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ABSTRACT

For in-network storage schemes, one maps data, indexedi a |
ical space, to the distributed sensor locations. When tlysiph
cal sensor network has an irregular shape and possibly,hbles
mapping of data to sensors often creates unbalanced stode
with high data concentration on nodes near network boueslahn

this paper we propose to map data toavering spacewhich is

a tiling of the plane with copies of the sensor network, suwt t
the sensors receive uniform storage load and traffic. Wegsep
distributed algorithms to construct the covering spacé \Ricci
flow and Mébius transforms. The use of the covering space im-
proves the performance of many in-network storage andexeti
schemes such as geographical hash tables (GHTSs) or theedoubl
rulings (quorum based schemes), and provides better |daddeal
routing.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocolsF.2.2 JAnalysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problemsse-
ometrical problems and computations

General Terms
Algorithms, Design, Theory

Keywords

In-network Storage, Covering Space, Mébius transformsgifdlow,
Conformal Mapping, Sensor Networks

1. INTRODUCTION

Prior research on sensor networks have proposed the ‘dataec
notion [14, 23] for sensor network design. The generatiofiec-
tion, processing, storage and retrieval of sensor dataharenbst
critical functions around which the network protocols diddwe de-
signed. As the state of the art, networks in the size of thulsaf
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sensor nodes are deployed [1,2,20] with the target sizerudrieas
of thousands in the next few years. As networks grow larg&zim s
centralized data collection has a fundamental bottlenéciodes
near the sink. Distributed in-network data storage in wiigre is
no single sink is more desirable for its robustness.

For distributed in-network storage, data is mapped to revales
sensors for storage and processing. Such a mapping is dften o
tained by considering data in a logical space with indicepped
to geographical locations. For example, in geographicsih lhable
(GHT) [23], data keys are hashed to a random geographicat loc
tion in the sensor field and the sensor node closest to thetdsh
cation is denoted as the home node and stores the data. InIBIM [
data in a multi-dimensional attribute space is mapped tcséme
sor field by using a quad-tree, such that data with nearbyésdi
are mapped to physically nearby zones, in order to suppodera
queries. Variations of quadtrees have also been used insathemes
to organize data and the corresponding storage [8,9, 13].

The mapping from the logical data space to the physical senso
field, done in a straightforward manner, often leads to higtad
concentration on nodes near network boundaries, simplyhfer
reason that they are adjacent to empty or low density regitms
GHT, for example, all the data hashed inside a hole will avali
be mapped to the nodes on the hole boundary, that get a higher
storage load. When GHT exploits the nodes on the boundary of a
planar face to also store the data (for robustness to nolleds),
the load imbalance is even higher. Similarly for DIM, the aoear
a zone empty of nodes will substitute to store the data. Nodas
hole boundaries store more data and carry more traffic.

When the sensor field is irregular, many geometric based data
storage and retrieval schemes run into problems. As anexan-
ple, double rulings, or quorum based schemes, store datawone
and retrieve data along another curve. As long as the datevadt
curves intersect with the data storage curve, one can sfatlgs
discover the desired data. When a sensor field has a regalpe sh
(a square region or a disk, for example), one can design tie st
age/retrieval curves as the horizontal/vertical lines £8) 28], or
proper circles (great circles through a stereographic imapf25].
Both of them may get stuck at network boundaries. Of course
one can use various hole bypassing techniques to get arbend t
holes [6, 16]. This may also lead to higher storage and triaffid
on the hole boundaries — the same problem encounteredrearlie

The imbalance of storage or traffic load adversely affe@siis-
tem performance. On one hand, the nodes with high load are bot
tleneck nodes. They carry out more tasks than average. iiidities
are battery powered, this means the highly loaded nodesiwaoal
out of battery sooner. When these heavily used nodes arelen ho
boundaries the problem is worse, as holes are enlarged ameth
work may be disconnected prematurely. In addition, the sedth



high traffic load denote the bottleneck of communicationath
diversity is not best optimized to avoid wireless interfere, lead-
ing to lower network throughput.

Our contribution. We propose to solve the imbalance of storage
and traffic load in an irregular sensor network by ‘uniforimg
the sensor field shape. As the logical data space is oftefarege
make the sensor field regular as well — irregular shape isturn
into circular, and holes are filled up. We propose to createvar-
ing spaceof the sensor network, which is a tiling of the space with
transformed copies of the sensor networks. Data hasheddo-a g
graphical location inside a hole is actually mapped to agrotbpy

of the sensor field. Similarly, with a regular shape, presipyro-
posed double rulings scheme can be applied to irregularamnktw
with almost zero modification. Thus onetwork regulatiortech-
nique provides a generic solution for data storage probienas
irregular network, and greatly extends the applicatiorpsoaf ex-
isting schemes. See Figure 3 for an example of the origimaae
field and the covering space.

We achieve this by using Ricci flow and conformal Mobius trans
form. In a previous work of ours [24], we have shown how to
embed a sensor network such that all the boundaries (bo#r out
boundary and inner hole boundaries) are circular. In paeic
we first extract a triangulation of the sensor network. We mod
ify the metric (edge lengths) in the triangulation such tinat in-
terior vertices have zero curvature (thus being flat), amtices
on the same boundary have proper curvature making the bound-
ary a circle. Such deformation is achieved by the Ricci flogoal
rithm, which is a distributed, gossip-style iterative aifon. Each
node locally calculates its curvature and modifies the adjgedge
lengths with a rate proportional to the difference to thgearcur-
vature. Such an operation is proved to converge uniqueleo t
metric with the target curvature, the convergence is expigaléy
fast. In the process, curvature is diffused in the same wdyeas
diffusion.

