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In this paper we propose a lightweight algorithm for constructing multi-resolution data repre-
sentations for sensor networks. At each sensor node u, we compute, O(logn) aggregates about
exponentially enlarging neighborhoods centered at u. The ith aggregate is the aggregated data
from nodes approximately within 2i hops of u. We present a scheme, named the hierarchical spatial
gossip algorithm, to extract and construct these aggregates, for all sensors simultaneously, with
a total communication cost of O(n polylogn). The hierarchical gossip algorithm adopts atomic
communication steps with each node choosing to exchange information with a node distance d
away with probability ∼ 1/d3. The attractiveness of the algorithm attributes to its simplicity,
low communication cost, distributed nature and robustness to node failures and link failures. We
show in addition that computing multi-resolution aggregates precisely (i.e., each aggregate uses
all and only the nodes within 2i hops) requires a communication cost of Ω(n

√
n), which does

not scale well with network size. An approximate range in aggregate computation like that in-
troduced by the gossip mechanism is therefore necessary in a scalable efficient algorithm. Besides
the natural applications of multi-resolution data summaries in data validation and information
mining, we also demonstrate the application of the pre-computed multi-resolution data summaries
in answering range queries efficiently.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
protocols—Routing protocols; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Gossip, Multi-resolution representation, Order and Duplicate
Insensitive Synopsis, Sensor Networks

1. INTRODUCTION

Distributed wireless sensor networks provide revolutionary ways to attain large
scale, dense data collection and long-term environment monitoring. The imme-
diate challenge is to develop efficient methods to extract, encode, and distribute
information gathered by sensors, for improving the robustness and survivability of
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data, as well as increasing the flexibility and efficiency to answer user queries. In
this paper we study the problem of constructing multi-resolution data representa-
tion in a sensor network. Our approach follows the principle of fractional cascading
that states: “a sensor knows a fraction of the information from distant parts of
the network, in an exponentially decaying fashion by distance” [Gao et al. 2004].
This multi-resolution, locality-preserving representation is motivated by observa-
tions that sensors are typically monitoring a physical phenomena, which exhibits
high correlation in both the spatial and temporal domain. Naturally, information
relevant to each node is decaying with the distance to this node.

In the basic setup of this paper we have n sensors deployed uniformly and densely
inside a region monitoring a continuous data field. We compute, at each sensor node
u, O(log n) aggregates about exponentially enlarging neighborhoods centered at u.
The ith aggregate is the aggregated data among nodes approximately within 2i

hops of u. The specifics of aggregation techniques will be application dependent.
For example, the aggregates can be the MAX/MIN or AVG, or more involved ag-
gregates such as histogram [Shrivastava et al. 2004], parameter estimations [Xiao
et al. 2005], or random linear projections used for compressed sensing and infor-
mation recovery [Rabbat et al. 2006]. This multi-resolution scheme is inherently
load-balanced. The storage requirement at each node is bounded by O(log n). We
present a scheme to extract and construct these aggregates, for all sensors simulta-
neously, by a hierarchical spatial gossip algorithm. The total communication cost,
measured by the total number of transmissions, is O(n polylog n), only a small
polylogarithmic factor of the cost for flooding or information aggregation at a sink,
yet we obtain multi-resolution aggregation for each and every sensor node in the
network.

The multi-resolution data summaries provide a basis for information mining,
data validation and efficient range queries. One of the major challenges in a sensor
network is that nodes start with no idea of the big picture over the data field. Thus
it is difficult for a node to assess whether its sensor reading is valid or not since
detection of outlier or abnormality usually requires comparison with other sensor
readings. In certain applications, the sensor field is deployed to detect events of
interest to the owner. A sensor node often needs to decide, by itself, whether it
holds interesting data or not. In some cases it is trivial, e.g., an unusually high
reading by an acoustic sensor typically means activities in its vicinity. Sometimes
this requires comparison with the average of sensor readings in an appropriate
neighborhood. For example, the temperature threshold considered as ‘high’ in
shaded area is different from that in open area. With the summarized data from
each of its exponentially enlarging neighborhoods, a node has a basis against which
its own reading can be compared, in order to spot local spikes which indicate data
significance [Wang and Ramchandran 2006]. In addition, these partial aggregates
can be used to support range queries injected from any node in the network. Queries
for the aggregated value inside a geographical region can be answered by combining
the pre-computed partial aggregates, without the necessity of examining each and
every node in the geographical range. Thus both communication cost and query
delay can be improved.

The major contribution of this paper are the development of a light-weight al-
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gorithm for constructing multi-resolution data representations for sensor networks,
and the application of multi-resolution data for range queries. In the remaining
of this section we will survey related work on data processing in a sensor network
and gossip-based algorithms. We will then give a quick overview of our solution for
constructing and using multi-resolution data representation.

1.1 Information Processing in Sensor Networks

Existing approaches for processing information in sensor networks can be classified
into two main approaches: the standard sink model and distributed indexing and
storage. In the standard sink model, data is delivered to the sink for out-of-network
processing. Queries are disseminated from the sink to sensor nodes who will then
report their readings. Data pruning and aggregation can be undertaken when data
propagates up the tree to the sink (e.g., in TinyDB) [Madden et al. 2002]. The
sink model assumes little or no in-network processing and most of the algorithmic
challenges are handled outside the network.
The second approach uses in-network storage, builds distributed indices and

stores partial aggregates to facilitate user queries. Examples of this category in-
clude DIMENSIONS [Ganesan et al. 2003; Ganesan et al. 2003; Ganesan et al.
2005], DIFS [Greenstein et al. 2003], DIM [Li et al. 2003], and fractional cascad-
ing [Gao et al. 2004]. As storage devices such as flash drives become cheaper and
smaller, the approach of using collective distributed storage becomes increasingly
feasible. A distributed indexing structure typically involves a hierarchy to bring
together data across different attribute space or spatial separations (e.g., quad-tree
or kd-tree). Partial aggregates are computed bottom up for each node in the hier-
archy. Queries take a drill-down approach and traverse the hierarchy to visit nodes
holding relevant data for detailed information. Important considerations for dis-
tributed indexing and storage include how the partial aggregates are computed and
who holds the aggregated data/indices. A straight-forward way is to take a hashing
scheme and make certain nodes be responsible to hold aggregated data/indices on
the hierarchy (e.g., in DIMENSIONS and DIFS). Special care is typically taken for
nodes holding data at high levels of the tree to alleviate communication and query
bottleneck [Ganesan et al. 2005].
The approach of fractional cascading in [Gao et al. 2004] belongs to the sec-

ond category and tries to avoid the bottleneck created by higher level nodes in
the hierarchy. In [Gao et al. 2004], the sensor field is recursively partitioned by
a standard quad-tree. Aggregates from each quad in the tree are computed and
stored at all sensor nodes in the quad. Each node has the values of itself and ag-
gregates of all the quads in which it resides. This improves data survivability and
query efficiency as important information (e.g., the aggregates of larger regions)
are naturally replicated more widely. Our multi-resolution representation can be
considered as an alternative way to achieve fractional cascading. To see the differ-
ence of this paper with [Gao et al. 2004], instead of a fixed quad-tree partitioning,
we keep the data summarization hierarchy of each node adaptive and centered on
the node itself. Thus any two nodes will have slightly different world views at
each scale, as their multi-resolution ranges differ, while two leaf nodes in a fixed
quad-tree may share the same data of many high-level quads. Another novelty of
this paper is to investigate gossip-based algorithm to disseminate information and
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construct the multi-resolution data representation. A survey of gossip algorithms
and applications in sensor networks is covered in the next subsection.

