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Abstract—In this paper we address the problem of scalable and
load balanced routing for wireless sensor networks. Motivated
by the analog of the continuous setting that geodesic routing on
a sphere gives perfect load balancing, we embed sensor nodes
on a convex polyhedron in 3D and use greedy routing to deliver
messages between any pair of nodes with guaranteed success. This
embedding is known to exist by the Koebe-Andreev-Thurston
Theorem for any 3-connected planar graphs. In our paper we use
discrete Ricci flow to develop a distributed algorithm to compute
this embedding. Further, such an embedding is not unique and
differs from one another by a Möbius transformation. We employ
an optimization routine to look for the Möbius transformation
such that the nodes are spread on the polyhedron as uniformly
as possible. We evaluated the load balancing property of this
greedy routing scheme and showed favorable comparison with
previous schemes.

I. INTRODUCTION

In large scale sensor networks it is critical to balance out
work load on different sensors, to prevent some nodes running
out of battery immaturely. In terms of routing, we hope that
the selected routes are ‘load balanced’ such that the node
residual battery levels are as uniform as possible. There has
been a lot of work in the literature about load balanced routing.
One formulation is to select route such that the maximum
load is minimized. Unfortunately finding the optimal solution
for this problem is NP-hard (modeled as unsplittable flow
problem) even in very simple networks (such as grid). There
have been approximate algorithms [16], [17] developed for the
problem. But they all require centralized knowledge, and thus
are inappropriate for a distributed setting.

In this paper we focus on the load balancing issue of greedy
routing solutions, where nodes deliver messages by forwarding
to the neighbor closer to the destination under some distance
metric [10], [4]. Greedy routing may not always be successful
if there is a node whose neighbors are all further away from the
destination. In the past few years various schemes have been
proposed to find an embedding and a related distance function
such that greedy routing guarantees delivery [14], [6], [12],
[1], [18], [7], [11], [20], [2]. But these methods have nearly
no consideration of load balancing.

In this paper we design load balanced, greedy routing
solutions by first examining how load balancing relates to the
network ‘geometry’. Take an example with sensors uniformly
spread in a disk or a square and consider shortest path routing
(or geographical greedy routing [10], [4]) for all pairs, the

nodes near the center carry more traffic than the nodes near
the boundary. In general, for a surface in 3D, the points with
negative curvatures (the saddle points) attract geodesic paths,
while points with positive curvatures repel geodesic paths.
Therefore surface curvature and geometry are intrinsically
related to load distribution in routing.

Existing load balanced, greedy routing methods. The idea
of examining network geometry and changing network shape
for better load balancing has only been done on networks of
special topology. In [8], a greedy routing scheme that achieves
both constant routing stretch factor (compared with shortest
path routing) and constant load balancing ratio (compared with
the optimal load balanced routing) is proposed, but only for
wireless nodes distributed in a narrow strip. Mei and Stefa [13]
studied load balancing for a regular square shape sensor
network and proposed to use the ‘outer space’ by essentially
wrapping up the network into a torus. Routing is done in a
greedy manner by using the coordinates on the torus, possibly
bounding off from the boundary. The method depends on
geographical coordinates and thus does not guarantee delivery.
Popa et al. [15] examined load balanced routing for a disk
shape network and proposed to use stereographic projection
to map the network on a hemisphere. Routing is guided by
the spherical distance in a greedy manner. Improved load
balancing is shown as the routes are made to ‘curve’ around
the network center. Again, delivery is not guaranteed. These
algorithms are for special cases. It is unclear how they apply
to irregular networks possibly with holes.