The new idea in this paper is to use the embedding obtained fro
the Ricci flow algorithm andill up the holes Suppose the network
hask (circular) holes. For each interior holg, we take a Mdbius
transform that essentially ‘reflects’ the network inwardhwespect
to C;. This Mébius transform is conformal and maps circles to cir-
cles. Thus(; becomes the outer boundary of the reflected network
with all the nodes mapped inside it. This partially fills uje tole
C;, except that there ark smaller circular holes. Now we can
continue such transforms so that all the holes are eventfildid
up, with infinitely many transformed copies of the originahsor
field. The collection of Mdbius transforms used to generhésé
mappings is captured in thechottky group Thus, one does not
need to precalculate any of these mapping and is able to afener
the reflections on the fly when necessary.

The generation of the covering space as described abovéoasks
infinitely many transformed copies to completely cover thace.
We show that for any practical applications oflylog 1/¢) copies
are necessary, whetas the threshold of the size of a hole. Indeed,
we prove that the total area of the holes shrinks by a fractfter
each Mdbius transform, and is reduced exponentially fashei
the holes are tiny, the chance that data is hashed to be a$ide
is very small and can be omitted. Similarly, the chance tloiaiiole
ruling curve hits the boundary of a tiny hole is negligibleh&v it
does happen, we can get around the hole by following the greed
routes along the circular hole boundaries. In our simufetionly
5 reflections are necessary and for some applications 2sl@fel
reflections give the best result.

With the regulation of the network shape by conformal Mébius
transforms, we can improve the performance of various data s

age schemes.

e GHT. When a piece of data is hashed to a geographical lo-
cationp inside a hole, in the original GHT scheme, it is al-
located to the sensor node whose Voronoi cell contains
Nodes on the boundary have larger Voronoi cells and share
higher load. With the covering space, the area inside the hol
is shared by thentire network, eliminating fundamentally
the storage and traffic overhead on the holes boundaries.

Double rulings. Double rulings design can be directly ap-
plied on the covering space. When a curve hits a hole bound-
ary C;, it then enters another copy of the network mapped to
the interior of C;. Equivalently, in the original embedding,
the curve ‘reflects’ on the hole boundary. The intersection
properties are still maintained with the conformal Moébius
transforms.

Load balanced greedy routingThe embedding generated
by the Ricci flow algorithm allows greedy routing to work
with delivery guarantee, as greedy routing can not get stuck
at circular holes. However, such greedy routes still tend to
hug the hole tightly causing high traffic load on the bound-
ary nodes. Instead, we can execute the greedy routing in the
covering space. Instead of getting around the hole by fol-
lowing the circular hole boundary, one can ‘enter’ the hole
to route in another copy of the network, effectively reflect o
the hole boundary. Thus the boundary nodes are not used as
often, improving the load balancing. The greedy routing can
be used in combination with the GHT scheme to deliver and
retrieve data from the hashed location.

In summary, the covering space universally improve the ioad
balance in data storage and routing in an irregular netwesken-
tially, in the covering space the holes are filled up so theeena
‘boundaries’. The nodes on the boundary are now treatedein th
same way as the other nodes with respect to data storageayr rel
routing.

In the following of the paper we first present the mathematfcs
the conformal Md&bius transform, the Scottky group, and tne c
ering space. We then present the use of the covering spage in a
plications such as GHT, double rulings and greedy routinth wi
simulation results.

2. THEORETIC BACKGROUND

This section focuses on the theoretic background of Mohbarst
formation and reflections to generate the covering spacerefie
readers to [5] and [22] for further detalils.

2.1 Conformal Mapping for Multiply Connected
Domain

Let (S1, g1) and(S2, g2) be two surfaces with Riemannian met-
rics g1, g2. A mapping¢ : S1 — S is called aconformal map
(angle preserving mgpif the intersection angle of any two curves
are preserved.

A planar domainD of connectivityn is called a circular domain,
if all its n boundaries are circles. It is known from conformal ge-
ometry that any genus zero multiply connected planar domein
be mapped to a circular domain by conformal maps. The differ-
ent circular mappings of a given planar domain differ by Mibi
transforms [4, 22].

One way to compute the conformal mapping from a surface to
a circular domain is to use Ricci flow, as introduced in [15, 24
Given a multiply connected domain with m interior holes, de-
noted a2 = {v1,72--- ,¥m}, by Ricci flow, we can construct
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Figure 1. Circular Reflection and naming convention.
Figure 2. Schottky Group generators.

a conformal map) :  — C U {oo} to a circle domain, such that

eache(v;) is acircle, In general, for a circular domain with interior holes, the re-

Ap(N)] = {C1,Ca,...,Cu},C5 = {21 |z —cj| =1, }. flected regions and circles are labeled with multi-indices
wherej = 1,2---,m. Examples can be found in Figure 3, 7 w=wiwy w1 Swj Smwp #Fwer, 1<k <g-L
and 8. A reflected domain is defined by the reflections following the i

e . dices.
2.2 Mobius Transform and Circular Reflec-
tion Definition 2.1. The set of multi-indices of lengtf (¢ > 0) is de-
A Mébius transformatioris a map that maps a complex plane 1oted
to itself, represented by (z) = ‘C’jjg, wherea, b, ¢, d are four 0g = {wiws - wg i 1 <wj <mywp # w1, 1 < k< q—1},

complex numbers satisfyingl—bc = 1. A Mbius transformation
is a conformal map and maps circles to circles. A special oase andwo = 0.