1.2 Gossip Algorithms

Gossip is an attractive method for sensor networks, due to its distributed nature,
robustness to network dynamics, and good load balancing. In a gossip algorithm
each node picks, according to some underlying deterministic or randomized rule,
another node and exchanges information with it [Hedetniemi et al. 1988; Shah
2008]. There are two important aspects in a gossip algorithm: the gossip commu-

nication mechanism that decides which node to communicate with; and the gossip

computation protocol that decides what data to exchange.
In the literature two rules to select node to gossip with are common. In uniform

gossip, each node chooses to communicate with a randomly chosen node at each
step [Dimakis et al. 2006]. In standard gossip on a graph, a node picks, according
to a probabilistic distribution, one of its immediate neighbors in the graph [Boyd
et al. 2006; Xiao et al. 2005; 2006]. Of particular relevance to our work is the spatial
gossip algorithm proposed by Kempe, Kleinberg and Demers [Kempe et al. 2001],
where a node x selects a node y with probability proportional to 1/dρ, where d is
the distance between x and y and ρ is some constant parameter. The intuition of
the spatial distribution complies with the principle of fractional cascading and our
multi-resolution data representation. Data from a sensor node should, intuitively,
be disseminated more to its nearby neighbors and less to far away neighbors.
On top of the gossip communication mechanism, a gossip computation protocol

specifies what information to be exchanged. In probably the simplest setting, in-
formation spreading [Kempe et al. 2001], gossip is used to disseminate a piece of
data from one node to the rest of the network. When two nodes communicate,
the message is propagated. The protocol stops when all the nodes receive the mes-
sage. More sophisticated information exchange protocols can be used to compute
aggregations and global statistics among the gossip nodes. For the problem of dis-
tributed averaging [Boyd et al. 2006], each node takes the average of the values of
itself and its gossip partner. The algorithm converges when all nodes hold values
close to the true average. Gossip-type protocols have also been developed in var-
ious settings to compute, in a distributed way, consensus [Moallemi and Van Roy
2006; Boyd et al. 2006], various aggregates [Kempe et al. 2003; Mosk-Aoyama and
Shah 2006], distributed linear parameter estimation [Xiao et al. 2005; 2006], spec-
tral analysis [Kempe and McSherry 2004] or random linear projections of the data
field for information compression and recovery [Rabbat et al. 2006]. For consen-
sus computation, most of the algorithms mentioned above assume bidirectional
communication links, recently Fagnani and Zampieri [Fagnani and Zampieri 2008]
and Aysal et al. [Aysal et al. 2009] developed gossip-based algorithms using only
directional communication.

1.3 The Challenge and Our Contribution

To construct the multi-resolution data representation, we first note that simple
flooding and aggregation from each node will incur too high communication cost –
O(n2) since each node incurs a cost of O(n) to flood the network. In this paper we
investigate gossip algorithms with almost linear communication cost.
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In our setting the metric we care most is the total communication cost of the
gossip algorithm, which depends on two factors: the cost of communication for each
iteration step, and the number of iterations for it to converge. Many existing gossip
protocols either assume that every two nodes can communicate with a unit cost
(e.g., in peer-to-peer networks and distributed systems), or allow only immediate
neighbors to gossip (e.g., in the standard gossip model). In our setting, we allow
far away nodes to be chosen as gossip partners, and communication between them
is performed by multi-hop routing. Thus the cost of each gossip step may involve
any two nodes and have a higher cost if the nodes are far apart. This idea is also
adopted in geographical gossip to reduce the communication cost of distributed
averaging in a random geometric graph [Dimakis et al. 2006].
Under the objective of minimizing the total communication cost, the selection of

gossip communication mechanism needs to balance two important factors. First,
the fast convergence of a gossip protocol depends critically on the selection of gossip
partners. Intuitively, fast convergence requires information to be well mixed — one
of the best is to select a random node in the network as the gossip partner. On
the other hand, if we choose a random node to gossip in each iteration, the cost of
communication with multi-hop routing is proportional to the distance to a random
node in the network, which is roughly O(

√
n) in a grid-like network with uniformly

deployed sensors. To reduce the communication per each iteration, the best is
to simply gossip with its immediate neighbors. But analysis of standard gossip
on a random geometric graph or a 2-dimensional grid shows a slow convergence
of roughly O(n2) gossip steps1 [Xiao and Boyd 2004; Boyd et al. 2006], which is
asymptotically the same order with that of naive flooding.
The second challenge of the gossip algorithm in this paper, different from all the

other gossip protocols, is on its multi-resolution nature. We would like information
to be exchanged and mixed for fast convergence but also want to make sure that
information does not travel too far and pollute the aggregates at other nodes. Thus
the two conflicting considerations – fast convergence and restricted propagation
range – need to be carefully balanced.
We propose to use a hierarchical spatial gossip algorithm that automatically takes

care of all the issues above. Our hierarchical gossip algorithm proceeds in O(log n)
phases. In phase i, we compute, for all sensor nodes, their respective aggregates
in a roughly 2i neighborhood. This is achieved by a spatial gossip algorithm in a
restricted range, where each node x picks, from nodes within distance 2i, a node
y with probability proportional to 1/d3, where d is the distance between x and y,
1 ≤ d ≤ 2i 2. Each phase stops after O(poly(i)) iterations, i ≤ logn. At the end of
phase i, we compute for each node u the aggregate of a subset of nodes Si(u) that
contains all the nodes within distance 2i from u with high probability, and does not
contain any node more than distance poly(i)2i away. The total communication cost

1Here we use ‘gossip step’ to refer to the atomic operation of one node gossiping with its partner.
2To implement the gossip step, we let each node choose a geographical location p∗ with the above
spatial distribution and use geographical routing towards p∗. The message will eventually arrive
at the sensor node closest to p∗. Given a roughly uniform node distribution this will generate
approximately the required spatial distribution on the sensor nodes. Notice that a node only
needs the knowledge of the general span of the sensor field (e.g., a bounding box) and does not
need the global topology of the network, nor the location of other sensors.
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over all phases is bounded by O(n polylogn). Notice that this achieves a substantial
improvement in terms of communication cost to the naive flooding approach and
is only at most a polylogarithmic factor away from an obvious lower bound of
Ω(n logn) for constructing the multi-resolution data representation3.
What is critical to the success of our hierarchical gossip algorithm is that we use

order and duplicate insensitive synopsis (ODI-synopsis) [Nath et al. 2004; Considine
et al. 2004] to compute and represent the partial aggregates. The idea of an ODI-
synopsis is that the same data can be aggregated multiple times but it is counted
only once. Certain aggregates such as MAX/MIN are naturally ODI-synopses.
ODI-synopsis for other aggregates such as COUNT and SUM/AVG are available,
by implementation through MAX/MIN or boolean OR computations [Nath et al.
2004; Considine et al. 2004; Cohen 1997; Gao et al. 2007]. ODI-synopsis com-
bined with gossip algorithm removes the above trouble caused by the same data
disseminated and aggregated multiple times. In addition, ODI-synopsis is helpful
for range queries as we do not need to worry about over-counting resulting from
partial aggregates from overlapping regions.
One last note is that our gossip-basedmethod is randomized. The multi-resolution

aggregation covers roughly the 2i neighborhood, for i = 0, · · · , logn. The question
of computing an accurate set of multi-resolution aggregates, i.e., the aggregate of
all the nodes precisely within 2i hops, is considered in Section 4. We describe a de-
terministic algorithm to achieve this. This algorithm has a communication cost of
Θ(n
√
n). We show that this is in fact asymptotically optimal, and there is a lower

bound of Ω(n
√
n) for the message complexity. Accurate multi-resolution compu-

tation therefore does not scale well with network size. This makes it necessary to
introduce approximate neighborhoods, as considered in our spatial gossip method.

