
Topological Data Processing for Distributed Sensor Networks
with Morse-Smale Decomposition

Xianjin Zhu Rik Sarkar Jie Gao

Department of Computer Science, Stony Brook University. {xjzhu, rik, jgao}@cs.sunysb.edu

Abstract—We are interested in topological analysis and pro-
cessing of the large-scale distributed data generated by sensor
networks. Naturally a large-scale sensor network is deployed
in a geometric region with possibly holes and complex shape,
and is used to sample some smooth physical signal field. We
are interested in both the topology of the discrete sensor field
in terms of the sensing holes (voids without sufficient sensors
deployed), as well as the topology of the signal field in terms of
its critical points (local maxima, minima and saddles). Towards
this end, we develop distributed algorithms to construct the
Morse-Smale decomposition. The sensor field is decomposed into
simply-connected pieces, inside each of which the sensor signal
is homogeneous, i.e., the data flows uniformly from a local
maximum to a local minimum. The Morse-Smale decomposition
can be efficiently constructed in the network locally, after which
applications such as iso-contour queries, data-guided navigation
and routing, data aggregation, and topologically faithful signal
reconstructions benefit tremendously from it.

I. INTRODUCTION

In this paper we are interested in the topological features of
spatially distributed sensor data. In many application settings
such as environmental monitoring, the sensor readings can
be regarded as a dense sampling of an underlying physical
signal field that often exhibits strong spatial and temporal
correlations. Such spatial characteristics are important for
many applications of sensor networks, as they correspond to
physically significant phenomena. For example, peaks indicate
heat sources in a heap map or traffic jams in car density map.
Users of sensor networks are often interested in data-related
queries such as
• Iso-contour query: from a query node q, find the iso-

contours at value x, or count/report iso-contour compo-
nents at a given value/range. This can be used to discover
for example high pollution areas for rescue workers, or
group targets for police officers.

• Data-guided navigation and routing: find a path from a
source node s to a destination node t with all values on
the path within a user-specified range. This can be used
for navigation of packets in the network (e.g., avoiding
sensor nodes with low energy level), or navigation of
users/vehicles in the physical environment (e.g., avoiding
traffic jam).

The spatial features such as local maxima, minima or saddles
and their relationship capture the topological complexities of
the signal field. Abstractions of these spatial features will
allow aggressive data compression and reconstruction while
still preserving the important topological characteristics, which
is useful for efficient data delivery and storage.

Motivated by the significance of the topological spatial
features in the distributed sensor data, we need to come up
with algorithms for extracting and representing these features.
One major challenge we face immediately is the identification
of critical points, especially the saddles. In a continuous
signal field, a critical point p is a point with all partial
derivatives vanishing at p — but with a discrete sampling
almost surely there is no sensor with exactly the same value
as its neighbors. We can identify the local maxima/minima
as the nodes with all neighboring values no greater (smaller)
than themselves. However, it is not easy to robustly identify
saddle points with increasing and decreasing neighbor values
in an alternating fashion, specially when we do not have
accurate sensor locations and angular orderings of neighbors
(self-localization in a large sensor network is still a research
challenge in the sensor network community).

In our previous work [12] we developed a distributed
algorithm to extract the contour tree, which is a tree on all
the critical points of the signal field and captures how the
connected components of the iso-contours merge/split as we
increase/decrease the isovalue. With the notion of contours,
a node is identified as a saddle when contours start to split
or merge the first time. We also developed sweep-based
algorithms to advance the contours and identify the saddles on
the way, as well as gradient based greedy routing algorithms
for iso-contour queries and data-guided navigation.

There are a number of limitations to the contour tree
approach [12]. First the contour tree construction algorithm
assumes a sensor network deployed in a region without
holes. Otherwise a contour might be broken into multiple
disconnected pieces that advance by themselves. It is then
much harder to synchronize these different pieces of frontiers
to identify the saddle point, and the competition resolution
mechanism used in [12] might incur a high communication cost
by delivering messages between these pieces back and forth.
Second, the current contour tree algorithm assumes a static
sensor data field and does not easily adapt to a time-varying
signal field. The problem of designing robust algorithms for a
time-varying signal field, specially in the distributed network
setting, still remains open.

In this paper we propose a perpendicular approach to handle
spatial signals. We deal with the topological structures of the
signal field (in terms of critical points) and the topological
structures of the sensor field (in terms of holes) simultaneously.
We apply Morse theory [11] in sensor network setting and
propose a communication-efficient distributed algorithm to



2

0
20

40
60

0
20

40
50

−1000
−500

0
500

1000
1500
2000

(i) (ii) (iii) (iv)

Fig. 1. (i) Original signal field. The network has a hole. (ii) Stable manifolds. (iii) Unstable manifolds. (iv) Morse-smale decomposition with each cell labeled.
Red square: max; green square: min; blue disk: regular saddle; blue star: max-saddle; blue triangle: min-saddle.