Mbius transformation As shown in Figure 1 (b), i € o4, ¢ > 1, the circular domain
2

r

pC(Z) =C+ — (l) Qw - pw(lewg-»-wq,l)

z—c¢

. . . . - . . has exterior boundarg,, andm — 1 interior boundary circles
is acircular reflectionthat maps the points inside a cirdéwith Y m y

centerc and radiug- to the points outsid€’, and vice versa. For a Cowy 1 = pw(C’le.qu,1 )s
circular domairf2 with interior circular hole<”1, Ca, - - - , Cy, We and

denotepc; by p; for C = Cj. p; essentially fills up the hol€’;

by reflecting the points out af';. We use such circular reflections Coj = Pu(Coywywy_15),J # Wg—1,wq.

tofill up the holes in a sensor network. There arem(m — 1)7~' elements ino,, at the levelg, and

An example. Figure 1 (a) shows an example of a triply connected m(m — 1)~ circles.
circular domain2 with boundaryo2 = {C4, C2, Cs}. ReflectQ
yo = {C, G, Ca} 2.3 Schottky Groups

throughC'; to get
Taking reflections of a circular domain with respect to thei

Q= pi (). lar holes to the limit will eventually have all the holes ‘&t up’.
The circleC; is reflected byp; to be circleC;;, This is shown by using the Schottky groups, as describedbelo
SupposeC; is the circle|z — ¢;| = rZ, Co is the unit circle
Cij = pi(Cy),i # j. |z| = 1, denotepo (C;) asC’ (see Figure 2). The Mébius map
Q. is a bounded domain with outer boundaty and 2 circular rfz
inner boundaries. The boundary(@f’s in Figure 1 (a) aré)2; = 0;(2) = ¢ + 1—¢,z
{C1,Ch2, Crs}, 002 = {Ca, C21, Cas}, 003 = {C3,C31, Caa}. _ , L ,

Now €, has two small holeg’» andCy3. We reflectQ; with maps the exterior of’; to the interior ofC’; (andCj to Cj).
respect to each of the interior hole. Thus we have the reflecte ~ The Schottky group is defined to be the infinite free group
domains in the next level. In general, of Mdbius mappings generated by compositions of 2he basic

Moébius maps{f;|j = 1,---,m} and their inverse:{&;l|j =
Qij = pij (), 1 <4,7 <3,1#j. 1,---,m}. Consider the unbounded regifrof the plane exterior

to the2m circles{C;[j = 1,--- ,m} and{Cj|j = 1,--- ,m}.
The union of copies of2 generated by the € © is denoted as

Ci21 = p12(C1), Ci23 = p12(C13), 012 = {C12,Ci21, Cr23} 0(N) := U 9(9).

The new boundary circles are

0€®

Crar = p13(C1), Crsz = p13(C12), Oz = {Chs, Caan, Craa} This work is based on the following fundamental theorem dfcc
The boundaries df2z1, 223, 231 andQs2 are similar. tky groups.



(e) level 3 reflection

(f) levek > 4 reflection

Figure 3. 4-level circular reflections for a 3-hole sensor network
with 5492 nodes. The initial network (a) is conformally mapped to
the circular domain (b). The level 1 reflection is in red cafo(c),
level 2 reflection is in green in (d), level 3 reflection is iuélin
(e), level 4 reflection is in yellow in (e).

Theorem 2.2. The complement set & (£2)
o) :=C-06()
is a Cantor set of zero measure.

The detailed discussion can be found in [5], [22] and [4].

0, can be generated by two circular reflections: first the exteri
of C; is reflected through the unit circl&, then the interior oy
is reflected througt€”;. The composition of these two reflections
is 0;. In this work, we use circular reflections instead of explyci
using Schottky group.

2.4 Shrinkage Estimation

Asymptotically the whole plane can be covered by the copies o

the network using Schottky transformation. But in practioely

a finite number of reflections can be used. Therefore, we need a

precise estimation of the size of holes afitelevels of reflections.
In the following, we give the estimation of the area shrirkafjthe
holes. We follow the method in [22] and [4].

As shown in figure 442 is a bounded double connected domain
on the complex plan€, with exterior boundaryl’y and interior
boundaryl'y, 92 = T'o — I';. There exists a conformal map:

Q) — D, whereD is a circular domain, with inner radius: and
outer radiusl,

D={z€C:pu <|z/ <L}

Figure 4. Conformal modulug:o: of a doubly connected domain.

Figure 5. Separation modulus of a doubly connected circular do-
main.

We call 101 the conformal modulus of the original domdn

Definition 2.3. The separation modulus for two circl€§, C, is

defined as
Ytk
I’L]k T d]k

wherey; andy, are the radii oC;, C, respectively, and ;. is the
distance between the centers(df, C.

<Lj#k1<jk<m, @

The separation modulus of the region is given by

A= max fiij.
4,5,i#]

As shown in Figure 5, suppoﬁ?j is the circle with the cente;
and radius%, then < is the smallest magnification of the cir-

cles, such that at least tvv[a,-’s just touch.
The following lemma shows that the separation modulus isided
by conformal modulus, the proof can be found in the Appendix.

Lemma 2.4. The conformal modulus is the lower bound of the
separation modulus:

pak < (figr)* < A%
Theorem 2.5. At level ¢ + 1, the total area of holes is

> S(Cy)

wETg41

< AM f} S(Ci), ®)
=1

whereS(C5) is the area inside the circ(g;.

This theorem shows that the total area of the holes is redexed
ponentially fast. Thus, after loge number of levels, each hole
has a maximum area ef This shows that only a small number of
levels is needed in practice. The proof of the theorem ismptheé
Appendix.



3. ALGORITHMS

For a sensor network, we compute the covering space up to leve
q (for a constany typically) in the following steps.

1. Extract a triangulation of the network.

2. Apply a distributed Ricci flow algorithm as in [24] to embed
the triangulation” such thatT" is a circular domain — it is
embedded in the plane with each hole (a non-triangular face)
embedded on a circle.