2. PRELIMINARIES

2.1 Network Setup

We consider a network of n sensor nodes in a square region. Each sensor node knows
its own location and generates a reading which is the sample of an underlying data
field at the location of this sensor. Since the sensors are discrete, a general point p∗

in the sensor domain may not have a sensor located right at the spot. We assume
that the value of the signal at p∗ is taken to be the value at the closest sensor
p. Thus our signal function f under consideration is assumed to be a piecewise
constant function that takes the value at a sensor p for all the points p∗ in the
Voronoi cell4 of p. This natural representation of the signal is particularly suitable
for sensor networks. Geographic routing schemes for sensor networks have the
property that a route targeted for p∗ will terminate at the nearest sensor p, thus
automatically comply to our assumed function.
The object of interest to us is the multi-resolution data summaries of the signal,

through the data obtained from the sensors. In most typical sensor network ap-
plications, the sensor nodes are densely deployed in the region to ensure sufficient

3For each sensor node simply reading in their logn data summaries it requires a communication
cost of Ω(n logn).
4The Voronoi cell of a site p is the collection of points that have p as the closest one among all
sensors.
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coverage and redundancy. In this case we compute the multi-resolution representa-
tions on the sensors, which is a good multi-resolution data summary of the signal.
In the case when sensors are not a dense and uniform sample of the domain, we
compute the multi-resolution data representations of the signal on a virtual grid.
We overlay an abstract grid in the sensor field, and each grid point acts as a vir-
tual sensor sampling our function f . The actions required of the virtual sensor are
performed by the real sensor that is closest to that grid point. The resolution of
the grid will be proportional to the aggregation resolution desired. This method is
more suitable when the intent is to obtain the aggregate of the piecewise constant
function f and it can adapt to sparse networks with holes. The two approaches are
discussed in detail below.

Clustering in dense networks. For a dense network we assume the sensor nodes
are deployed with sufficient sensing coverage such that any unit disk centered inside
the region contains at least 1 sensor node. Notice that the above assumption guar-
antees sufficient coverage but does not prevent regions with dense node distribution.
We can further improve the uniformity of the sensor sampling by clustering [Gao
et al. 2006]. We compute a set of clusterheads such that every two clusterheads
are of distance at least 1 away and every node is within distance 1 of at least one
clusterhead. The clustering can be easily implemented by a greedy and distributed
algorithm5.
The set of clusterheads has both upper and lower bounded density. Every two

clusterheads are at least distance 1 apart, as specified by the algorithm. Further,
inside any disc of radius 2, denoted by D2, there are at least 1 clusterhead — this
is because any clusterhead outside this disc cannot cover the unit-radius disk D1

co-centric with D2. Thus by the sampling assumption there is at least one node
inside the unit disk D1, whose clusterhead must be within D2.

Virtual grid network. When the nodes are sparsely distributed, we overlay a
virtual grid and compute the multi-resolution representation on the grid points. In
this case n is the number of grid points rather than the actual sensors. A sensor
node takes over the computation for the grid points in its Voronoi cell. There
are distributed methods for computation of Voronoi diagrams [Bash and Desnoyers
2007], such that each sensor node is aware of its own Voronoi cell. Essentially each
node is trying to figure out the Voronoi vertices of its Voronoi cell. The nodes
u start with the Voronoi cell C by considering only the immediate neighbors. C
might be bigger than the real Voronoi cell. Thus we need to refine it. To do so, one
can use geographical routing to route towards each vertex of the convex polygon C
to see if its nearest node is u. If its nearest node is v 6= u, then one discovers how
to refine C by incorporating the bisector of uv. This iterative procedure continues
until all the vertices of the refined polygon have u as nearest node. In this case node
u finds its own Voronoi cell. The computation of the Voronoi diagram is only a one
time computation at initialization, and can be used by all aggregations afterward.
The gossip step is between two virtual nodes on the abstract level and is actually

5Each node checks its nearby nodes to see if there is a clusterhead within distance 1. Otherwise
it will promote itself as a clusterhead. By local communication the nodes can select a subset of
nodes as clusterheads as desired above.
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carried out by the corresponding sensor nodes in charge of them. In particular,
at each round, a sensor node, on behalf of each of its grid point, chooses another
random grid point and gossips with it. Note that to send a message to a virtual
node, geographical routing will automatically deliver it to the sensor node closest to
it (in charge of it). Thus a node does not need to know who is in charge of a virtual
node. The algorithm can be carried out with only the information about the local
Voronoi cell. In the following discussion, the correctness of the multi-resolution
representation is not affected by the use of a virtual grid. The analysis for the
gossip communication cost holds as well, as long as the assumption holds that the
routing communication cost between two virtual grid vertices is O(d) where d is
their Euclidean distance. If the above assumption is violated, i.e., it might take
a much longer detour to reach the sensor in charge of a virtual grid vertex, the
communication cost will be increased by this factor.

In the following sections, we will describe the spatial gossip for a set of nodes
such that (i) any two sensor nodes are of distance at least 1 apart; (ii) any disk of
radius 2 contains at least one sensor node. These hold regardless of whether the
grid or the dense clustered network is in use.

2.2 Communication model

In analyzing communications costs of our scheme, we assume that two sensor nodes
can communicate with each other directly if they lie within a small distance of
each other. However, we do not enforce that the connectivity corresponds to a unit
disk graph or any specific model. For the analysis we assume that the deployment
permits the existence of a multi-hop routing algorithm that can carry a message
from node x to node y using at most O(dx,y) hops, where dx,y is the Euclidean dis-
tance between the two nodes. For sensors uniformly deployed, simple geographical
forwarding would suffice to find a path with length proportional to the Euclidean
distance between them. In all cases, similar results will hold if the cost is a polyno-
mial in dx,y instead. If no such bound is available, then the communication costs
may be higher. We remark that the correctness of the algorithms and the accuracies
of the computed results are not affected by higher communication costs.

2.3 Order and duplicate insensitive aggregates

All the aggregates in our scheme are order and duplicate insensitive synopsis. In
particular, given a set of values S, an ODI-synopsis is an aggregate computed for
values in S that remains the same no matter how many times one duplicates some
values in S or what order the aggregation was performed. For example, MAX/MIN
are naturally ODI-synopsis. ODI-synopsis for a large variety of other aggregates
such as COUNT (counting distinct items), SUM, AVG, most popular items, second
moment, uniform sample, and set memberships (Bloom filter) are available [Nath
et al. 2004; Considine et al. 2004; Cohen 1997; Gao et al. 2007] by essentially
implementing them by MAX/MIN or Boolean operations. To give a quick idea
of ODI-synopsis, we take COUNT as an example. The idea is to use probabilistic
counting [Flajolet and Martin 1985]. Given n distinct values, we use a hash function
to hash each value to a k-bit long 0/1 vector with one bit set as 1 and all other
bits 0. In fact, the probability that the i-th bit is 1 is 1/2i, for 1 ≤ i ≤ k − 1. The
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probability that the last bit is 1 is 1/2k−1. To count the number of distinct values,
we simply take the boolean OR of all the vectors. Probabilistic analysis will show
that this vector has all 1’s at early bits and all 0’s at the last bits. The first zero
is at the log(0.7753n)-th bit with high probability. Therefore the position of the
first zero can be used to deduce the value n in a probabilistic manner. For sensor
network aggregation, we simply generate the bit vectors at each sensor and the
aggregation function corresponds to taking the boolean OR of these vectors. Since
boolean OR is order and duplicate insensitive the aggregate is ODI as well. In this
paper we use MIN as the example, but the algorithm works with any ODI-synopsis.
The main benefit of using ODI-synopsis is that we do not need to explicitly keep

track of which value has been included in the aggregates — this allows great flexibil-
ity in the use of routing schemes. If the value happens to travel to a node through
multiple paths, the aggregated value is not affected by the double counting. With-
out using ODI-synopsis, we must enforce the value arriving at a node to travel along
a tree, or be labeled and tracked independently of others. With ODI-synopsis, we
can allow a general communication pattern. Since gossip algorithm is a randomized
scheme and it is hard to control carefully what information flows where, the usage
of ODI-synopsis allows us to separate the gossip communication protocol and the
gossip computational protocol, and focus on the optimal design of the former one.