decompose a sensor network to cells. Each cell is simply
connected (i.e., has no holes) and homogeneous (i.e., the data
flows uniformly from a local maximum to a local minimum).
The cell adjacency information is captured and represented by
the Morse-Smale complex, which is a compact structure with
size proportional to the number of critical points in the signal
field and the number of holes in the network. One can thus
afford to disseminate the Morse-Smale complex to all sensor
nodes in the network as a high-level summary of the signal
topology. The homogeneous flow inside each cell gives a
natural coordinate system with one set of coordinates along the
greatest descent vector and the other set of coordinates along
the isolines, both of which interweave nicely as a Cartesian
coordinate system in the cell, and are smoothly glued along
the boundary with adjacent cells. Thus the coordinate system
supports local and easy navigation or routing operations both
inside and across the cells, that can be exploited by the iso-
contours queries and the data-guided navigation. Together with
the compact Morse-Smale complex available at each node, we
immediately have a 2-level routing structure, akin to the virtual
coordinate system built in the GLIDER algorithm for efficient
point-to-point routing [3], such that a global routing decision
(e.g., a value-restricted routing request) can first consult with
the high-level structure to identify the cells to visit, with the
actual routing implemented with this global guidance by local
greedy routing scheme inside each cell. This achieves a nice
balance in supporting functions requiring global information
through local operations under energy conservation require-
ment.

In the remaining part, we briefly review Morse theory and
then elaborate the contribution in this paper that involves non-
trivial distributed algorithm design for Morse-Smale decompo-
sition and its applications in iso-contour queries, data-guided
navigation and routing, data aggregation, and topologically
faithful signal reconstructions.

Morse-Smale Decomposition theory. Morse theory [14], [15]
deals with the relation between the topology of a smooth man-
ifold and the critical points of a smooth real-valued function
f defined on the manifold. A point p is a critical point if the
tangent vector at p is zero. Following the gradient vectors, a
stable manifold of a critical point a is defined as the union of a
and all points flowing into a. Similarly, an unstable manifold of

a critical point a is the union of a and all points flowing out of
a. A Morse function f is called Morse-Smale if the stable and
unstable manifolds intersect only transversally. In this case, the
Morse-Smale decomposition is the intersection of the stable
and unstable manifolds. Each cell in the decomposition is a
quadrangle with a local maximum, two saddles and a local
minimum. This means all the gradient vectors in a cell are
uniform – they all originate from the same maximum and flow
into the same minimum. The Morse-Smale complex takes the
dual of the decomposition of Morse-Smale cells and captures
the topology of M through the study of the gradient of f .

When we apply Morse theory to a sensor field with holes,
the good properties mentioned above do not directly carry
over. The network holes can disrupt the Morse-Smale decom-
position (for f defined in R2) in the sense that a cell may
contain one or multiple holes in its interior and is no longer
simply connected — thus causing problems with the Cartesian
coordinate system as greedy routing can get stuck at the
hole boundary and no longer deliver the message successfully.
More critical points might be introduced by the holes as flows
may end or start from hole boundaries.

In a companion paper [8], we developed the theory for
Morse-Smale decomposition in a 2D region with boundaries
and restored the good properties of such decomposition. Of
special interest to the sensor network application is that we
establish the connection of the saddle points with the ‘cut
locus’ of the sensor data flow. The notion of cut locus is
originally defined as the collection of points with two or
more geodesic paths to the same root with different homotopy
types (i.e., getting around the holes in different ways) [1].
In an earlier work [16] we used the shortest path map from
one point in the sensor domain to discover the topology
of the sensor field. In this paper, we utilize the natural
gradient flow of f , to capture both the topological features of
the underlying domain, as well as the topological structures
of the signal field. Essentially the flows along the greatest
gradient vectors have limit endpoints at the critical points
(local maxima, minima or saddles). Thus we identify a pair
of cut nodes as two neighboring sensors with two different
flows, either arriving at two different maxima/minima, or at
the same maximum/minimum with different homotopy types
(i.e., bypassing network holes in different ways). The cut pairs
leading to different maxima/minima represent the boundaries



3

of the stable manifolds of these different maxima/minima. The
cut pairs leading to the same maximum/minimum but through
flows of different homotopy types will further cut the holes
open to make each cell homogeneous and simply connected.
See Figure 1 for an example. The interpretation of the Morse-
Smale decomposition by cut locus of the flow lines allows us
to use the local algorithm in [16] to identify saddle points,
which is more robust and saves communication cost.

The algorithm for constructing the Morse-Smale decompo-
sition and its dual for a sensor network does not require any
information of where the holes are and how many of them.
In fact, hole or boundary detection of a location-free sensor
network is by itself an interesting and challenging research
problem [6], [10], [16]. The Morse-Smale decomposition and its
dual complex provide a new approach to derive the homology
of the sensor network, by using the natural signal field on
the sensors, different from previous approaches with simplicial
homology or witness complexes [7], [9].

Contribution in this paper. Our companion paper [8] mainly
laid out the rigorous definition for Morse-Smale decomposi-
tion for a 2D continuous region with holes and proved the
equivalence to the cut locus of the data field, thus providing
the theoretical foundation. This paper discusses the detailed
implementation in a discrete network setting. The same as
many other work on geometric algorithms in sensor networks,
the adaptation of notions and ideas from a continuous do-
main to the discrete network setting often requires careful
thinking and non-trivial algorithm design techniques, to come
up with communication-efficient algorithms that are robust to
discreteness, noises and dynamics in the data. In the literature,
an algorithm for computing the Morse-Smale complex of
a function defined on a piecewise linear surface has been
developed by Edelsbrunner, Harer and Zomorodian [2], by
mimicking the smooth setting with the idea of simulation of
differentiability. A combinatorial Morse theory has also been
developed with discrete gradient vector fields [4], [5]. These
work, unfortunately, can not be directly applied to sensor
network setting as we do not have any piecewise linear mesh
(as in [2]) nor a well-defined cell complex (as in [4], [5]) to
work with. It is in fact non-trivial to construct or maintain any
time of well-structured mesh or cell complex when sensors
may fail and communication links may go up and down
constantly. In addition, we ask for an distributed algorithm
that does not require global knowledge or coordination.