3. With the circular domaifl” we apply circular reflections to
compute the covering space.

Figure 3, 7 and 8 demonstrate the pipeline of the algorithm.

3.1 Network Triangulation and Distributed Ricci
Flow

Given a communication graph, we extract a planar graph ftom i
All non-triangular faces are treated as network holes. Allgms
for such purpose have been developed and are briefly revieewed
low.

In our previous paper [24], alocal, distributed algorithas bbeen
developed to obtain a triangulation from the connectivitg.
The idea is to compute thestricted Delaunay graph (RDG)0],
i.e., a planar graph containing all Delaunay edges of lemgth

greater than 1. The RDG can be computed by the nodes locally

when the communication graph follows a quasi-unit disk rap
UDG)! of parametery < v/2. The requirement of a quasi-UDG is
to ensure that crossing edges can be detected locally amiteldan
properly.

Funkeet al.[7] developed a location-free triangulation algorithm
by using landmarks and combinatorial Delaunay graph. Tha id
is to select a set of nodes as landmarks. The landmarks flabd wi
a restricted range such that every node identifies the ¢ltamsd-
marka and is grouped to the Voronoi cell of A planar graph is
computed on the landmarks by connecting the landmarkghat
have 2-hop wide ‘channel’ of only nodes within cellsafb. The
authors showed that this graph is planar when the commiumicat
model follows a quasi-UDG of parameter< /2.

The two algorithms above both require a quasi-UDG model and
thus does not work when a sensor network does not follow the
quasi-UDG assumption. The following algorithms computengk
graphs without such assumptions.

Kim et al.[12,17] addressed the problem that planarization tech-
niques using relative neighborhood graph or Gabriel grapplwvhen
the communication model does not comply to the unit disk lgrap
assumption. They developed a cross link detection prottzol
probe each link, detect and remove possible crossings \higr o
links. The resulting graph is combinatorially planar.

Zhanget al.[29] developed a location-free algorithm to extract
a planar subgraph from the connectivity graph. The mainisléa
planarize adjacent layers of a shortest path tree. Agasmtlethod
does not require a unit disk graph model or quasi-UDG model.

All these algorithms above can be used in our method. In our
implementation, we have used both the restricted Delaurayhg
approach [24] and the landmark based triangulation apprfgc
But all the other schemes can also work well with our framéwor
In the worst case when a triangulation is not available, xaneple,
when crossing edges are introduced, the result of the Rinwi fl
algorithm is theoretically unpredictable.

YIn a quasi unit disk graptwith parameterr > 1, if two nodes
are within distancé /«, an edge between the two exists, if they are
at a distance more thah the edge does not exist; while for other
distances, the existence of the edge is uncertain.

(a) Original mapping;

(b) Optimized mapping

Figure 6. Improve separation modulus by Mobius transformation.

Last we remark that the obtained planar graph should represe
a manifold with holes. In case of degeneracies (e.g., tweshol
sharing a single path, or dangling paths), virtual nodeseatuyks
are introduced to resolve the issue. The details are showmrin
previous work [24].

3.2 Circle Estimation

For a circular domairil’, for each boundaryy., we need to
estimate the circle€’; (ck, 7). We take three consecutive nodes
{71, 22, 23} on the hole boundary to form a triangle, the circle
Cx(ck, 1) is the circumcircle of the triangle. Its center is

_ |zl (2 = 23) + |z2* (23 — 21) 4 |23]% (21 — 22)
21(Z3 —%Z2) + 22(71 — Z3) + 23(Z2 — Z1)

4)

and its radius i$ = |z1 — ¢|. The derivation of the equation above
can be found in [5].

Since the circle can be computed by any three adjacent bounda
nodes, the computation of the circular hole equation candone d
locally at each boundary node. The computation only in®lae
constant number of algebraic operations.

3.3 Separation Modulus Optimization

From the theoretical result, we can see that the total area-of
cular holes shrink to zero exponentially fast. The convecgeate
is governed by the separation modulss In order to make the
holes as small as possible, we can find an optimal M&bius-trans
formation, that minimizes the separation modulus. In soemss,
this transformation will map the holes to be as ‘well-sefedtaas
possible. We remark that this optimization step is optional

A Mobius transformation preserving the unit disk is given by

9 # — 20

1—
which maps circles to circlesgy, ., (C%) is still a circle, whose
center and radius can be computed from

{¢97ZO (A)7 ¢9720 (B)7 ¢9,Zo (C)}

using formula 4, wherel, B andC' are three points on the origi-
nal circle. The rotation pait’® doesn't affect the separation mod-
ulus, in practice, we always set the rotation an@léo 0. Let
w(Cj, Cr) = [ijx be the separation modulus between cir€lesCh,
as in formula 2. Define

A(zo) := max 11($0,20 (Cj), 40,2 (Ck)).

$0,20(2) |z0] < 1,

— 9
A4

The optimization problem is formulated as:
min‘20‘<1A(Z()).

In practice, we use gradient descent method to solve thidinear
optimization. See Figure 6 for an example.



To run this optimization step in a sensor network, we onlydnee
the knowledge of the center and radii of the circular holesie O
node can pull the information of all circular holes togetlagid
run the optimization to get the Mébius transformation, vihis
then disseminated to all nodes in the network. The nodey &ippl
M@obius transformation to obtain the new mapping.

