of mobile targets is not easy. Sensing errors andfail-

ures in communication can create difficulties for any tracking algo-
rithm. Such failures occur at the physical layer and in effect supply
the algorithm with incorrect input. A tracking algorithm should be
robust, so that its performance degrades gracefully and slowly with
increasing sensing errors.

This subsection tests the effects of such failures on the quality
of aggregate results returned by our method. As targets movewe
compute the aggregate in arbitrary ranges using the tracking form
and compare with the true aggregate of the range. We considertwo
types of errors:

1. Failure to detect a target crossing an edge.For example,
a sensor monitoring the edge fails to detect the target pass-
ing. This can also happen when targets are responsible for
supplying their own tracking information. For example, a
targets crosses an edge into a new face, but its message noti-
fying this move gets lost. In such cases, the tracking form on
the edge will not be updated, and certain queries may return
incorrect results.

2. Incorrect Estimation of Target Location. The location of
a target computed by the system may be incorrect. For ex-
ample, signal strength based localization may be erroneous,
or even GPS based location computed by a target itself may
be off by several meters. In such cases, the object will be



estimated to be inside a different face than where it really is,
and will contribute an error to the computed aggregate.

In these simulations we consider a variable number (between20
and300) of targets moving in the plane, and are tracked by a differ-
ential form on a100×100 unit grid. A target takes steps in random
directions and within a unit length as before. As targets move, we
execute queries to count the number of targets within a unit square
chosen randomly within the grid. For each such query, we takeas
error the difference of the computed result with the actual number
of targets in the range. This error has a dependence on the number
of targets in the system. We measure therelative error– the ratio
of the error to the number of targets and see how that changes with
increasing number of targets.

To simulate the first type of errors, we select a probabilityp as
the probability that a target is not detected when crossing an edge.
The parameterp in that sense represents the sensing accuracy of the
system. We varyp over a wide range of values from0.05 to 0.70
that is, we vary it upto the the case where70% of edge crossings
are missed. For eachp and number of targets we execute100 range
queries on random axis-aligned squares. We let the targets make2
moves between successive queries.

The results are shown in Figure 14. The values of the errors are
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Figure 14. Error induced by failure to detect targets crossing edges.
The error in counting relative to the total number of targets, plotted
against the total number of targets; for counting number of targets
in random axis aligned squares. The parameterp is the probability
that a targets crossing and edge is not detected.

very small. Even for severe values ofp reaching upto50% or 70%,
the counting error is less than8% of the target count, and drops
rapidly to less than half of that for100 targets or more. For more
reasonable values ofp such as10%−20%, the errors are just a few
percents.

The curve forp = 70% fits the pattern less tightly than the oth-
ers. Its high error rate causes it to fluctuate and behave moreunpre-
dictably at low number of targets. As number of targets increases,
it stabilizes better, and ends with a higher relative error rate than
the other curves with lowerp values, as expected.

The relative error decreases with increasing number of targets.
This is because statistically the effects of over counting and under
counting cancel each other, and this happens more reliably with
larger number of targets.

In simulation of the second type of errors, we assign each tar-
get a location different from its true location and compare the true
and computed counts as before. The assigned location is intended
to simulate the estimated and possibly incorrect location of the tar-
get. The estimation cannot be very far from its true location, since
the location of sensors or access points that detect the target can be
used to restrict the region within which the target must lie.There-
fore we use a parameterlocalization radius (LR)which limits the

maximum distance from the true location within which the esti-
mated location must lie. The estimated location is taken to be a
random point within this radius. We vary LR from0.1 to 5.0 units.
And as before, we carry out100 random queries for each LR and
different number of targets, with the targets moving twice between
successive queries. The results are shown in Figure 15. Onceagain,
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Figure 15. Error induced by incorrect localization of targets. The
error in counting relative to the total number of targets, plotted
against the total number of targets; for counting number of targets
in random axis aligned squares. The parameter LR is the maximum
distance between true and estimated locations of targets.

the we find that the relative error drops with increasing number of
targets. In this case, the error rates are even lower, staying below
3%, and in most case at about1%− 2% or lower.

The overall conclusion is that the method is extremely robust to
failures and sensing noises of different types. On average it incurs
only small output errors even with large probabilities failures. The
errors degrade gracefully with increase in failures. This is largely
the result of the local nature of the tracking mechanism: if an edge
is not updated, that failure does not affect a query unless the edge
lies at the boundary of the query region.

6. DISCUSSIONS
Networks Without Locations. A range or neighborhoodis a topo-
logical concept, and so is a range query. A differential formis a
topological construct and can be defined abstractly withoutuse of
coordinates. Therefore, this minimal scheme is applicablewithout
the use of locations. It is possible to obtain a planar graph without
using node locations [29]. After that it is possible to determine a
consistent orientation and create a tracking form abstractly. The
ideas from subsections 4.7 and 4.8 can then be used to track and
query the form inside any given loop.

Geometric data such as the locations of nodes and description
of the range can be helpful is executing a query, but not essential.
Existing methods [1, 12] commonly use hierarchical quadtree type
partitions that rigidly depend on a geometric processing ofthe data.
This makes such schemes unsuitable for use in a coordinate free
environment.

Mobility Models of Targets. Throughout the paper we have as-
sumed that the target can move in anarbitrary manner. Since up-
dates are completely local, the cost is bounded by the total dis-
tance traveled by the targets, not how they move, assuming that
small oscillating motions are handled in an efficient way as in sec-
tion 4.5. The performance of LLS is affected in some degree by
the mobility patterns of the targets. In particular, linearmotion will
again drag the squares along leading to the worst-case update cost
of Θ(d log d) whered is the total distance moved. But local os-
cillating type of motion when a target does not move too far from
its original location will keep the updates limited to locallocation



servers. Thus the maintenance cost can be lower than the upper
bound.

Network Power Management.In a network with mobile entities,
it can be expected that targets move often. Our scheme handles the
movements very efficiently and locally. There is never any need to
send updates to a distant point. This is also significant frompower
management point of view. If a target of interest is present in a
part of the network, nearby nodes can be expected to be awake and
actively monitoring it. If all movements are handled locally, then
relatively distant nodes can sleep or go to low power mode to save
energy without fear of interruptions.

Schemes that recruit distant location servers or a global central
server for target tracking will need to keep most of the network on
for target update at far away location servers and routing tothem.

7. CONCLUSIONS
In this paper we presented the use of differential one-form in

the application of target tracking and range queries. The method
is simple, has low maintenance cost under target movement, is ex-
tremely flexible and robust to network changes and node mobility.
The performance of our method is orders of magnitude better than
previous location services schemes for tracking mobile targets. We
expect that more applications can be found that use the differential
one-form for a diverse set of queries of aggregated data, which we
will investigate in the future.
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