In this paper we implement the Morse-Smale decomposition
with the help of the cut locus of the flow, suggested by the
theoretical results in [8], and carry out all the details in a
networking environment with possible link/node failures and
data dynamics. We also present simulations results on the
communication cost of the construction.

Another major contribution in this paper is the application of
the Morse-Smale decomposition for sensor network problems:

• Iso-contour queries and data-guided routing. As ex-
plained earlier, the homogeneous flow inside each cell
makes these routing primitives very easy with only local

greedy decisions.
• Sweeps for data collection and aggregation. Sweeps are

used as a basic data collection and aggregation scheme in
a sensor network [13]. Data is collected with the sweep
frontier that progresses according to some potential func-
tion. A straight-forward choice of the potential function
is the signal field itself. However, the presence of holes or
saddles may tear apart the sweep frontier and even worse,
have one piece waiting for the other pieces before it can
proceed. With the Morse-Smale decomposition we can
perform a sweep inside each cell that is simply connected,
which guarantees the connectivity of the sweep frontier,
thus reducing a lot of time on sweep frontier coordination
and synchronization.

• Topologically faithful compression and reconstruction.
If one records the values and positions of the nodes
in the Morse-Smale decomposition boundary, it is easy
to perform linear interpolation to reconstruct a signal
field with precisely the same topological features. The
reconstruction is not meant to be geometrically close but
nevertheless can provide all the information that concerns
the signal and the network topology.

We describe in details how to make use of the Morse-Smale
decomposition in these applications and provide performance
improvement results in simulations.

In this paper we mainly assumes a static signal field
to discuss the algorithm and applications. Nevertheless, the
Morse-Smale decomposition adapts to dynamic signal field
better than the contour tree, as the flows and gradient vectors
can be maintained locally. We briefly touch upon these issues
in Section II. A thorough evaluation in a dynamic signal field
remains as future work.

II. MORSE-SMALE DECOMPOSITION

We briefly go over the steps to get a Morse-Smale de-
composition and then elaborate on each part. We first define
gradient vectors for a discrete sensor data field. That is, each
node computes an sscent and descent vector to one of the
neighbors leading to the upstream node and the downstream
node along the flow. Local maxima/minima can be easily
identified locally as they do not have an ascent/descent vector.
Now, to get the Morse-Smale decomposition, we make use
of the theory in [8] that the cut locus of the flow (defined
as the pairs of neighboring nodes whose flow go to different
critical points or go to the same critical point bypassing holes
in different ways) is equivalent to the boundary of the Morse-
Smale decomposition (Theorem 2.18 in [8]). The algorithm for
detecting cut locus borrows from [16] but the idea in [16] can
only detect part of the cut locus in our setting. We will extend
the partial cut locus to the full cut locus by taking the nodes
that flow into them. In the last step we get the Morse-Smale
decomposition with each cell identified and given an ID. The
cell adjacency information is collected and disseminated to all
the nodes in the network to facilitate topological data analysis.
Compute ascent and descent vectors. Nodes with locally
maximum and minimum values can be easily identified by



4

comparing with neighbors’ values. The set of neighbors of a
node p is denoted N(p).

Definition 2.1. MAX and MIN. A node p is identified as
MAX, if V (p) > V (q) for each node q ∈ N(p), where V (p) is
the value of node p and N(p) is the 1-hop neighborhood of p. p
is identified as MIN is V (p) < V (q) for each node q ∈ N(p).

Here we assume no nodes have equal values and will discuss
the plateau case later.

At the same time, each regular node can automatically dis-
cover an upward flow towards a unique MAX and a downward
flow towards a unique MIN. The definition of flow is based
on the definition of gradient. In the continuous case, gradient
basically defines the steepest ascent and descent directions in a
signal field. In the discrete case, we define ascent and descent
vectors accordingly.

Definition 2.2. Ascent and descent vectors. For a sensor
node p, if there is a neighbor q, V (q) > V (p) and V (q) >
V (q′) for any q′ ∈ N(p), p maintains a pointer to q, which
is called an ascent vector. Similarly, if V (q) < V (p) and
V (q) < V (q′) for any q′ ∈ N(p), the pointer is called a descent
vector.

Each sensor node p can compute its ascent and descent
vectors by locally checking the value V (q) of each neighbor
q. If location information is available, we can refine these
vectors by normalizing the difference of values of p, q with
the distance between p and q, then taking the neighbors with
the greatest ascent and descent gradients. It is easy to see that
every node has both ascent and descent vectors except local
maximum and minimum nodes. Local maximum nodes only
have descent vector and local minimum nodes only have ascent
vector.

With the ascent and descent vectors locally identified, up-
ward and downward flow are implied immediately. Basically,
upward flow through any node climbs up along the ascent
vector and eventually flows into a MAX. The downward flow
goes down along the descent vectors to a MIN. Each node
p can follow the orbit in form of successive ascent/descent
vectors and determine the unique max(p)/min(p) it flows to.