3. SPATIAL GOSSIP

In this section we describe the hierarchical spatial gossip algorithm to compute
multi-resolution data summaries for every sensor node.

3.1 Hierarchical Spatial Gossip

We use a gossip mechanism where each node selects from a restricted neighborhood
a node to gossip with and sends a message to it. The algorithm proceeds in phases.
The phase i calculates for each node the aggregate of values inside a roughly 2i

neighborhood centered at itself. The phases are completely independent so that
phase i+1 starts fresh. Since we have a network of n nodes, with a lower bound on
density, O(log n) phases are sufficient for the phase with the largest neighborhood
to cover the entire network.
For phase i, we adopt a restricted spatial gossip algorithm. We implement the

selection of gossip partner with geographical routing. At each round, a node x
chooses a location y∗ in the sensor field with probability:

pi(x, y
∗) =

{ 1
π · 1

(|xy∗|+1)3 , |xy∗| ≤ 2i;

0, |xy∗| > 2i.

where |xy∗| is the Euclidean distance between nodes x and y∗. Notice that y∗ is not
necessarily the location of a sensor. x will send the information towards y∗ using
geographical routing and eventually reach the node y whose location is closest to
y∗. Then y is x’s gossip partner and takes the information delivered by x. Notice
that a node only needs the knowledge of the general span of the sensor field (e.g.,
a bounding box) and does not need the global topology of the network, nor the
location of other sensors.
With the above gossip algorithm and the uniformity of sensors, the probability

that a node x chooses a sensor node located at y (also denoted by y by slightly
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abusing the notation) is also proportional to 1/|xy|3. The proof of the following
Lemma appears in the Appendix.

Lemma 3.1. At phase i, let the probability that a node x gossips with a node y
be qi(x, y). Then if 2 ≤ |xy| ≤ 2i + 2,

qi(x, y) ≤
4

(|xy| − 1)3
;

and if |xy| ≤ 2i − 2,

qi(x, y) ≥
1

16(|xy|+ 3/2)3
;

if |xy| ≥ 2i + 2, qi(x, y) = 0.

We assume that all the nodes gossip in a synchronous way. At each clock tick,
every node selects and shoots its information to its respective gossip partner. We
consider each clock tick as a round. Once a node x chooses another node, say y,
with distance at most 2i from it, x sends its current synopsis to y. y will incorporate
the information it receives from x and maintain the aggregation of synopsis of its
old value with the synopsis from x. Note that this is asymmetric as only node y
updates its synopsis and node x keeps its current synopsis value. The asymmetry is
an attractive feature as reliable round-trip multi-hop routing adds communication
overhead and implementation difficulty. Denote by si,j(x) the synopsis at any node
x after round j of phase i. The original value at x is thus given by s0,0(x). After
round j, each node updates its synopsis to be the aggregation of its synopsis at
round j − 1 and all the values it received in this round. The value computed at
node x at completion of phase i is denoted by si(x).
The use of ODI-synopsis is key to the success of the spatial gossip algorithm for

constructing multi-resolution data representation. The insight is that aggregation
by ODI-synopsis tremendously simplifies gossip computation protocols. Each node
u keeps only a value s(v) which is the ODI-synopsis of the set of values it has
received so far and does not keep the set of values in its original form. When one
node u chooses to gossip with v, u sends to v its aggregate s(u) and v computes
and keeps the ODI-aggregation of the synopsis of both u and v. s(v)← s(u)⊕s(v),
where ⊕ represents the aggregation function of the ODI-synopsis. This not only
reduces the cost of transmission as only one aggregated value is delivered each step,
but also guarantees that over-counting is eliminated although the same value may
potentially be received multiple times. In short, with ODI-synopsis the model of
gossip computation is the same as alarm spreading — each node starts with its own
value and in each gossip step one node will send all the values it has received so far
— but with reduced communication cost since only the aggregate (not the whole
set of values) is delivered. When the algorithm stops, a node keeps the aggregate
of all the values it has received.
To make the analysis easier, we also denote by Si,j(x) the set of nodes whose

values x should have received if we deliver all the original values instead of a synopsis
in the gossip algorithm. In other words, si,j(x) is the aggregation of the values in
the set Si,j(x). The set corresponding to the value si(x) at node x at the completion
of phase i is denoted by Si(x). Figure 1 shows the idea for a node in the center of
the network.
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(i) Phase 1 (ii) Phase 2 (iii) Phase 3

(iv) Phase 4 (v) Phase 5 (vi) Phase 6

Fig. 1. Propagation of one piece of data of the node x located in the center of the field.
The shaded region in each case shows the set Si(x) for each phase i.

To summarize, there are at most O(log n) phases in the hierarchical spatial gossip
algorithm. In phase i, every node executes O(i3.4) synchronous rounds. Each round
consists of a single gossip operation performed by every node, and each phase
consists of sufficient number of rounds so that nodes x and y that lie within a
distance 2i of each-other obtain each-other’s values with high probability. Thus,
at the end of phase i, any node has considerable information about values within
a distance 2i from it. Thus the synopsis aggregate at each node has incorporated
sufficiently many nodes within its 2i neighborhood.
The gossip algorithm for each phase is very similar to the spatial gossip protocol

proposed by Kempe et al. [Kempe et al. 2001], except that we restrict the maximum
range of gossip partners. This modification is to reduce the level of pollution such
that a node does not receive information from nodes too far away, as will be made
clear later.

3.2 Multi-resolution Representations

In this section, we analyze the multi-resolution information computed by the al-
gorithm described above. We show that if we stop the algorithm at phase i after
j∗ = O(i3.4) rounds, the synopsis kept at node x, i.e., the aggregated value of a set
of nodes Si,j∗(x), captures the information is a roughly 2i neighborhood around x.
Without loss of generally we denote by Si(x) and si(x) the respective values when
j = j∗.
Specifically, we show upper and lower bounds for the set of nodes in Si(x). The-

orem 3.4 says that Si(x) includes with high probability each node within distance
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2i from x. Theorem 3.5 says that Si(x) does not include nodes O(2ii3.4) away for
sure and with high probability does not include nodes with distance O(2ii2.4) or
more away.
Before we prove our main theorems, we first observe that when we run more

iterations of the gossip algorithm, the amount of information each node gets is
monotonically non-decreasing within a phase. Recall that Si,j(x) is the set of
nodes whose values have reached x, after j rounds at phase i. Thus,

Observation 3.2. Si,j(x) ⊆ Si,j+1(x), for any i, j, x.

3.2.1 Lower bound. We first show a lemma that bounds the rate of information
propagation by the restricted spatial gossip algorithm. Intuitively the lemma says
that after O(polylog d) rounds information at one node reaches a node at distance
d with high probability.

Lemma 3.3. In phase i, if the distance between nodes x and y is d ≤ 2i then

Si,j(x) ⊆ Si,j+α(y) within α = O(log3.4 d) rounds of iterations with probability at

least 1−O( 1d ).