3.4 Circular Reflection

In a circular domain we perform circular reflection of the-net
work. In our implementation, we use a Hermitian mattix H* =
H anddet H < 0 to represent a circle with centerand radius-.
Suppose

H(c,r) = H ﬁ}

Then the circle equation representedfyc, r) is given by

o-te w5 2][1]

. . 270.0
where the center is = —2 and the radius = 7% For a
circle |z — ¢| = r, the corresponding Hermitian matrix format is

z
uE
Orientation preserving Mébius transformation@m {oo}

()_az—l—ﬁ
)= Yz + 9

©)

_ 1 —c
OZ[Z 1]|: _ |C|2—T2

—C

(6)

is represented as a matrix

a B

> ™

M:{ }7a7ﬂ7776€C7

its inverse is given by

o] 8 -8
= o |
The reflection through a circl€' is represented as

c 7"2—|c|2 }

pe)=|§ 7

Thus, the composition of Mdbius transformations are regpresi
as matrix multiplications. A Mébius transformatiem maps a cir-
cle H to a circle. The Hermitian matrix representation of the imag
circle is given directly by

®)

M HM .
For orientation reverse Mdbius transformation
m(z) = O‘Z__Wy
YZ+ 4
the matrix representation of the transformed circle is
M THM-T.

Therefore, all the computations are carried out using cerpl
matrix multiplication. Notice that the matricd$ and M are only
two by two matrices. So the matric multiplication and the Nisb
transformation can both be done with a constant number ef alg
braic operations.

The reflectionpc through a circleC' is given by the analytic
formula 1.

The reflection process is recursive. The haming convenfimns
all the circlesC',, and all the reflection€’., have been explained in

details in subsection 2.2, wheteis a a word in the multi-index set
o, in definition 2.1. Suppose we are given a multi-index woret
wiws - - - Wy, the recursive algorithms for computing the reflection
p. and the circle”,, (represented as matrices) are as follows.

Algorithm 3.1: MATRIX OFCIRCLE(word w)

if lw|=1
then return (H(C.,)) //EQn6.

Matrix M = reflectiofwiws - - - wp—1);

If Wnp = Wnp—-2
then Matrix H = circle(wiws - - - wp—2);
elseMatrix H = circle(ws - - - wn—2wn);

return (M~-THM-1)

Algorithm 3.2: MATRIXREFLECTIONw)

Matrix H = circle(w);
compute center and radigs, r) from H; //Eqn5
return (M (p(c,7))); //EQn8

3.5 Computation and Communication Costs

The communication cost of the scheme is analyzed for each com
ponent. In the first step of triangulation extraction, thgoalthms
used to extract a triangulation as in [7,24] are localizgd@ihms.
Each node only requires the knowledge of nodes in a constant s
neighborhood. For most practical networks with constaetaye
node degree, the total number of messages requir@gig. The
Ricci flow algorithm is an iterative algorithm with all nodesl-
justing local metrics and local curvatures. The curvaturerale-
creases exponentially fast. Therefore, the number of $tegesach
the desired curvature error bouads given byO(— lof; <), whered
is the step size in the Ricci flow algorithm. The total comneani
tion cost is thusO(—"l‘%). The computation of network reflec-
tions are done locally in an on-demand manner. When a message
hits a node on the boundary, depending on the number of levels
of reflections required, the node can locally compute thecgéin
transform. The indices of the reflections are attached tortes-
sage. No additional communication is needed. Thus the carimu
cation cost in theory is linear in the number of nodes. In ficac
the Ricci flow algorithm is the dominating factor of the commiu
cation cost.

4. APPLICATIONS

4.1 Geographical Hash Tables

We apply the covering space with geographical hash table (23]
for storing data in the network. Data is indexed with a keyclEa
data itemz is hashed to a geographical location by using a ran-
dom hash functiorh(z) = ¢’. The producer of the data item de-
livers the data towards the locatigh using geographical routing
(GPSR [16] in particular). If GPSR can not find a node right at
the hashed location, it will eventually enter the face nogitnode,
by following the edges of a planar fageenclosingg’. Such face
routing will necessarily fail to find the destinatigh and return to
the first node when the message enters this face. At this fi@nt
algorithm stops. The node on the fagelosest toy’ is denoted as
the home node. The facgis denoted as the home perimeter. A
perimeter refresh protocol is used to maintain the homerper
when there are node or link failures. Except the home nodg, th



Figure 8. 3-level circular reflections for a 3-hole network witB76 nodes.

nodeg with probability A/(cnA(g)), where A(g) is the Voronoi
cell area of nodg, A is the total area of the domain from whigh

DV Ten
O gm:?@n

R is selectedn is the number of sensors, ands a sufficiently large
DR e R : i ) y larg
BAE LIRSS OZEe R0 universal constant to make surg/(cnA(g)) < 1. In the case of

a sampley being rejected, another random location is selected and
so on, until a sample node is accepted. This procedure vall pr
duce a sensor node uniformly randomly chosen from the né&twor
after aboutc trials. With the presence of holes, the smallest area
of a Voronoi cell might be far smaller thad/n. Thusc needs
to be large, leading to the waste of communication messafes.
ensure a data-centric query eventually finds the data, weress
a source of randomness common to all nodes. Thus, if a pode
rejects a data, the data-centric query for this piece of ddtde
re-directed to the same node and eventually either findsateeat
claims failure (when the data is not rejected and the cumede is
not holding the data). With rejection sampling the storagelican
be made uniform, but the rejections can increase the netinaffic
and energy consumption.