Identify cut locus. As explained earlier, saddles are especially
hard to detect due to the discrete nature of a sensor field.
Complex geometric features like holes of the network will pose
additional challenges to this task. In the original Morse theory,
the saddles and the flows into these saddles represent the
boundary of the Morse-Smale decomposition. Our theoretical
results in [8] says that the boundary is in fact equivalent to
the cut locus of the flow, thus allowing a rather robust method
to identify the saddles and the Morse-Smale decomposition
boundary.

In the discrete setting, we define the cut locus as the
collection of pairs of nodes, such that each pair has flows
of different homotopy types, or different endpoints (MAX or
MIN).

Definition 2.3. Cut pair and cut locus. A neighboring pair of

nodes p and q is a cut pair if (i) max(p) 6= max(q) or min(p) 6=
min(q); or (ii) p and q flow to the same critical point but their
flows have different homotopy types. The union of cut pairs
forms the cut locus.

Some cut pairs can be identified locally. A node p can easily
check if there is a neighbor q such that max(p) 6= max(q)
or min(p) 6= min(q). To detect a pair of nodes whose flows
reach the same max/min but have different homotopy types,
we adopt the local cut detection algorithm proposed in [16].
The method in [16] detects cut nodes for the geodesic distance
function with respect to a single root. Here, we wish to detect
cuts with respect to upward/downward flows. We describe the
algorithm using the upward flow. The same idea works for
downward flow.

A pair of neighboring nodes u and v check if they have
flows of different homotopy type, i.e., enclosing one or more
holes in between, based on two parameters δ1 and δ2, which
specify the minimum size of a hole. δ1 and δ2 are typically
chosen as some constants. u, v detect themselves as a cut pair
if the following conditions are met: 1) their lowest common
ancestor along the flows is at least hop δ1 away; 2) the
distance between the flows of u and v is at least δ2. A node
can cache δ1 nodes along its flow to the max or can gather
such information on-demand by following ascent vectors for
δ1 hops. Thus, u and v can exchange their upward flow
information and determine if the first condition is satisfied. To
efficiently measure distance between two flows, we only check
the distance between a pair of nodes a and b δ2/2 away from
u and v along their flows respectively. If a and b are at least δ2

hops apart, we say the second condition is satisfied. By this
algorithm, we detect precisely the cut pairs close to the hole
boundary, thus in the neighborhood of a saddle. See Figure 2
(i). The rest of the cut locus can be detected by finding the
set of nodes flowing into these saddles. For example, see the
pair in Figure 2 (ii). It is on the cut locus but may not be able
to detect themselves locally, as their flows move forward side
by side until they hit the hole boundary where they depart. If
the pair is of distance at least max(δ1, δ2) away from the hole
boundary, this pair can not be discovered by our local cut locus
detection algorithm. But the flows from this pair (u′, v′) will
go through the pair (u, v) and will be detected then. This idea
is refined as below and saddles are identified and classified.

P (v)

u

f

v

P (u)

u′ v′

P (v′)P (u′)

f

(i) (ii)
Fig. 2. Suppose the function f is defined as the function f(x, y) = y with
x-coordinate as the horizontal axis and the y-coordinate as the vertical axis on
the paper. Intuitively the function f flows bottom to top. The cut pair (u, v)
in (i) will be detected by the local cut locus detection algorithm. The cut pair
(u′, v′) will be detected as they flow into (u, v).



5

Identify saddles and refine cut locus. There are three types
of saddles, i.e. regular saddle, max-saddle, min-saddle. All of
them can be detected locally based on cut locus.

Definition 2.4. Regular saddle, max-saddle and min-
saddle. Regular saddles are saddles of a signal field with no
network holes and identified by a pair of neighboring nodes
flowing into different critical points. A saddle is a max-saddle
if it is generated by a hole and identified by a pair of cut nodes
with different homotopy upward flows to same or different
max. Similarly, a saddle is a min-saddle if it is generated by
a hole and identified by a pair of cut nodes with different
homotopy downward flows to the same or different min.

When detecting cut locus, cut pairs also record their iden-
tifiers. If a pair of nodes p and q are detected as cut because
max(p) 6= max(q) or their upward flows have different
homotopy types, we say p and q are identified by upward
flows, and max(p) together with max(q) (that may or may
not be the same) are their identifiers. Otherwise, the cut pair
is identified by downward flows, and min(p) together with
min(q) are their identifiers. For a connected component of
cut nodes identified by upward flows with the same pair of
identifiers, we detect the max-saddle by selecting the node
with the highest value in the connected component. Similarly,
we detect min-saddle by selecting the node with the lowest
value in the connected component. If a node is identified
both max-saddle and min-saddle, then it becomes a regular
saddle. There are sometimes multiple nearby nodes identified
as regular saddles. We group them together and select one as
a representative (e.g. select the node with the highest ID).

Recall that when detecting cut locus, we may only detect
cut nodes around hole boundaries, which are within close
neighborhood of max-saddle and min-saddle. To restore the
part of cut locus that have not been detected directly by the
algorithm above, we start from the max-saddle and min-saddle,
and extend the cut locus by including the nodes flowing into
and flowing out from those saddles. More specifically, a max-
saddle sends an invitation message along the downward flow
pointer. Every node p upon receiving the message checks if the
max-saddle is on the path of its upward flow. If this is the case,
p marks itself as cut node. To make the cut locus connected
and fully partition the nodes in different cells, p also include
its one-hop neighbors as cut nodes. Cut locus is also extended
from min-saddle in the similar way. Eventually, the refined
cuts stop at either network boundaries or other critical nodes.
A cut component is formed by cut nodes between two critical
nodes (or boundaries) and assigned a unique cut component
ID. Critical nodes can belong to multiple cut components.