The proof is an adaptation of the proof in [Kempe et al. 2001] that bounds
the information spread rate in spatial gossip, with necessary modification that
additionally takes care of the restricted range. While the essential proof is the
same, the adjustment to get the specific result is not entirely trivial. We therefore
include the complete proof in the appendix. This lemma shows that information
propagates pretty fast in the network. Thus we can stop the algorithm in O(poly(i))
rounds for phase i, i ≤ log n, in order to collect information from almost all nodes
inside the desired range 2i.

Theorem 3.4. With probability at least 1−O(1/2i), the set Si,w(x) includes node
y with |xy| ≤ 2i in phase i consisting of w = O(i3.4) rounds.

Proof. Obviously x ∈ Si,0(x). We apply Lemma 3.3 with d = 2i to obtain the
theorem. This implies that in round i, any node collects information from each
node in its 2i neighborhood with probability at least 1−O(1/2i). �

3.2.2 Upper bound. The subsection above shows that in phase i, any node re-
ceives the information within a distance 2i with good probability if we run the
algorithm for O(i3.4) rounds. Now we show an upper bound that a node does not
get information from nodes too far away. Thus the ‘pollution’ from far away nodes
is under control.

Theorem 3.5. After k rounds of phase i,

(1) Si,k(x) does not include nodes with distance d > k2i away from x, for sure.

(2) Si,k(x) does not include nodes with distance d > 3k2i

i+1 away from x with prob-

ability at least 1− o(1/2k), when i is greater than a sufficiently large constant.

Proof. To make the analysis easier, we assume that we actually propagate, by
the hierarchical spatial gossip algorithm, the list of values together with their source
nodes. Initially each node has only its own value. Then they propagate to other
nodes. We examine, for the value of a node u ∈ Si,k(x), the path it may take to
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get from u to x, denoted by P = {u, u1, · · · , uℓ = x}. ℓ ≤ k. In round j, uj selects
uj+1 as its gossip partner.

Claim 1. The value of u cannot travel further than k2i because in any iteration,
a gossip step can go as far as 2i at most and there are total k rounds.
Claim 2. Intuitively, for the value of u to reach a node x that is distance

d = (3+ε)k2i

i+1 away (ε is very small) via a path of length at most k, it must make
enough number of long jumps. We argue that the probability for this to happen is
small. The following analysis is to make this intuition rigorous.
First observe that the probability of a node uj choosing a node uj+1 of distance

d′ > 2i/(i+ 1)− 2 away is at most

∫ 2i

2i/(i+1)

2r

(r + 1)3
dr ≤ i+ 1

2i−1
.

Now consider a path P of at most k hops that starts from u and ends at x. Let
k′ be the minimum number of steps of length 2i/(i + 1) or more in P . Then the
minimum value of k′ satisfies the relation

(k − k′)(
2i

i+ 1
− 2) + k′(2i + 2) ≥ d = 2i

(3 + ε)k

i+ 1
.

When i is sufficiently large, k′ ≥ (2 + ε/2)ki . Therefore, for a k-hop path to reach
node x, it needs to have at least k′ long jumps, the probability of which is at most
(

k
k′

) (

i+1
2i−1

)k′

. Thus, the probability that a k-hop path P does not have k′ or more

links of length 2i/(i+ 1) or more is at least
(

1−
(

k
k′

) (

i+1
2i−1

)k′
)

.

In each round, a node that has a data sends a copy of it to another node. Thus,
every existing copy gets replicated at a new node. At the end of k rounds, the total
number of copies in the network is at most 2k. We bound the probability that none
of these 2k paths reach x. This is at least

(

1−
(

k
k′

) (

i+1
2i−1

)k′
)2k

≈ 1−
(

k
k′

) (

i+1
2i−1

)k′

2k ≥ 1− 22k
(

i+1
2i−1

)k′

≥ 1−
(

(2(i+1))2/i

2ε/2

)k

≥ 1− 1/2k.

The last step is true when i is greater than a sufficiently large constant. �

For a phase i, with k = i3.4 rounds, the probability that the value at a node
does not spread beyond a distance 2i 3k

i+1 is at least 1− o(1/2i
3.4

). Thus with high

probability Si(x) does not include nodes with distance O(2ii2.4) away.

3.3 Communication cost

In this section we show that the communication cost of constructing the multi-
resolution data representation is almost linear.

Lemma 3.6. The expected communication cost incurred by any node in a single

round of phase i is O(i).
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Proof. The expected distance to the gossip partner chosen by a node x is at
most

2 +

∫ 2i

0

2r
r

(r + 1)3
dr ≃ O(i).

Since the cost of routing to a node distance d away is O(d), the communication
cost by any node in a round of phase i is O(i). �

Theorem 3.7. The algorithm creates multi-resolution data as described above at

every node using O(log4.4 n) rounds and total communication cost O(n log5.4 n).
The storage requirement at each sensor node is O(log n).

Proof. In an n node network, with a constant lower bound on density, the
maximum distance between any two nodes is O(n). Thus, the number of phases
required by the algorithm is O(log n). Each phase i consists ofO(i3.4) rounds. Thus,

the number of rounds is
∑log n

i=1 O(i3.4) = O(log4.4 n). In phase i, at each round, a
node uses a single message with an expected communication cost of O(i). Thus, the

communication cost per node for the algorithm is:
∑logn

i=1 O(i · i3.4) = O(log5.4 n).
The total communication cost is thus O(n log5.4 n). Notice that during the spatial
gossip algorithm for phase i, each node at any time only keeps one value. The total
storage requirement for each node is O(log n). �

3.4 Spatial gossip with metric ℓp

For ease of explanation, we have described the concepts in terms of Euclidean
distances, but the ideas extend to other ℓp distance measures. In ℓ2 measure,
all points within a distance of d from point x form a circular disk of diameter d
centered at x. Thus, the results of theorems 3.4 and 3.5 correspond to properties of
data stored about disks of certain radii centered at each node in the network. For
the type of rectangular range queries discussed in detail in section 5, it would be
convenient to use ℓ∞ as the metric. In ℓ∞, disks correspond to axis aligned squares
that can be used to cover the query region nicely.

4. ACCURATE MULTI-RESOLUTION DATA

The gossip based algorithm is randomized, and therefore has some inaccuracy asso-
ciated with the aggregates it computes. In this section, we discuss a deterministic
algorithm to compute multi-resolution aggregates and show a communication lower
bound of Ω(n

√
n) messages on computing multi-resolution data. These results show

that approximation is necessary in order to achieve near linear communication cost.
For the ease of description we use the ℓ∞ metric, and assume that the n nodes are

placed on a unit grid in a square. A disk in this metric looks like a square. Suppose
the aggregate minimum is being computed. The algorithm works as follows:

At step i, every node p finds the aggregate of the ℓ∞ disk of radius 2i centered
at itself. This is done as follows: p collects the aggregates of step i − 1 from each
node q at distance 2i−1 from p, and computes the minimum to find the aggregate
minimum of its 2i neighborhood. Each node q needs to send its (i − 1)th average
to nodes at a distance 2i−1 from it. This is done by traversing the boundary of the
disk of radius 2i−1, at a cost of O(2i−1).
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The total cost per node is therefore

log
√
n

∑

i=0

O(2i−1) = O(
√
n).

The following example shows that this is in fact a lower bound on the asymptotic
complexity of computing multi-resolution data.

Suppose that the left topmost corner of the grid has position (0, 0). The node at
row i and column j has position (i, j) and value vij = i

√
n+ j. More importantly,

this is also the rank of the value. Now consider the quadrant with i, j ∈ [
√
n/2,

√
n]

and in particular the node at (
√
n/2,

√
n/2). The minimum of its

√
n/2 neighbor-

hood is given by v00. The corresponding aggregate of any node in the quadrant
at (
√
n/2 + i,

√
n/2 + j) is given by vi,j . Therefore, each such value has to be

transmitted a distance Ω(
√
n). Since at least a constant fraction of the values have

to be transmitted this distance, the lower bound on the message cost is Ω(n
√
n).