With the reflections and the covering space, the holes agd fily
transformed copies of the network. If we uséevels of reflections
for a m-hole circular domain, each node hag~* + 1 images
(including itself) in the covering space. We calculate tloeovioi
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Figure 9. Voronoi diagram for the network in Figure 8 .

other nodes on the home perimeter are called replica nodes. T
home node stores the data. The replica nodes may also held dat

to i_mprove the system r_obu_stness tofailures. GHT_aIso _h'asarh diagram of the sensor nodes and their images in the coveraes
chically structured replication scheme where multipletiasages The chance that a random location is rounded to a sensor sode i

ﬁ:gguusl‘:gfylﬂ) ?ﬁé g?:rzgj l‘)"; ?a?])é?:;;nv?lettiéntf#éeggseiC?;g;;q?yemorkproporti.ongl to the tqtal sum of the area of the Voronoi célpo

A nodep is the home node for all 1[he hashed locations inside its and all its images. S_lnc_e the holes are now covered up, theodre
Voronoi cell (which contains all the points closesptthan all other the holes are thgn d.'St.nbUted to t.he entire network.. Allewdre
then selected with similar probability. Thus the maximuerage

nodes). Thus the storage load of a node is directly propatito | . . L
. . oad of any node is substantially reduced. When rejectiomdiag
the area of its Voronoi cell. It can be seen that the nodesakale is used, the maximum traffic load caused by delivering dathdo

h?‘s alarge Voronoi cell and thus are allocateq more data @edp hashed locations is reduced dramatically, as not only theeu of
Wml]. the a\(/jerag:a Ioatd. Ag etxalt”rk]]pletls shov;/n 'g F|gtl)Jre Qaé/thn th rejections is smaller but also the traffic of the greedy reate also
replica nodes aiso store data, the storage load on boundeesms spread more evenly in the network. For the improvement dficra

even higher, as the hole creates a large perimeter face Isaicllt - . . .
the data on the nodes of this face are shared. Loeagjsb:g:(r;ﬁlzg:gfor greedy routing with the covering spadeage

One way to deal with the high concentration of data on the siode
in sparse region or near network holes is to use rejection sam .
pling [27]. In particular, we select a random geographioaktion 4.2 Double Rulings
¢’ and round to the closest sensor ngdeBut we only accept the We also apply double rulings, or quorum-based data stonagde a



retrieval scheme, with the covering space. In a double gslir
scheme, the producer stores data or data pointers alongagestc
curve and the consumer (the user who would retrieve the d:
routes the request along a retrieval curve. As long as any s
age curve intersects with any retrieval curve, it is guaedtfor
successful discovery of data. In fact, any retrieval curae dis-
coverall the data stored in the network making it more efficient
retrieval data. These curves are often designed as someyeice
ometric curves. When we route data or request packets, we
greedy routing to select the next hope as the one near theeteo
ric curve and making progress along the curve (e.g., theeproj
tion onto the geometric curve is further away) [21]. Thisde&o
routing paths that approximate the geometric double rudinges.
For example, when a network has a rectangular shape, onesear
the horizontal lines as storage curves and vertical linestaigval
curves [19, 26, 28], denoted as rectilinear double ruliige data
packets are routed to the neighbor furthest in the verticattions,
and the retrieval packets are routed to the neighbor furthebe
horizontal directions.

Existing double rulings schemes all assume some nice regul
shape (rectangular or circular). When there are holes, mgany
metric curves may hit a hole. Thus the greedy routing paths aj
proximating the double ruling curves may either get stuch bt
cal minimum, or, when advanced hole bypassing techniqud€]6
are used, cause high traffic load on the hole boundaries. h&not
problem with an irregular shape is that it is not easy to detig
geometric double ruling curves that guarantee interseetithout
using perimeter mode face routing. One can easily conséxict
amples such that rectilinear double rulings, or many othegant
geometric curves fail to intersect inside the sensor domain

Figure 10. Stereographic projection.

With the covering space, the network is turned into a cincula
disk D with radiusR. Designing geometric double ruling curves is
trivial. For example, one can use co-centric circles and myit-
ting from an origin as storage and retrieval curves respayti In
our simulation, we use spherical double rulings [25]. We riegp
covering space to the bottom hemisphere tangent to theraenfe
with the stereographic projection [3]. We put a sphere waitius
r < R/2 tangent to the plane at the origin. Denote this tangent
point as the south pole and its antipodal point as the norlté. po
A point 1" in the plane is mapped to the intersection of the line
throughh™ and the north pole with the sphere. See Figure 10 for
a cross intersection. We choose< R/2. Thus the bottom hemi-
sphere is covered by image of the disk into which the netwsrk i
embedded. For a data item we use a hash functiofito select a
random hash locatiop™ in the plane and store the data along the
storage curves, defined as the great circle through the peodund
g. The use of hashing is to allow multiple data items of the same
type to be possibly stored and aggregated at the hashed Tibde.
retrieval curve is any great circle through the consumecait be
shown that any storage curve and retrieval curve have a commo
intersection in the bottom hemisphere. In the implemeniative
find the routing path traversing through the triangles thegrsect
with a storage (or retrieval) curve. With a sufficiently higkthe

Figure 12. Path in real network.

number of levels of reflections), the holes are mostly fillpduith
only tiny holes left in the domain. Thus the chance that a tioub
ruling curve hits a tiny hole is very small. For a retrievahei
to discover the data, we only need the intersection of theeved
curve and the storage curve to be not in a tiny hole. The chiance
this to happen is small as well.

4.3 Load Balanced Greedy Routing

Greedy routing selects the next hop as the neighbor whose dis
tance to the destination is minimum, with the distance define
some coordinate system. It is an extremely simple and cdeiple
local algorithm but may not always work if all the neighboes/é
greater distances to the destination. In our previous wa4k fwe
embed a sensor network in the plane such that all the holesrare
cular. Thus greedy routing can not get stuck at any hole baigsl
This leads to guaranteed delivery of greedy routing in theegeted
virtual coordinates. Nevertheless, greedy routes tha hitde on
the boundary of a hol€ will lead to a path that follows the hole
boundary until the tangent point of the line through the idesion
andC (i.e, when the packet is able to ‘see’ the destination). This
effect causes higher traffic load on the hole boundary.