Our approach: spherical embedding. For a surface with
positive constant curvature everywhere, i.e., a sphere, the
shortest paths have uniform distribution and greedy routing
(in terms of spherical distance) on the sphere has guaranteed
delivery and perfect load balancing. Motivated by this, we
investigate the mapping of a sensor network to a spherical
metric. The well-known Koebe-Andreev-Thurston Theorem
describes the spherical embedding of a 3-connected planar
graph, which can be seen as a convex polyhedron with all
edges tangent to a unit sphere. Each vertex is associated with a
circle on the sphere. The circles of adjacent vertices are tangent
to each other. See Figure 3. With the spherical embedding, the
distance function d(u, v) = −c(u) · c(v), where c(u) is the
3D coordinate of u, has guaranteed delivery for all pairs of
vertices [14]. This is referred to as polyhedron routing.
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Our contributions in this paper are two folds. First we
proposed a distributed algorithm to compute the spherical em-
bedding for a general 3-connected planar graph using discrete
Ricci flow. Previous algorithms either require a triangulation
as input [19], [5] or a centralized computation [3]. Second,
the spherical embedding is not unique and differs from one
another by a Möbius transformation. Thus we exploit this
degree of freedom and find the spherical embedding that
favors load balancing. By simulations we show that this idea
works well in practice and compares favorably with previous
load balanced routing schemes that also use greedy routing
ideas [13], [15].

Jonckheere et al. [9] examined the negative curvature and
load congestion in both artificial data and real networks. They
proposed to use Yamabe flow with free boundary condition to
alleviate network congestion. We remark that the relationship
of the network ‘curvature’ and routing congestion remains as
an interesting open problem.

II. SPHERICAL REPRESENTATION

A. Circle Packing and Spherical Representation

A circle packing is a connected collection of circles on
some (Riemann) surface, whose interiors are disjoint. The
intersection graph (the tangency graph or contact graph) of
a circle packing is the graph having a vertex for each circle,
and an edge for every pair of circles that are tangent.

Suppose G is a 3-connected planar graph, and G̃ is the dual
graph1 of G, the following theorem shows the existence of a
pair of circle packings for G and G̃ respectively.

Theorem 2.1 (The Koebe-Andreev-Thurston Theorem):
There is a pair of circle packing P, P̃ , where the intersection
graph of P and P̃ are isomorphic to G and G̃ respectively.
Furthermore, for any vertex v ∈ G and an adjacent face f ,
the vertex circle in P is orthogonal to the face circle in P̃ .

Corollary 2.2 (Spherical Representation): Each 3-connect-
ed planar graph can be realized by a 3-polytope which has all
edges tangent to the unit sphere. The realization is unique up
to Möbius transformations.

A Möbius transformation is a map that maps a complex
plane to itself, f(z) = az+b

cz+d , where a, b, c, d are four complex
numbers satisfying ad − bc = 1. A Möbius transformation is
a conformal map and maps circles to circles.

B. Algorithm for Computing Spherical Representation

Step 0: Extract a Planar Subgraph. Algorithms for extract-
ing a planar graph from the communication graph have been
developed in the past literature, see the references in [18].
In our implementation, we have used the restricted Delaunay
graph approach [18].
Step 1: Compute the Dual & Overlap Graph. Given a planar
3-connected graph G, denote the k-th vertex as k, the j-th face
as fj . Note that, one face is the infinite face. The overlap graph

1Each face of G is a vertex of G̃. Each vertex of G is a face of G̃. An
edge connecting two vertices of G̃ if and only if there is an edge shared by
the corresponding faces in G.
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Fig. 1. An example of the reduced graph.
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Fig. 2. Step 4. Ricci flow

D is defined as G ∪ G̃, where G̃ is the dual graph of G. On
the overlap graph D, there are three types of nodes:

1) Vertex node vi: corresponding to a vertex in G, is
represented as a red round dot.

2) Face node fj : corresponding to a face in G, is repre-
sented as a green round dot.

3) Edge node eklij : corresponding to an intersection of an
edge [vi, vj ] in G, and an edge [fk, fl] in the dual graph
G̃, where [vi, vj ] is the common edge of the faces fk
and fl, represented as a blue square.