Morse-Smale decomposition. The cut locus essentially be-
comes the boundaries of Morse-Smale cells. The nodes in the
same cell will be recognized and given a unique cell ID. To
do that, each max will initiate a flood message to a k-hop
neighborhood of the max, with k as a small constant. With
the nodes in cut locus removed, the connected components

in the k-hop neighborhood will identify themselves as in
different cells. They will propagate the message further with
the their cell IDs to all the other nodes in the same connected
component to identify all the nodes in the same cell. For a
pair of cut nodes that stay on the cell boundaries, we ensure
the left cut node belongs to the left cell and the right cut node
goes to the right cell. To do that, we assign the cut nodes to
a unique cell according to what cell the other nodes on their
upward/downward flow is assigned to. Specifically, a cut node
reaching a max-saddle searches along its upward flow and
joins the cell of nodes along the flow. Same for the cut locus
for a min-saddle. It is possible that maximum and minimum
nodes belong to multiple cells. They join every cell that their
neighbor belongs to.

Construct the dual complex. Finally, to build a compact
representation to capture the topology of both the signal field
and the network, we construct the dual Morse-Smale complex
of the decomposition and store such compact structure at each
sensor node to facilitate upper-level applications. Appropriate
information and application-dependent labels can be stored for
each simplex of the dual to facilitate information retrieval.
For example, for the routing applications, we include with
each edge of the complex the max and minimum value of
the nodes on the boundary of the two cells. For the signal
compression and reconstruction application, we will include
the positions/values of a chain of nodes on the boundary of
two cells, from the maximum to the minimum.

Only the cut nodes are involved in constructing the morse-
smale complex. Cut nodes can detect adjacent cells by check-
ing the cells of neighboring non-cut nodes. A cut node can be
adjacent to multiple cells. Each endpoint of cut components
(critical nodes or boundary nodes) constructs a morse-smale
complex based on its local information and propagates the
information together with its ID through cut locus to other
endpoints. Faces of morse-smale complex are annotated with
the original detector ID. When an endpoint p receives infor-
mation from another endpoint q, it combines with its own
information and removes duplicate faces if their detectors
belong to the same cut component. The complete morse-
smale complex is constructed after gathering information from
all cut components. This compact structure can possibly be
propagated and stored at each sensor node depending on
application requirements.

Noise handling and dynamic signal field. When a sensor
data field is noisy, it is possible that multiple nearby nodes
become local max or local min. For example, if a hole
boundary coincide with an isocontour around a peak of a
signal field, all the nodes on the hole boundary become
local maximum. Or when the signal field itself has a noisy
plateau region there can also be multiple nearby nodes that all
identify themselves as local max. To handle these noises, we
parameterize our algorithm with a tolerance factor δ, cluster
the δ-hop neighborhood of node p as its direct neighbors, and
apply the algorithm on this hyper one-hop neighborhood. All
definitions are defined as before and computed accordingly. A



6

node becomes local maximum/local minimum only if its value
is the highest/lowest in its δ-hop neighborhood. Similarly,
the ascent/descent vectors are also chosen from this δ-hop
neighborhood, and so are the flows and cut locus.

We also remark that the Morse-Smale decomposition, unlike
contour tree, has a better handling of dynamic data. This is
because the gradient ascent/descent vectors are defined and
detected locally, and thus can be updated locally as well
when the data varies over time. When a node changes its
value, it propagates the new value to its neighbors and adjust
its ascent/decent vectors. When a new max/min appears, it
obtains a new ID and propagates along the downward flows.
When an existing max/min hops to a neighboring node,
the upward/downward flow carries the current max/min ID,
and eventually gives the ID to the new max/min when the
upward/downward flow stops. When new cells or the cell
adjacency information changes, the Morse-Smale complex will
be updated. We currently propose to periodically update the
Morse-Smale complex stored at the nodes. Further investiga-
tion on a dynamic data field by exploiting the full potential of
the Morse-Smale decomposition will remain as future work.

Features of Morse-Smale decomposition. We summarize the
nice features of morse-smale decomposition as follows. In the
next section these features are used to develop application-
dependent data structures for topological analysis of dis-
tributed sensor data.
• The cells bounded by cut locus are equivalent to more-

smale decomposition.
• Each cell is simply connected. Inside each cell, the signal

field is homogeneous, i.e., flows are uniformly from the
unique maximum to the unique minimum.

• The dual morse-smale complex captures the topology of
both the signal filed and the network. It is homotopy
equivalent to the network.

III. APPLICATIONS

In this section we describe the benefits of having a Morse-
Smale decomposition and dual complex in different appli-
cations in a sensor network. In particular, describe how the
decomposition facilitates data-centric routing, aggregation by
sweeps and signal reconstruction by decomposing the network
into simple monotone pieces. Throughout the discussion, we
assume that the dual complex has been computed and and is
known at every node.

A. Data centric routing

We are interested in two types of data dependent queries :
• Value restricted routing. Find a path from a source node

s to a destination node t with all values on the path within
a user-specified range.