5. RANGE QUERIES

The pre-computed data summaries by the hierarchical spatial gossip algorithm can
be useful in answering user queries about aggregates in large regions of the network
with reduced cost. For example, the aggregate for the entire network is available at
any single node. Similarly, it is possible to obtain probabilistic information about a
large region of radius 2i by visiting a single node at its center. If the query requires
better estimates of the aggregate, then it can be answered by making use of the
different ODI synopses computed at different phases of the algorithm. Thus, the
query response mechanism can adapt to the quality of estimate and restriction on
pollution desired by the user.

In the rest of this section we discuss a case where the user wishes to obtain
with high probability the correct ODI synopsis of a rectangular region, without
any pollution. The query consists of an a×b axis aligned rectangular area A, and a
small probability δ. The response to the query is the ODI synopsis s corresponding
to a set S, such that, for any node x, if x ∈ A then x ∈ S with probability at least
1 − δ, and if x /∈ A then x /∈ S. That is, no node outside the region A should be
included in set S, and no node inside A should be excluded with a probability more
than δ. Without loss of generality, we can assume that a ≤ b.

By Theorem 3.4, after phase i, the ODI synopsis at any node x includes the value
at any other node inside a disk of radius 2i with a high probability. For distances
measured in the L∞ metric, this disk corresponds to a square of side 2 ·2i. We refer
to such a square as a square of radius 2i (analogous to a disk of same radius), and
use a set of such squares to cover the given query region.

We denote by Bi(x) a square of radius 2i centered at node x. For a node y ∈
Bi(x), by Theorem 3.4, y /∈ Si(x) with probability O(1/2i). Corresponding to any
square Bi(x), there is a square Gi(x) of radius ηi3.42i, for a proper constant η,
such that for any node y /∈ Gi(x), y /∈ Si(x), by Theorem 3.5. If the user query
requires no pollution from outside the query region, the bigger square Gi(x) must
be completely inside the query range.

We refer to a square Bi(x) as a maximal piece if Gi(x) ⊆ A and Gi+1(x) * A,
and i as the maximal level of node x. Let Bp(x) be the largest maximal piece in
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A, then formally

p = max
x∈A
{i : Bi(x) is a maximal piece}.

Then, we have

ηp3.42p ≤ a

2
< η(p+ 1)3.42(p+1).

This implies that p = O(log a). Now we can collect the partial aggregates from these
maximal pieces to answer the query. This can be done in a manner similar to that
in [Gao et al. 2004] by starting at the boundary and spiraling inward accumulating
synopsis for maximal pieces that together cover the entire region. Additionally,
we must ensure that the probability of any node being excluded in the synopsis is
small.

Query Range

Bi(x)

Gi(x)

Spiral
x

Fig. 2. The spiral used for response for a given query region. Nodes are visited individually
in the shaded region at the perimeter. The figure also shows the maximal square Bi(x)
for a node x of maximal level i, and the corresponding pollution region Gi(x).

We use a spiral path that guarantees the required probability for every node in
the query region. By Theorem 3.4, if a node is covered by a maximal piece Bi(·),
the probability of it being included in the corresponding synopsis set Si(·) increases
with the size of Bi(·). This implies that given a δ, nodes more than a certain
distance (depending on delta) away from the boundary are covered by one or more
maximal pieces that provide the required probability. Thus, our spiral starting at
the boundary accumulates synopsis from all individual nodes up to this distance,
and makes use of maximal pieces to obtain the synopsis for the rest of the region.
Figure 2 shows a schematic representation of this idea. The following theorem gives
the cost for such a computation.

Lemma 5.1. Given a query (A, δ) where A is an a × b rectangular axis aligned

query region, the query can be answered at a cost of O(max(a, b) log4.4 min(a, b) +
max(a, b)(1/δ) log3.4(1/δ)).

Proof. For a node x, let dx be the distance of node x from the perimeter of the
region A. If i is the maximal level of x, then ηi3.42i ≤ dx < η(i + 1)3.42(i+1). This
implies that all nodes of maximal level i occur in an annular rectangular region of
inner boundary (b−2η(i+1)3.42(i+1))× (a−2η(i+1)3.42(i+1)) and outer boundary
(b− 2ηi3.42i)× (a− 2ηi3.42i). The thickness of this annular rectangle is O(i3.42i).
To obtain the result with parameter δ, we start at the perimeter of region A,

and spiral inward accumulating the synopsis s. At a distance ηd log3.4 d from the
boundary, a maximal piece of level log d can be used, and the probability of a
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node at this level being missed by a maximal piece is O(1/d). By the requirements
of the query, it has to be ensured that δ = O(1/d). Thus, the spiral visits each
individual node until the distance to the boundary reaches O((1/δ) log3.4(1/δ)). At
every node x, the synopsis is updated as s = s⊕ s0(x). The cost of such a path is
O((a + b)1δ log

3.4(1/δ)).
After this point, the synopsis are updated according to maximal levels. At a

node x of maximal level i, we set s = s⊕si(x), which is equivalent to the operation
S = S ∪ Si(x). The lowest maximal level that we can use for the given query is
γ = O(log(1/δ)). The cost incurred to process nodes at any maximal level i ≥ γ is
O((a − i3.42i)i3.4 + (b− i3.42i)i3.4) = O(b · i3.4).
The cost for the spiral covering all maximal levels i for γ ≤ i ≤ p is given by

p
∑

i=log(1/δ)

O(b · i3.4) = O(bp4.4) = O(b log4.4 a).

Thus, the total communication cost for answering the query isO(max(a, b) log4.4 min(a, b)+
max(a, b)(1/δ) log3.4(1/δ)). �

Spatial gossip with no maximum range restriction. We note that the hi-
erarchical spatial gossip for phase i makes only one change to the spatial gossip
algorithm as in [Kempe et al. 2001]. Essentially a node chooses its gossip partner
with a maximum distance range 2i. This way we are able to restrict the amount
of pollution from distant nodes. In the above range query, we make use of the
fact that the data summaries do not include information beyond a certain distance
threshold (claim 1 in Theorem 3.5), to answer queries with no false positive errors.
For applications in which small false positive errors are not a problem, we can

propose to use the single-phase spatial gossip algorithm to construct the multi-
resolution data representations. Essentially, we just run the standard spatial gossip
algorithm where each node chooses another node with distance d away with prob-
ability roughly 1/d3. We run the algorithm for O(log3.4 n) rounds. During the
algorithm, we keep the current aggregation value after round O(i3.4), as the data
summary of the 2i-hop neighborhood. Notice that the probabilistic upper bound
on pollution as the second claim in Theorem 3.5 still holds. Thus the ith data
summary we compute has a large probability to include every value inside a 2i-hop
neighborhood and not include values outside 2ii2.4 neighborhood. This alternative
solution saves a factor of O(log n) in the total communication cost, at the cost
of more pollution from far away nodes. For range query, a probabilistic solution
with both small false positives and small false negatives can be obtained. In prac-
tice either variation can be adopted, dependent on application requirements. We
evaluated and compared the gain of each variation in the simulation section.