Each facet on the overlapped graph D is a topological quadri-
lateral, we denote the quadrilateral as !(vi, fj).
Step 2: Select an Infinity Edge Node. Select one edge node
to be mapped to the infinity point. We call it the infinity edge
node and denote it as e∞.
Step 3: Compute the Reduced Graph Ḡ. Suppose the infinity
edge node is given by e∞ = [vi, vj ]∩ [fk, fl], then we remove
all the quadrilateral facets adjacent to vi, vj or fk, fl in the
overlap graph D, to get the reduced graph Ḡ. Figure 1 shows
the reduced graph in which the edge node e∞ = [v1, v2] ∩
[f1, f8] is selected as the infinity edge node. The boundary of
the reduced graphs are labeled as the red edges
Step 4: Run Discrete Ricci Flow. On the reduced graph Ḡ,
each quadrilateral facet !(vi, fj) is triangulated by adding
one virtual edge [vi, fj ] connecting the vertex node vi and
the face node fj . Then we run discrete Ricci flow on the
triangulated reduced graph in the following way. Each triangle
on the triangulated reduced graph has one vertex node vi, one
face node fj and one edge node ek, [vi, fj , ek], as shown in
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Fig. 3. The circle packing embedded in the plane and the spherical
presentation of the graph and convex polytope realization in 3D.

Figure 2. In particular, For each vertex node vi, we associate it
with a circle C(vi, γi), centered at vi with radius γi; For each
face node fj , we associate it with a circle C(fj , γj); For each
edge node ek, we associate it with a circle with zero radius all
the time, C(ek, 0); The vertex node circle and the face node
circle intersect at a right angle; The intersection angle between
the edge node circle with other circles are zeros.

Therefore, from Figure 2, li = γj , lj = γi, lk =√
γ2
i + γ2

j , θk = π
2 . For both vertex nodes and face nodes

with circle radius γ, let u = log γ, then the discrete Ricci flow
is given by the following differential equation: dui

dt = −Ki,
where Ki is the discrete Gaussian curvature at a vertex vi,
defined as the angle deficit at vi. Specifically, the Ricci flow
algorithm is carried out in a distributed manner. Each vertex
vi modifies its radius γi with respect to the current curvature.
In an iterative way, the radii are adjusted until the curvature
becomes sufficiently close to 0. The proof that this version
of the Ricci flow indeed produces a pair of circle packings is
omitted from this abstract due to space limitation.

We then flatten the reduced graph triangle by triangle and
compute the circle packing embedded in the plane, as shown
in Figure 3. Suppose the infinity edge node is e∞ = [vi, vj ]∩
[fk, fl], then the vertex node circles of vi and vj are mapped
to vertical lines, the face node circles of fk and fl are mapped
to horizontal lines.
Step 5. Stereo-graphic Projection. Finally, we use stereo-
graph projection φ : (u, v) → (x, y, z) to map the
circle packing on the plane to the sphere, φ(u, v) =(

2u
1+u2+v2 ,

2v
1+u2+v2 ,

−1+u2+v2

1+u2+v2

)
. For each face node circle

C(fi, γi) on the plane, we compute its image of the stereo-
graphic projection φ(C(fi, γi)), which is a circle in R3. We
can compute the planes through all the spherical face node
circles. The convex hull bounded by these planes is the convex
polytope P . Figure 3 shows the spherical representation of the
graph and the induced convex polytope. The convex polytope
will be used for our routing purpose.
Communication Costs. The majority of computation and
communication costs is for the discrete Ricci flow algorithm,
as all other steps can be handled with only constant cost
per node. The curvature error decreases exponentially fast.
Therefore, the number of steps to reach the desired curvature

error bound ε is given by O( log(1/ε)δ ), where δ is the step size
in the Ricci flow algorithm. The total communication cost is
thus O(n log(1/ε)

δ ).

C. Polyhedron Routing

Given source vi and destination vj , polyhedron routing is
a greedy routing method with distance function d(vi, vj) =
−c(vi) · c(vj), where c(vi) is the 3D coordinate of vi in
the spherical representation. vi delivers the message to the
neighbor closer to vj . To see that this polyhedron routing guar-
antees delivery, we note that the distance function d(vi, vj)
is essentially the projection of the vector −→v i on the vector
−−→v j . d(vi, vj) is clearly a linear function of vj and achieves
the global minimum when vi = vj . The function can not have
a local minimum as for a linear function any local minimum
is also the global minimum.