By using the covering space, we can mitigate the imbalance of
traffic load caused by the greedy routing method. When a packe
reaches a node on the hole boundary, greedy routing ditéotsn-
ter another copy (Figure 11), effectively reflect on the Hmend-
ary and take a detour to get around the hole in the real network
(Figure 12). Therefore, not all the packets that arrive abk h
boundary will necessarily route along the hole. The detthey
take are spread out in the network, reducing the traffic pressn
the hole boundaries.

The routes, reflected on the holes, are possibly longer than b



fore. But this is in some sense necessary in order to impimae | 0.016

balancing. Minimizing the path length and minimizing thexna ‘ ‘ ‘
imum traffic load are two contradicting objectives that aanbe 0.014r [_JRegular GHT |
achieved at the same time [11]. There is also an interestaupt o 0.012F 1
off as longer paths increase the total message cost andehegav B 001l . . . . M
traffic load. In our simulations we demonstrate that a smathiber ;'5 '
of reflections suffice to strike a good balance of path stretuth g 0.008
load balancing. '§ 0.006}
E 0.004f
5. SIMULATIONS < 0.002|
We carried out extensive simulation tests on several diffenet- 0 ‘ ‘ ‘ ‘
i ili i Hmthi 1 2 3 4
works to verify the utility of this method. The data presehitethis Reflection Depth

section are based on the network represented in figure 8.n€his
work has about 1400 nodes in a perturbed grid distributiprea
over a200 x 200 region, and a maximum communication radius  Figure 13. The largest fraction of the storage load at any sensor.
of 12 units. The graph is a quasi-unit disk graph of inner radius
12/4/2.

The following are the important observations we obtainednfr
this set of simulations:

Table 1. Maximum storage load for GHT.
Scheme 1-ref 2-ref 3-ref 4-ref 5-ref
Covering Space 0.0092 [ 0.0065| 0.0062| 0.0062 | 0.0062
Regular GHT | 0.0106 | 0.0106 | 0.0106 | 0.0106 | 0.0106
1. The reflection based covering space reduces the maximum +n-ref - n depth reflection

storage load at any sensor to almost half, compared with the
original embedding, if we uniformly sample geographicallo 5.2 Load Balanced Routing
cations and then round to the closest sensors. We selected 2000 random source-destination pairs and ¢ethpu

) . ) routes. On the original network we used GPSR. On the covering
2. Greedy routing on the covering space has better load-distr spaces we used simple greedy routing, since greedy routiag g

bution than GPSR on the original network. antees delivery in these networks. The number of reflectiofs

] ) ) shows the maximum number of reflections we permit. The cover-
3. Using the reflections, double ruling schemes can be e&tend  jg space is not pre-computed to that depth, reflections @re ¢

to networks of non-trivial topology. The storage costisteily  pyted locally as a route progresses and the relevant datadsed

but the retrieval cost is much lower. to the message.
. The results are shown in Table 2. Clearly, 2-3 reflections the
5.1 In-network Storage and Sampling best results. Beyond this point, the route lengths tend deease
As described in the previous section, when using a GHT type as some paths go through several reflections. However, 8k lo
storage scheme, the storage load at any node is proportitize balancing is always good, since the covering space methed do
area of its Voronoi cell. The nodes at the boundary of a hoid te not hug the boundary when going past a hole. The path bounces

get higher load because their voronoi cells together chwentea off the boundary and spreads the load more evenly (see théplo
of the entire hole. We compared the maximum Voronoi aredseoft ~ Figure 14).

original embedding with those of covering spaces obtainedre

or more reflections. Reflections create multiple images @fitpo

for each node, the load on the node is taken to be the sum of the __laple 2. Traffic load and path length for greedy routing.

Voronoi cell area of all images. Scheme | Avg. load [ Maxload | Avg. length | Max length
The results are shown in Figure 13 and Table 1. The total load GPSR 33.6840 620.0 24.1915 92

. ; : g e L. 1-ref | 24.0682 | 319.0 17.571 42

is normalized to bd. It is shown that the covering space reduces 2-ref 35.4960 | 190.0 25.439 117

the max load to almost half that of the original embeddingisTh 3-ref 39.1742 241.0 27.9715 159

is achieved with only 2 or 3 reflections, after which the loagsl 4-ref 43.9143 199.0 31.235 196

not change too much. This can be understood as follows. The 5-ref 46.3129 | 216.0 32.8865 228

uneven loads are caused by big Voronoi cells, which can lzeente *n-ref - n depth reflection

by the presence of holes, and/or by distortions introdugethe
conformal map. After a few reflections the area of the holes ar
shared by nodes of the entire network and do not contribuge la
areas to any node in particular. Thus the larger cells aldate¢he
distortion of the conformal map are the major reason for tievan
load. This does not get smaller with more reflections.

We carried out rejection sampling on these embeddings, and
found that the covering spaces created by 2 or more reflectasn
quire aboutl 5% fewer trials on average. Further, when the commu-
nication costs are considered, the communication loadsnah
better balanced in the covering space scheme. This is &dbent
because greedy routing in generally is better load balanoetie Double rulings. Double rulings is a general method that extends
covering space than GPSR on the original network. We describ GHT. The intuition being that storing data on a path makeast e
the routing results in the next subsection. ier for consumers to find that data. Existing double rulingesnes

Node lifetime experiments. We carried out experiments on how
the load balancing properties affect the longevity of nodeach
node is assumed to have the energy to transmit 200 mességes, a
which it is considered dead. We count how many nodes die in the
process of delivering 4000 messages. As nodes die, the retwo
loses the property of circular holes and guaranteed dglivéfe
count the number of messages that are delivered succgsgfidkér
these conditions. GPSR guarantees delivery, but with dyotgs,

the network eventually gets partitioned and then some rgessa
fail. The results are shown in Table 3.
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Figure 14. Cumulative distribution of load. Showing that the cov-
ering space method has fewer nodes with high load, and alsa fe
nodes with very low load. GPSR on the other hand has 5% to 10%
nodes with substantially high load.

