Hierarchical Spatial Gossip for Multi-Resolution Representations in Sensor Networks

Rik Sarkar Xianjin Zhu Jie Gao

Multi-Resolution Representations

Goal : Find aggregates in the network

> Max, Min, Sum, Average...

Multi-Resolution Representations

- Find aggregates for exponentially larger neighborhoods
- Store the aggregates for the regions of size

 $2^i, \quad i = 1, 2, 3 \dots$

Surrounding each node.

Multi-Resolution Representations

Gain a locally relevant picture of the network

Decide what is important.

The Problem

Create multi-resolution aggregates

Fast, in a small number of rounds
At a low communication cost
For all nodes simultaneously

Flooding works, but at a high cost..

Use Gossip

Select a node randomly
Exchange information
Repeat every round

Simple
Distributed
Robust

Types of Gossip

> Uniform/Geographic gossip

 Select a node uniformly randomly and gossip

Ref : Dimakis, Sarwate, Wainwright IPSN 06

Spatial Gossip

- Select node at distance r with probability $\propto \frac{1}{r^{\alpha}}$

Ref : Kempe, Kleinberg, Demers STOC 01

Types of Gossip

> Uniform/Geographic gossip

 Select a node uniformly randomly and gossip

Spatial Gossip

- Select node at distance $\,r\,$ with probability $\propto \frac{1}{r^{\,\alpha}}\,$

Average Communication Cost

> Uniform/Geographic gossip • Cost $\tilde{O}(\sqrt[]{n})$

Spatial Gossip

Expanding Neighborhood

Use for multi-resolution aggregates

Use Order and Duplicate Insensitive Aggregation

Order and Duplicate Insensitive Synopses

> Min, Max are natural ODI aggregates

>ODI Synopses exist for other aggregates like sum, average, count..

Ref : Nath, Gibbons, Seshan, AndersonSenSys 04Considine, Kollios, ByersICDE 04

Overall Efficiency

> $O(\log^{4.4} n)$ rounds

> $O(n \log^{5.4} n)$ communication

 $ightarrow O(\log n)$ aggregates per node

Communication Cost

Data Distribution in Phases

Property of Algorithm: Information Spreads Fast

- > In phase i
- Information spreads to distance 2ⁱ
- Within O(i^{3.4}) rounds With High Probability

Ref: Kempe, Kelinberg, Demers STOC 01

The Price of Accurate Computation

Sharp Multi-resolution requires a high communication cost

$$\Omega(n^{\sqrt{n}})$$

Reduce the communication cost by sacrificing a little on accuracy!

Property 2: Information Does Not Spread Too Far

Range Queries

User Supplies a region, and asks for aggregate

We pick a suitable node

And a suitable resolution level to cover the region

Range queries

Complex regions

Summary

- Fast, efficient, sharp multi-resolution representation
- Useful in interpreting importance of data and local decisions
- > Useful in range queries
- Randomization helps efficiency