III. LOAD BALANCING

The spherical representation of the 3-connected graph is
not unique. They differ by a Möbius transformation. All these
spherical representations guarantee successful delivery with
polyhedron routing. But they give different load balancing
properties. In the following we look for the one that spreads
the vertices such that the vertex circles are proportional to their
residual battery levels.

For a discrete finite network, the network outer boundary
is a large face. We map it to the equator of a unit sphere,
such that all the vertices are then mapped to a hemisphere.
For that, we apply a circular reflection, i.e., a special case
of Möbius transformation that maps the points inside a circle
C with center c and radius r to the points outside, and vice
versa: τ(z) = c+ γ2

z̄−c̄ .
We first translate and scale the exterior face node circle

C(f∞, γ∞) to the unit circle. Then all the other face circles are
mapped to the exterior of the unit disk. Then we use circular
reflection to map the exterior of the unit circle to the interior.
Then we use the Möbius transformation to map the interior of
the unit disk to itself. All such kind of maps are parameterized
by an interior point of the unit disk z0, ηθ,z0(z) = eiθ z−z0

1−z̄0z
.

The choice of η is to make the spherical vertex node circle
area proportional to the residual battery level.

Because the graph is 3-connected, each vertex circle Cv

goes through at least 3 edge nodes, denoted as {e1, e2, e3}.
The stereo-graphic projection φ : C → S2 maps them to
points on the unit sphere {s1, s2, s3}, sk = φ(ek). These
three points determine a plane in R3, the normal is given by
n = (s1−s3)×(s1−s2)

|(s1−s3)×(s1−s2)| , the plane is given by πv : 〈p−s1,n〉 =
0. The distance from the origin to the plane πv is given by
dv = 〈s1,n〉.

Now we want to find the Möbius transformation such that
all the vertex radii are as uniform as possible, by minimizing
the energy E(θ, z0) =

∑
v∈G(dv − d̄)2, where d̄ =

∑
v dv/n,

n is the total number of nodes in G. We can also use
the following energy to consider the vertex residual battery
E(θ, z0) =

∑
v∈G(dv − wd̄)2, where w = Bv/B̄, Bv is the
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Fig. 4. The spherical embedding before and after the Möbius optimization.
Nodes residual battery levels are assumed to be uniform in this case.

residual battery power of node v, and B̄ is the average battery
level of all nodes.

The energy E(θ, z0) is highly non-linear and has multiple
local optima. Direct gradient descend method does not guaran-
tee to reach the global optimum. We randomly choose initial
seeds and use gradient descend method to reach the optimum
in the neighborhood of each seed. Figure 4 shows the spherical
representation before and after the Möbius optimization.

IV. SIMULATIONS

We conducted extensive simulations to evaluate routing
properties of our method and compared with previously pub-
lished methods, namely, curveball routing [15] and outer space
routing [13]. We also included simple greedy routing as a
baseline comparison scheme.
Curveball and Outer Space Routing. In curveball rout-
ing [15], The entire network is mapped to a sphere using
stereographic projection. The network is assumed to be of the
shape of a disk of some radius R. In outer space routing [13],
the network is assumed to be in the shape of a square
in the first quadrant. The quadrupled network therefore has
the topology of a torus. Neither of these methods guarantee
delivery. The presence of holes causes these methods to fail
easily.
Summary of Simulation Results. Our main observations are:

• The polyhedron routing is the only one that has 100%
delivery guarantee. Other methods in consideration per-
form progressively worse as the density decreases and the
number of holes increases.

• Polyhedron routing is better in distributing loads than
other methods, closely followed by curveball.

• Outer space routing balances traffic loads by creating high
loads everywhere.

• Polyhedron routing is the only method that can adapt to
specific requirements of a network, such as variations in
density and variations in available energy (battery levels)
across the network.

Delivery Guarantees. Different routing methods have differ-
ent success rates in delivering messages, depending on the
structure of the network. In a simple dense network such as
the one in Figure 5(a), all the methods have 100% success rate.
In networks with more complex topology such as Fig 5(b) or
sparse Fig 5(b), the success rates vary. The results are shown
in Table I. This shows that polyhedron routing is the only one

(a) A dense Network. (b) A network with holes. (c) A sparse network.