• Iso-contour query. From a query node q, find the iso-
contours at value v, or count or report iso-contour com-
ponents at the given value or range. This involves local
determination of contour components and routing to each
of these components.

The following concepts will be useful in both the discussions.

Definition 3.1 (Dual path). Given cells cs and ct, a dual path
between them is a simple sequence cs = p1, p2, · · · pn = ct

such that ∀i, (pi, pi+1) is an edge in the dual, that is the
corresponding cells are neighbors.

This implies a top level path from source cell to destination
cell. In the implementation, we avoid neighboring cell pairs
whose intersection is a single point, and take only those
neighbors that share an edge. This is done to avoid overloading
the single shared point with routing traffic between the two
cells. For the same reason, we select a random dual path
instead of a deterministic one.

Definition 3.2. Routing primitives
• Nodes on a contour v. A node p is said to be on a contour

v if the value at p is v, or if the value of p is greater than v,
and p has some neighbor whose value is less than v.
This definition establishes the contours in terms of nodes
in the network and will be used in routing and detecting
iso-contours.

• Routing to an iso-contour v. Given a node p in a cell cp,
routing to a contour within the cell consists of routing to
a random higher neighbor of p iteratively, until a node on
the contour v is reached.

• Routing to a neighboring cell. This is executed in two
steps. First, from the union of ranges of edges shared
with the neighboring cell, select a random contour value,
and route to a node on that contour. Next, follow nodes
on the contour to reach the destination neighbor cell.
This is possible, since by the properties of Morse-Smale
decomposition, each contour level intersects a cell in a sin-
gle connected component. The correct direction to follow
along the contour can be determined by storing a small
amount of orientation information along each contour,
equivalent to local coordinates.

• Routing to a node q in the same cell. This is achieved
by first reaching an iso-contour at the value of q, and then
following the iso-contour to reach q.

With these definitions in place, it is now possible to route
from any node to an arbitrary cell in the network, by first
computing a random dual path, and then traversing the dual
path by means of the low-level routing primitives described
above. It is also possible to route to a specific node in the
network, by using the fourth primitive as a final step.

We apply randomization in dual path selection, and in
routing within a cell. This produces different paths between
every source-destination pair on each query (see fig. 3 (i)).
This randomization helps distribute the routing load in the
network.

1) Value restricted routing: This is done simply by suitable
restrictions on the routing primitives described above. Given
a routing request, with values restricted to [a, b] we perform
all the routing steps relative to this range. In particular:

1) In finding a dual path, only consider edges whose range
has a non-empty intersection with [a, b].



7

(i) (ii) (iii)

Fig. 3. (i) Two very different routes are utilized on two different routing requests. This result of randomization helps in load balancing. (ii) Depending on the
range restriction applied, the algorithm constructs different paths. The red path is in response to a request for a path in a high range, the blue path on request
for a low path. (iii) Iso-contours and routes to the different iso-contours found by the algorithm.

2) In routing to a neighboring cell, select randomly a valid
contour level, as before, but restricted to the range [a, b].

It is easy to see that these two adjustments suffice to perform
value restricted routing. Figure 3 (ii) shows a case where
different range restrictions result in different paths.

2) Iso-contour queries: Iso-contour queries can be executed
in two steps:
Find and group iso-contour cells. First, identify the cells
that contain some portion of the iso-contour in question, this
can be done simply observing the maximum and minimum
values in each cell. Now, several such cells may contain parts
of a single connected contour component. We can identify the
disjoint components using the following principle : two of the
already identified cells are neighbors and they share an edge
whose range contains the queried level, iff the corresponding
iso-contours belong to the same connected component. This
fact can be used to identify the connected components by a
simple DFS in time linear in the size of the dual graph.
Route to each connected component. Once the connected
components of iso-contours have been identified, we can select
one cell of each component and route to it and to the contour
level by the methods above. Figure 3 (iii) shows an example.

In this subsection we have presented examples on simple
networks without holes for ease of understanding and graphic
representation. The routing mechanisms however, are indepen-
dent of such issues, and work equally well in presence of holes.

B. Data aggregation by sweeps

The idea of using a sweep over a sensor network to perform
data aggregation was proposed in [13], where this method
was shown to be more efficient than standard aggregation tree
based methods.

The intuition behind performing a sweep is to schedule
the transmissions in a way that reduces collisions and energy
usage. In the initial phase of the algorithm, an ordering is
established on the nodes, which is equivalent to defining a
real valued function f over the domain. In the second phase,
the sweep is executed. Each node that is a local maximum
of f , invites its lower neighbors to join the sweep. A node
waits for invitations from all its higher neighbors, and once all
such invitations have been received, it starts sending invitations
to its lower neighbors. Once a node has sent all required

invitations, its part in the sweep is done and it can retire and
turn itself off. Therefore, the time that a node must stay active
is from the reception of its first invitation to the transmission
of the final invitation. Minimizing this up-time can greatly
reduce power consumption and improve network life time.

The function f which determines the sweep can be an
arbitrary one, with the understanding that the sweep will end
at the minima of this function. It can simply be one of the
geographic coordinates, producing a uniform slope (Fig. 4(i))
or a harmonic potential (see [13] for details) or simply an
existing signal field (Fig. 4(ii)). The advantage of this last
method is that it requires no expensive pre-computation of
harmonic potential, nor does it require node locations. We
assume here that the sweep is performed with respect to such
a given arbitrary function, that may be natural or artificial and
it suffices to terminate the sweep at the minima.