Error introduced by ODI synopsis. The analysis above considers the proba-
bilistic error introduced by the gossip. ODI-synopses for aggregates such as SUM,
AVG are probabilistic with small probabilities of error. Thus, the overall system
error may incorporate this factor, which will depend on the actual ODI synopsis
used.
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6. SIMULATIONS

In this section, we show simulation results that confirm our expectations of the
hierarchical spatial gossip. The gossip algorithm was found to be efficient in com-
munication. We monitored the spread of information, and found that representation
is sharper than the worst case theoretical bounds. That is, when we perform gossip
to compute aggregates in 2i disks, the data typically does not spread too far beyond
the disk, therefore does not create too many outliers that would pollute aggregates
at distant nodes. The range query procedure from the previous section is also seen
to be efficient. Finally, we found that the method adapts well to unreliable links
and message losses.
We focus on evaluating the performance of our approaches at the algorithm level,

and ignore specifics of lower level protocols and hardware. We use geographic rout-
ing in the simulations. Each packet transmitted only contains necessary location
information and a piece of aggregate data of the source node. All simulations are
on a unit-disk graph model. For the simplicity of explanation, we denote the set of
nodes within 2i distance from node x as Di(x). The aggregate of Di(x) is referred
as the aggregate of resolution level i at node x. We compute the aggregate MIN
as an example in the following simulations, other ODI-synopsis can be evaluated in
the same way. All simulation results are averaged on 10 runs.

6.1 Total Communication Cost

We simulated a grid network where the sensor nodes have a fixed transmission
range 2. Nodes can communicate directly if they are within the transmission range
of each other. Keeping the density of the network constant, we vary the number
of nodes from 256 to 4900, and vary the size of the sensor field from 32 × 32 to
140× 140.
Each phase i of the gossip was terminated at the average number of rounds

when at least (1− 0.5/i) fraction of nodes received the minimum for ith resolution.
This condition was found to provide a reasonable balance between fast information
propagation and low pollution rates.
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Fig. 3. Total communication cost in grid networks with various size.

Figure 3 shows the total communication cost in grid networks with various sizes.
We compare hierarchical spatial gossip with the flat single phase spatial gossip and
simple flooding. Flooding incurs dramatically higher cost as expected. In a network
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with n nodes, it requires O(n) transmissions for propagating one piece of data, and
O(n2) transmissions in total. The hierarchical spatial gossip costs slightly more
than the spatial gossip, but is still almost linear in the network size.

6.2 Effectiveness of Multi-Resolution Representation

In this subsection, we test the sharpness of the multiresolution representation. Each
phase i is expected to compute the aggregate in a region of radius 2i surrounding
a node. We wish to verify that the gossip algorithm does not deviate far from this
goal.
We take one piece of data s of the node located in the center of the network as

a representative, and evaluate the entire process of its propagation. All other data
is propagated in the same way. Intuitively, an ideal multi-resolution representation
should compute aggregates at level i of almost all nodes belonging to Di, and little
or no pollution beyond Di.
The example of one execution in Figure 1 shows different phases of the propa-

gation of s in the hierarchical spatial gossip. We can see that the information s
is propagated within a restricted range in each phase and pollutes very few nodes
beyond a certain distance. In the following we evaluate this property using more
quantitative measures.
Flooding can be very precise in this regard. It can compute the accurate multi-

resolution data summaries by labeling each flood message with the location of its
starting point. This is expensive, but each node then receives data from all nodes,
and can simply maintain the ith aggregate as aggregate of those originating within
its 2i disk. Flooding therefore creates perfect multi-resolution data at a high cost.
Thus we only compare the effectiveness of multi-resolution representation of our
approach with the single phase spatial gossip here.
We compare the standard spatial gossip with hierarchical spatial gossip when

they reach roughly the same state. For example, if round 15 of spatial gossip is the
first round at which at least a fraction of (1 − 0.5/3) nodes correctly compute the
aggregates of resolution level 3, then the state of the 15th round is comparable to
phase 3 in hierarchical spatial gossip. The following simulations are conducted in
a 128× 128 grid network with 4096 sensor nodes.

Coverage. We define the percentage of coverage at distance d as the percentage of
the number of nodes at distance d from the origin of s that receive s. In Figure 4,
we show the percentage of coverage in an intermediate phase (phase 4) for both
standard spatial gossip and hierarchical spatial gossip. The result confirms that
there is a disk such that nodes within it receive the value with high probability.
And the probability of a node outside this disk receiving the values falls sharply
with the distance from the origin.
In the hierarchical spatial gossip, all nodes within a disk with radius 8 from

the center receive s. The percentage of coverage decreases quickly as the distance
increases, and goes below 10% beyond distance 30. The propagation quickly stops
at distance 44.6. In standard spatial gossip, all nodes within a disk with radius 6
from the center receive s, but it pollutes the information at distant nodes up to a
distance of 78, almost to the boundary of the network.

Pollution. The small coverage in hierarchical spatial gossip implies low pollution
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Fig. 4. Coverage of phase 4.

rates. This is visible in figure 4. The single-phase spatial gossip always selects
nodes from the entire network, thus it cannot guarantee a comparable restriction on
pollution. We characterize and compare the pollution caused by the two approaches
using two more criteria - maximum distance and relative pollution. We define the
maximum distance of phase i as the distance between the center and the furthest
node receiving s in phase i. The relative pollution of phase i is defined as the ratio
of the number of nodes receiving s beyond Di(center) and the number of nodes
receiving s within Di(center).
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Fig. 5. (i) Maximum distance reached in each phase. (ii) Relative pollution in each phase.

Figure 5(i) shows the maximum distance reached at the end of each phase in
both approaches. Since we simulate in a 128 × 128 grid network, the farthest
point from the center is at a distance of about 90 units. In the hierarchical spatial
gossip, the maximum distance increases relatively slowly with phases, while in the
single-phase spatial gossip, the data often reaches distant nodes within the first
few rounds. From Figure 5(ii), we can see that there is a big gap between the
single-phase spatial gossip and the hierarchical spatial gossip in terms of relative
pollution. The peaks are 9 and 2 respectively. Since we compare the states of the
standard spatial gossip at the point of reaching the same state in the hierarchical
spatial gossip, the number of nodes getting s within Di is roughly the same in both
approaches. However, to build up the same level resolution, the single-phase spatial
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gossip would pollute data at about 4 times as many nodes beyond that level than
the hierarchical spatial gossip.

6.3 Range Query Costs

We evaluated the range queries executed by the spiraling method described in
section 5 on our computed aggregates. We evaluated the query costs of different
sized query regions and also looked at the accuracy of the aggregate computed
from the spiral. The data used to verify the query response was a continuous signal
sampled at the sensor locations. The simulation was carried out in our largest
network of 4900 nodes.
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Fig. 6. Costs of querying squares of different sizes. Diameters are measured in ℓ∞ metric.
Axis aligned squares are disks in this metric.

Figure 6 shows the communication costs incurred for the spiraling range query
in square ranges of different sizes. The gossip phases for this simulation used the
ℓ∞ metric, as described in section 5. The communication cost is slow growing.
For comparison, we also show the linear plot denoting the number of nodes in
corresponding squares. This will be the cost of performing the aggregation without
any preprocssing, for example, with an aggregation tree.
Since the gossip preprocessing is probabilistic, there is a possibility of the ag-

gregates being computed incorrectly. However, in simulations incorrect evaluations
were very rare, less than 1% of queries. And in these cases, the computed minimum
was found to be very close, within 5% of the true minimum.

6.4 Resilience to Link Failures

Wireless links may be unreliable. Messages can be lost without warning, introduc-
ing difficulties for an aggregation algorithm. One of our motivations for using a
randomized gossip algorithm is its resilience to message loss. In case of a loss, it
needs no special action, in fact, nodes can proceed oblivious to individual losses.
However, frequent message loss does slow down the spread of information. There-
fore in a lossy environment the spatial gossip takes longer to distribute information.
In our model transmission failures do not have a significant effect on the cover-

age/pollution as a transmission failure basically causes the gossip attempt to abort
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and none of the data is exchanged. The quality of the solution is not affected by the
transmission failures. Therefore in the following we only investigate the increase in
communication.
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Fig. 7. Communication costs of the hierarchical spatial gossip algorithm when links are
unreliable. p represents the probability that a message transmission to an adjacent node
will succeed. The dotted line shows the curve 2i (the diameter of phase i) scaled by a
factor of 25000 – the approximate cost of phase 0.