Table 3. Death and message delivery rates for 4000 routing at-

tempts.
Scheme | GPSR| O-ref | 1-ref | 2-ref | 3-ref | 4-ref
Deaths 286 33 29 50 122 | 154
Deliveries | 3164 | 3361 | 3790 | 3849 | 3886 | 3842

+n-ref - n depth reflection

such as [25] design the storage and retrieval paths withlsinmgi-
works in mind. The covering space, ymosteliminating the holes

in the network can be expected to make double ruling appédab
more general networks. In particular, as the holes get smail
size, it can be expected that fewer of the storage and ratpaths

hit them. We carried out experiments to test this and othep-pr
erties on covering spaces of different depths. The radiuhef
sphere was taken to be one-third the radius of the embedded ne
work in virtual coordinates. The results below are for 2080dom
producer, consumer and hash location triples.
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Figure 15. Percentage of successful double ruling retrievals for
different depths of covering space.

Figure 15 shows the success rate of double ruling with irserea
ing depth of covering space. For no reflections, the pergenté
successes are very small, ab®0%, but as holes get smaller, suc-
cess rate climbs t86% for 5 reflections. In the following, We
ugmented the process at the final level by perimeter modersalv
of boundaries to obtain full success rate.

We carried out path length and load measurements. Thesesult
are shown in figures 16 and 17 respectively. The storage casts

be seen to be relatively high, as producers may sometimetsele
curve that goes through many reflections. In comparisorswoer
retrieval costs are lower. This is because the consumerspayis
as soon as it intersects a producer path. While this is alsoftr
double ruling in the original embedding, the covering spate-
duces additional properties. there are many copies of a made
the covering space. Imagine that the storage path passegthr
a copyz’. Now it is possible that the retrieval path hits a different
copyz” before it intersects the storage curve in the coring space. |
such a case, the consumer has hit a storage node in the reafket
and can stop searching. This possibility reduces retrimsts even
further. In a sense, the higher storage costs are compdrisate
smaller retrieval cost.
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Figure 17. Consumer retrieval costs.

5.3 Network Dynamics

Finally, we tested some effects of network dynamics. In a gen
eral sensor network nodes may fail, and occasionally sordesho
added. These cause changes in the triangulation. For ezafait
ure of a node creates a ‘hole’ in the triangulation. Many @fsth
changes can be handled by simple adjustments. Failure afeino
a dense network can be handled by adding edges betweergits nei
bors to fill up the hole. In certain cases, say after sevetlairés,
such simple local adjustments may no longer suffice and then t
embedding needs to be recomputed. However, instead of coempu
ing the embedding from scratch, we can use the existing amafig
tion as a starting point to speed up the process. We founddhat



small changes to the triangulation, the re-convergenceiis tpst.

Table 4. Re-convergence Time.
le—1|1le—2|1le—3 | le—4
129 274 697 1392

Error bound
# Iterations

le—5
2221

We made some small changes to the triangulation, such as edge

swaps, and measured the time taken for the Ricci flow to cgaver
to some desired error. The results are shown in Table 4.

6. CONCLUSIONS

The network metric and embedding are crucial to sensor m&two
operations. In this paper we presented ideas of using Mdizns-
forms and Ricci Flow algorithms to regulate a sensor netwatk
networks can be made to be circular with the interior holésdfil
up. The created covering space embedding is universalfyluse
even out sensor storage and traffic load for in-network datage
schemes. We plan to investigate further applications oéthbed-
ding in sensor network and sensor data management.
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APPENDIX
A. PROOF OF LEMMA 2.4

PROOF Let 1 denotep;, and i denotefij,. The conformal
module can be calculated directly for circular domain as

_ i =7 =i = VIdik — 75)% = R]dsk +75)2 = 73]

275k
Then
1 > — (v + i
oz tpurlyoE=05 %)
2 H 2757k
(ad)* = (v; +w)?,
It follows
v+ i
il —1=(1-p5)2L 2k >1 - 52
29k
Then
1 _a+1 1 1
— < —[Z -
Because: < 1,
21
<« YE <a<A
Vi T

B. PROOF OF THEOREM 2.5

The proof depends on the following lemma. As shown in Figure

Detailed proof can be found in [22], Lemma 17.7c(a), P.508e T
proof for theorem 2.5 is as follows:

PROOF As shown in Figure 18£) has three boundary circles
C1, Cs, Cs. Magnify each circle by factoﬁ—, we get (dashed) cir-
clesCt, Cs, Cs. By definition of separation modulug]s, Cz, Cs
may touch, but have no overlaps. Thep, Cs are in the exterior
of .

ReflectC; through circleC (the red circle). Denote

Cij = pi(C)),i # 4,1 <i,j <3.
ThenCi» andC3 are contained i (C1),
S(Ch2) + S(C13) < S(p1(Ch)).

The annulus bounded bg; and C; has conformal modulus
A. After reflection, the image is the annulus bounded’hyand
p1(C1). By LemmaB.1,

S(p1(Ch)) < A%S(Cy) < A*S(Ch).

Similarly
S(Cas) + S(Ca1) < A*S(C2),
S(Cs2) + S(Cs1) < A*S(Cs).
By induction, we can prove Equation 3. O

4, Q) is a bounded double connected domain on the complex plane

C, with exterior boundary'y and interior boundary', po1 is the
conformal modulus.

Lemma B.1. Supposes(I'y) is the area bounded By, k = 0, 1,
then

S(I'1) < po1S(To).