A disadvantage of the sweep method is that it pauses at the
saddles. The sweep frontier, consisting of connected compo-
nents of active nodes corresponds to iso-contour components
of the function f . At a saddle where different components of
the sweep merge into a single iso-contour, it is likely that one
sweep component will arrive before the other, and active nodes
will have to wait for the other component to arrive. Figure 4(i)
shows an example where at a certain stage of the sweep, the
sweep frontier near a hole in the network has to wait in active
state for the rest of the sweep to arrive. Similar situations can
occur while sweeping by natural signal as well (Fig. 4).

To overcome this issue, we sweep the network with the
help of the Morse-Smale decomposition. That is, we sweep
each cell of the network independent of the others. Since
Morse-Smale cells do not contain saddle points, idle pauses for
synchronization of sweep are not necessary. This saves much
of the active time of nodes and speeds up the aggregation.
Figure 4(iii) shows the status in this case after an equal
interval of time. The sweep frontiers in this case are all
actively moving in their segments. Further, a larger number of
nodes have been swept, implying a faster process in general.
The sweep can be seen to proceed in several independent
components in segments around the network. This parallelism
greatly decreases the overall aggregation time, and reduces
MAC layer collisions and interference. Quantitative ideas of
these benefits will be described in the simulations section.



8

(i) (ii) (iii)

Fig. 4. Sweep in progress under different environments. Black: swept nodes; blue:nodes not swept yet; red: active nodes. (i) Shows a sweep by a geographic
coordinate, where one sweep frontier has to wait at a saddle for another frontier to arrive. (ii) shows a similar case, but in sweep according to a signal value.
(iii) Shows a sweep on the morse smale decomposition of the same signal. Many more nodes have been swept in this case. All states are after an equal
interval of time on a global clock.

C. Topology faithful compression and signal reconstruction

We briefly discuss the signal compression value of summary
information obtained from Morse-Smale decomposition. Note
that the properly labeled dual complex itself encodes most
of the topological properties of the signal. It represents all
saddles, maxima and minima. The contour tree and related
information for example, can be extracted from this data.
Making it possible to extract high level routes, as described
above. The complex in addition also encodes topological
properties of the network itself, in particualr presence of holes,
and their relation to the critical points.

In some cases however, it may be desirable to obtain slightly
more geometric information about the signal. While the dual
declares the presence of Morse-Smale cells that are guaranteed
to be simple and homogenous, it says nothing about the shape
of these cells. The idea in this section is that in a network with
locations, some geometric aspects of the decomposition can
be obtained at a low cost. This can be done simply by tracing
the cut locus, that is, the boundaries of cells and the maxima
and minima. Given a path along the boundary, whose node
locations are known, we now have the network decomposed
into cells of known boundaries, that are guaranteed to be
Morse-Smale cells. Therefore any interpolation that satisfies
the properties of such a cell will represent a topology faithful
reconstruction.

Figure 5 shows the reconstruction information available
from such a boundary extraction. For each cell, we simply
represent each of the connected components of its boundary
by a single path. A network of about 4000 nodes, in this case is
represented by chains of cut locus of only 300 node locations
and values. The interesting feature of the reconstruction infor-
mation is that all the important points of the original signal
have been represented.

IV. SIMULATIONS
We present here simulation results demonstrating perfor-

mance of the routing and aggregation applications when exe-
cuted on top of the Morse-Smale decomposition.
Computation of Morse-Smale Decomposition and Iso-
contour Queries. We compare the performance of iso-contour
queries with the contour tree approach [12]. The signal func-
tion and networks used in this section are identical to those

(i) (ii)

Fig. 5. Reconstruction. (i) original signal. (ii) Reconstruction information from
paths along the cut locus, encompassing critical points of the signal. Maxima
and minima are shown as red and blue points respectively.

in [12]. These networks do not have holes, since the contour
tree construction does not handle holes well. Our algorithms
however would also operate successfully on networks with
non-trivial topologies.

We first sampled the function in Figure 6(i) with networks of
varying number of nodes. The result in Figure 6(ii) shows that
the communication cost for the Morse-Smale decomposition
is linear in network size and therefore scalable.

Next, in a network of 1600 nodes, we ran iso-contour
queries, from nodes chosen uniformly randomly from the
network, and querying for a random signal value between the
highest and lowest in the network. As in [12], we compare
the query cost with that of a centrally computed minimum
spanning tree, and plot the CDF of this ratio. Figure 6(iv)
shows the CDF of the loads on network nodes. These graphs
are found to be comparable or better than those of the contour
tree method.

Aggregation by sweep. We described in the previous section
why the decomposition can improve the efficiency of data
aggregation by sweep. In this section, we describe simulation
results that confirm our claim. Sweeps were simulated on the
networks shown in fig. 7. An elementary medium access model

(i) (ii) (iii)
Fig. 7. Networks used in sweep. Around 4000 nodes, UDG, average node
degree ∼ 17. (i) without any holes; (ii) With One hole; (ii) With two holes.