Figure 7 shows that the gossip algorithm scales well with link failures. The
simulation was done on a network of 4900 nodes. We assigned a fixed probability
p that any message transmission between adjacent nodes succeeds, and evaluated
the communication costs for different p, to get the same information spread as
before, that is until (1 − 0.5/i) fraction of nodes in the 2i disk is reached. The
curve in red shows the cost with no transmission failures. The gossip efforts that
are wasted due to link failures increase the overall communication costs, but do not
help the spread of information. We checked how much the wasted efforts added to
the communication costs. It is seen that the cost of the gossip for different phases
do not increase much as the quality of the links drop.
The failure model above is particularly harsh. For example, if each link works

with a 90% probability, then a 7 hop communication will fail in more than 50% of
cases. Spatial gossip relies on such long communication. However, as long as one
such long communication attempt succeeds information spreads quickly. In reality,
wireless communication links do not always have the same failure rates, some are
generally more dependable, but certain links and regions are likely to be lossy. In
such models we expect spatial gossip to perform even better. Gossip does not rely
on reliability of any particular link, and therefore is unaffected by a small number
of bad links failing with high probability.
Figure 7 can be used to see how the gossip cost scales with phase (x-axis). We put

as comparison a dotted curve for the phase diameter (i.e., 2i), scaled by multiplying
it with the cost of phase 0. We can observe that the costs at different phases scale
roughly by the range diameter and the multiplicative factor remains almost the
same in simulations.
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7. CONCLUSION

In this paper, we propose an efficient algorithm with a total communication cost
of O(n polylog n) to extract and construct sharp multi-resolution data representa-
tions for sensor networks. We believe that the multi-resolution data summary is
a fundamental data storage paradigm to equip each node with compact sketches
of the global picture of the data field. As the future work we will explore more
applications of multi-resolution data summaries for advanced data processing and
validation, as well as efficient query evaluations.
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Appendix

Proof Lemma 3.1. We compute the Voronoi diagram of all the sensor nodes (a
partitioning of the region into cells such that all the points inside one cell are closest
to the same sensor node) and only inspect the part inside the bounding square. In
order for x to choose node y as its gossip partner, x must have chosen a location
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y∗ that falls inside the Voronoi cell of sensor node y. Denote by V (y) the Voronoi
cell of y, then we have qi(x, y) =

∫

y∗∈V (y)
pi(x, y

∗).

y

u

v

Fig. 8. The Voronoi cell of a sensor node y is enclosed inside a disk of radius 2 and
contains a disk of radius 1/2.

We now upper and lower bound the Voronoi region for y. V (y) is a convex region.
The point on the boundary of V (y) furthest from y is realized at a Voronoi vertex
(u in Figure 8), which has three sensors (including y) as its closest nodes. Thus the
disk centered at u with radius |yu| has no other sensor nodes inside. Since any disk
of radius 2 has at least one sensor node inside, |yu| < 2. Thus V (y) is enclosed by
a disk centered at y with radius 2, denoted by D2(y). On the other hand, the point
on the boundary of V (y) closest to y, say v, is realized as the mid-point connecting
y and one of its Delaunay neighbors (the sensors whose Voronoi cells are adjacent
to that of y’s). Thus |yv| ≥ 1/2. Consider that y can be placed at the corner of the
sensor bounding square. V (y) includes at least 1/4 of a disk of radius 1/2 centered
at y.
With the upper and lower bound of V (y), we will bound the probability qi(x, y).

Take the point in V (y) closest to x, denoted by w. |xw| ≥ |xy| − 2. Therefore
qi(x, y) =

∫

y∗∈V (y)
pi(x, y

∗) ≤ pi(x,w) · π22 = 4/(|xw|+ 1)3 ≤ 4
(|xy|−1)3 . Similarly,

we have qi(x, y) ≥ 1
16(|xy|+3/2)3 .

The above bound is valid when V (y) is completely within distance 2i from x,
which is true if |xy| ≤ 2i−2. If |xy| ≥ 2i+2, then all points in V (y) are of distance
2i away. Thus y will never be chosen as x’s partner. qi(x, y) = 0. �

Proof Lemma 3.3. From the setup of the network described in section 2, ob-
serve that the density of the node deployment has lower and upper bounds in any
region of the network. In particular, for the following analysis we assume that there
are constants β1, β2 (β1 < β2) such that the number of nodes in any disk of radius
r ≥ 1 lies between β1r

2 and β2r
2.

The probability 1−O( 1d ) can be rewritten as 1−γg(d) for γ = O(log−2.4− log d
log log d d)

and a suitable function g(d) = O(log2.4 d). And the number of rounds O(log3.4 n)
can be written as τg(d) for a suitable τ = O(log d).
Note that, if in the jth round of phase i a node x selects a node y to gossip, then

Si,j(x) ⊆ Si,k(y), ∀k > j. And this property holds transitively. So, all we need
to prove is that there would be a sequence of gossip selections taking the message
from x to y within g(d) = O(log2.4 d) rounds with probability at least 1 − γg(d).
Our induction hypothesis is that the result holds for distances upto d3/4.
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First note that for the base case of r equal to some constant, any constant
probability 1− γg(r) of the value from x reaching y can be obtained with constant
k number of selections by x. This constant will depend on β2, the upper bound on
density since there can be β2d

2 nodes that are nearer to x than y.

u

yx

u′

d3/4d3/4

B̂

B B′

Fig. 9. In a time interval τ , the long link uu′ exists with high probability, and links xu
and u′y exist with corresponding high probability.

Consider the disk B̂ of diameter d containing both x and y. Inside B̂, we take two
disks B and B′ of diameter d3/4 containing x and y respectively. Our induction
hypothesis is that the result holds for pairs of nodes d3/4 apart. Thus, g is the
recursive function g(r) = 1 + 2g(r3/4). It can be shown that g(r) = O(log2.4 r).
We divide the time interval τg(d) into intervals τg(d3/4), τ and τg(d3/4). We

need to show, that with high probability, some node u from B selects some node u′

from B′ to gossip with in a time interval of length τ . The rest follows by induction.
The probability that in τ rounds, no node from B selects any node from B′ to
gossip with, is given by

(

1− cβ1
k3/2

4k3

)τβ1k
3/2

≤
(

1

e

)cτβ2
1/4

.

We select τ such that
(

1
e

)cτβ2
1/4 = γ. Then the probability that some node u

in B selects some node u′ in B′ in an interval of τ rounds is at least 1 − γ. In
other words, assuming that u has the message at the end of τg(d3/4) rounds, the
probability that some u′ ∈ B′ receives the message in the τ is at least 1− γ.
By induction hypothesis, u receives the message from x with probability

1 − γg(d3/4) in the first τg(d3/4) rounds. And y receives the message from u′

with probability 1 − γg(d3/4) in another τg(d3/4) rounds after u′. Thus, the
probability that in τg(d) rounds the message propagates from x to y is at least
1− γ − 2γg(d3/4) = 1− γg(d).

Since γ = O(log−2.4− log d
log log d d) and τ = O( −1

β2
1c

log γ), we have τ = O(log d).

Therefore, in τg(d) = O(log3.4 d) rounds the message travels from x to y with a
probability of 1−O( 1d ). �
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