Fig. 5. Experimental networks. (a) Dense Network. 1850 nodes, avg. degree
14.88 (b) Dense network with large holes. 2100 nodes, avg degree 12.14 (c)
Sparse network. 1774 nodes, avg. degree 3.32.

with perfect delivery guarantee. Outer space routing is the
worst. The long travel path increases the chances of failure.

Load balancing becomes difficult to compare when mes-
sages are not always delivered. In the rest of this section, we
will consider only the dense network in Figure 5(a), where
messages are delivered by all the methods, to ensure a fair
comparison.

polyhedron curveball outer space simple greedy
Fig 5(b) 100% 95.42% 95.76% 93.94%
Fig 5(c) 100% 61.14% 50.32% 57.16%

TABLE I
SUCCESS RATES ON NETWORKS SHOWN IN FIG 5(B), (C).

Load balancing. For a set of 5000 random routing attempts,
we monitored the traffic load at each node. The polyhedron
routing comes out superior to others in the experiment.

simple greedy outer space curveball Polyhedron
average load 25.39% 46.65% 25.85% 26.96%

TABLE II
MEAN LOADS ON NODES FOR DIFFERENT ROUTING METHODS.

The situation becomes clearer in Figure 6 and Table II. In a
dense network, greedy routing behaves almost like shortest
path routing, therefore has the smallest average load, but
crowds the center, where nodes have high load. Outer space
routing has the most uniform load, but at the cost of increasing
the load for everyone. The average load is 80% more than
that of greedy routing. This happens because the outer space
routing algorithm balances load by making messages travel
via very long paths. This drawback is also apparent from
the plot 6(b). Curveball routing is better than either of the
two. Its average load is incrementally (2%) higher than greedy
routing, but still has a crowded center. Finally, the polyhedron
method has slightly higher (6% of greedy routing) average
load, implying it takes paths that are slightly longer, but makes
use of this flexibility to get better load balancing than curveball
routing (Figure 6(d)).
Route adjustment to battery and density levels. A network
is not always uniform. The density of nodes may vary in
different regions. As the network runs, non-uniform energy
consumption may result in varying levels of residual battery
in different parts of the network. We consider the network in
Figure 7(a), where battery levels drop from left to right. Then
we compute a polyhedral embedding optimized for residual
battery, where nodes with higher residual battery level are
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Fig. 6. Plots of load distribution.

given larger areas, therefore expected to take up more load.
Figure 7(c) shows 3 routes as found by polyhedral routing

Fig. 7. Battery based optimization. [Left]: the distribution of battery levels
(decreasing from left to right). Red indicates lowest battery. After optimizing
the routes (shown in [Right]) tend to pass through high battery region, opposed
to routes without such optimization (in [Middle]).

when the embedding has been optimized with respect to
battery levels. In this case, the routes clearly tend to pass
through regions of higher battery levels. Figure 7(b) shows the
corresponding routes when the embedding does not consider
battery levels. The corresponding routes found by curveball
routing are similar to Figure 7(b) and those found by simple
greedy routing resemble straight lines. Therefore both these
tend to empty the energy of already weak nodes on the right.
We omit these figures due to the lack of space.

A similar concern is the variation in density. We would
in general like routes to pass through regions of high density
where there are more nodes, so that the load per node is lower.
Figure 8 shows that a dense region in the network can be
embedded such that it is larger, therefore handling more routes.

(a) Network with a
dense area (shaded

nodes)

(b) Embedding on
sphere: dense region
expands to take up

more space.

(c) Embedding of a
uniformly dense network:

a region of same area
takes up less space.

Fig. 8. Embedding optimization w.r.t density.

Future Work. How to rigorously characterize the load bal-
ancing property induced by the spherical representation and
what is the limitation of load balancing by using conformal
maps, or by using greedy embeddings, are interesting open
problems arising from this paper.
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