9

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8
x 10

4

Number of Nodes

C
om

m
un

ic
at

io
n 

co
st

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of cost with MST

P
er

ce
nt

ag
e 

of
 q

ue
rie

s

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of messages (load)

F
ra

ct
io

n 
of

 n
od

es

(i) (ii) (iii) (iv)Fig. 6. (i) The continuous signal sampled by sensors; (ii) Message complexity of Morse-Smale decomposition; (iii) CDF of ratio of query cost to cost of
MST (iv) CDF of node load distribution.

with collisions and exponential back-off was used in these
experiments. Time was measured by ticks of a global clock.
We measured the total time taken to complete the sweep,
average and max up-time per node, and the total number
of medium access collisions. The up-time of a node was
measured as starting at the tick when it received its first
invitation to join the sweep, to the time it successfully sent out
the final invitation to a lower neighbor. It measures how long a
node needs to stay active during the sweep and correlates to its
energy consumption. The results for the three networks above
are presented in tables I, II and III respectively. We compare
the performance of the sweep on the decomposition with that
of the sweep without the decomposition, and with that of the
sweep by a geographic coordinate (say X coordinate). The
signal function is the one shown in figures 2(i) & (ii).

Type Total Avg up-time Max up-time #collisions
Normal 12444 563.5 4376 9208
X coord 8602 311.3 992 8609
Decomposed 6927 288.0 1260 5056

TABLE I. The sweep time for the network without hole in fig 7(i).

Type Total Time Avg up-time Max up-time #collisions
Normal 12495 636.3 5893 8853
X coord 9060 335.3 2700 8381
Decomposed 6416 273.4 1591 5387

TABLE II. The sweep time for the network with 1 hole in fig 7(ii).

Type Total Time Avg up-time Max up-time #collisions
Normal 17182 984.5 12147 10013
X coord 11748 579.1 8475 9156
Decomposed 7788 386.1 2056 5766

TABLE III. The sweep time for the network with 2 holes in fig 7(iii).
It is easy to see that the sweep on the decomposition

outperforms all other schemes in almost all respects. This is to
be expected, since the partitioning allows for more parallelism
and less collisions. It avoids sweeps meeting at saddle points,
and thus prevents a fast moving sweep frontier piece from
waiting a long time for other contour pieces to catch up. The
effect is even more pronounced in complex network topologies
with holes. See table III where the maximum up-time of a node
is many times smaller in the sweep on the decomposition. As
explained in Fig. 4 and related discussion, a regular frontier
sweep may have to wait a very long time to merge with a
companion frontier. This waiting time is eliminated in the
sweep on the decomposition.

V. CONCLUSION

We developed a distributed algorithm to decompose a sensor
field with respect to the sensor data so that each cell is simply

connected with a homogeneous data flow. The philosophy
of exploiting the sensor data characters in implementing net-
working operations is a promising direction in sensor network
research.

REFERENCES

[1] M. D. Carmo. Riemannian Geometry. Birkhäuser, Boston, Basel, Berlin,
1992.

[2] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse
complexes for piecewise linear 2-manifolds. In Proc. 17th Ann. ACM
Sympos. Comput. Geom., pages 70–79, 2001.

[3] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. GLIDER:
Gradient landmark-based distributed routing for sensor networks. In
Proc. of the 24th Conference of the IEEE Communication Society
(INFOCOM), volume 1, pages 339–350, March 2005.

[4] R. Forman. A discrete morse theory for cell complexes. In S. T. Yau,
editor, Geometry, Topology and Physics for Raoul Bott. International
Press, 1995.

[5] R. Forman. Morse theory for cell complexes. Advances in Mathematics,
134:90–145, 1998.

[6] S. Funke and C. Klein. Hole detection or: “how much geometry hides
in connectivity?”. In SCG ’06: Proceedings of the twenty-second annual
symposium on Computational geometry, pages 377–385, 2006.

[7] J. Gao, L. J. Guibas, S. Y. Oudot, and Y. Wang. Geodesic delaunay
triangulation and witness complex in the plane. In Proc. of ACM-SIAM
Symposium on Discrete Algorithms (SODA’08), pages 571–580, January
2008.

[8] J. Gao, R. Sarkar, and X. Zhu. Morse-smale decomposi-
tion, cut locus and applications in wireless sensor networks.
http://www.cs.sunysb.edu/ jgao/paper/morse.pdf, 2008.

[9] R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor
networks via homology. In Proc. the 4th International Symposium on
Information Processing in Sensor Networks (IPSN’05), pages 254–260,
2005.

[10] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer. Deterministic
boundary recognition and topology extraction for large sensor networks.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1000–1009, 2006.

[11] J. W. Milnor. Morse Theory. Princeton University Press, Princeton, NJ,
1963.

[12] R. Sarkar, X. Zhu, J. Gao, L. J. Guibas, and J. S. B. Mitchell. Iso-
contour queries and gradient descent with guaranteed delivery in sensor
networks. In Proc. of the 27th Annual IEEE Conference on Computer
Communications (INFOCOM’08), pages 1175–1183, May 2008.

[13] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas. Sweeps over wireless
sensor networks. In IPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, pages 143–
151, 2006.

[14] S. Smale. Morse inequalities for a dynamic system. Bulletin of the AMS,
66:43–49, 1960.

[15] R. Thom. Sur une partition en cellules associée à une fonction sur
une variété. Comptes Rendus de l’Académie de Sciences, 228:973–975,
1949.

[16] Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in sensor
networks by topological methods. In Proc. of the ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom),
pages 122–133, September 2006.


