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ABSTRACT
For in-network storage schemes, one maps data, indexed in a log-
ical space, to the distributed sensor locations. When the physi-
cal sensor network has an irregular shape and possibly holes, the
mapping of data to sensors often creates unbalanced storageload
with high data concentration on nodes near network boundaries. In
this paper we propose to map data to acovering space, which is
a tiling of the plane with copies of the sensor network, such that
the sensors receive uniform storage load and traffic. We propose
distributed algorithms to construct the covering space with Ricci
flow and Möbius transforms. The use of the covering space im-
proves the performance of many in-network storage and retrieval
schemes such as geographical hash tables (GHTs) or the double
rulings (quorum based schemes), and provides better load balanced
routing.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocols; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—Ge-
ometrical problems and computations

General Terms
Algorithms, Design, Theory

Keywords
In-network Storage, Covering Space, Möbius transforms, Ricci Flow,
Conformal Mapping, Sensor Networks

1. INTRODUCTION
Prior research on sensor networks have proposed the ‘data-centric’

notion [14, 23] for sensor network design. The generation, collec-
tion, processing, storage and retrieval of sensor data are the most
critical functions around which the network protocols should be de-
signed. As the state of the art, networks in the size of thousands of
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sensor nodes are deployed [1,2,20] with the target size of hundreds
of thousands in the next few years. As networks grow large in size,
centralized data collection has a fundamental bottleneck at nodes
near the sink. Distributed in-network data storage in whichthere is
no single sink is more desirable for its robustness.

For distributed in-network storage, data is mapped to rendezvous
sensors for storage and processing. Such a mapping is often ob-
tained by considering data in a logical space with indices mapped
to geographical locations. For example, in geographical hash table
(GHT) [23], data keys are hashed to a random geographical loca-
tion in the sensor field and the sensor node closest to the hashed lo-
cation is denoted as the home node and stores the data. In DIM [18],
data in a multi-dimensional attribute space is mapped to thesen-
sor field by using a quad-tree, such that data with nearby indices
are mapped to physically nearby zones, in order to support range
queries. Variations of quadtrees have also been used in other schemes
to organize data and the corresponding storage [8,9,13].

The mapping from the logical data space to the physical sensor
field, done in a straightforward manner, often leads to high data
concentration on nodes near network boundaries, simply forthe
reason that they are adjacent to empty or low density regions. In
GHT, for example, all the data hashed inside a hole will eventually
be mapped to the nodes on the hole boundary, that get a higher
storage load. When GHT exploits the nodes on the boundary of a
planar face to also store the data (for robustness to node failures),
the load imbalance is even higher. Similarly for DIM, the node near
a zone empty of nodes will substitute to store the data. Nodesnear
hole boundaries store more data and carry more traffic.

When the sensor field is irregular, many geometric based data
storage and retrieval schemes run into problems. As anotherexam-
ple, double rulings, or quorum based schemes, store data on acurve
and retrieve data along another curve. As long as the data retrieval
curves intersect with the data storage curve, one can successfully
discover the desired data. When a sensor field has a regular shape
(a square region or a disk, for example), one can design the stor-
age/retrieval curves as the horizontal/vertical lines [19, 26, 28], or
proper circles (great circles through a stereographic mapping) [25].
Both of them may get stuck at network boundaries. Of course
one can use various hole bypassing techniques to get around the
holes [6, 16]. This may also lead to higher storage and trafficload
on the hole boundaries – the same problem encountered earlier.

The imbalance of storage or traffic load adversely affects the sys-
tem performance. On one hand, the nodes with high load are bot-
tleneck nodes. They carry out more tasks than average. If thenodes
are battery powered, this means the highly loaded nodes would run
out of battery sooner. When these heavily used nodes are on hole
boundaries the problem is worse, as holes are enlarged and the net-
work may be disconnected prematurely. In addition, the nodes with



high traffic load denote the bottleneck of communication. Spatial
diversity is not best optimized to avoid wireless interference, lead-
ing to lower network throughput.

Our contribution. We propose to solve the imbalance of storage
and traffic load in an irregular sensor network by ‘uniformizing’
the sensor field shape. As the logical data space is often regular, we
make the sensor field regular as well — irregular shape is turned
into circular, and holes are filled up. We propose to create acover-
ing spaceof the sensor network, which is a tiling of the space with
transformed copies of the sensor networks. Data hashed to a geo-
graphical location inside a hole is actually mapped to another copy
of the sensor field. Similarly, with a regular shape, previously pro-
posed double rulings scheme can be applied to irregular network
with almost zero modification. Thus ournetwork regulationtech-
nique provides a generic solution for data storage problemsin an
irregular network, and greatly extends the application scope of ex-
isting schemes. See Figure 3 for an example of the original sensor
field and the covering space.

We achieve this by using Ricci flow and conformal Möbius trans-
form. In a previous work of ours [24], we have shown how to
embed a sensor network such that all the boundaries (both outer
boundary and inner hole boundaries) are circular. In particular,
we first extract a triangulation of the sensor network. We mod-
ify the metric (edge lengths) in the triangulation such thatthe in-
terior vertices have zero curvature (thus being flat), and vertices
on the same boundary have proper curvature making the bound-
ary a circle. Such deformation is achieved by the Ricci flow algo-
rithm, which is a distributed, gossip-style iterative algorithm. Each
node locally calculates its curvature and modifies the adjacent edge
lengths with a rate proportional to the difference to the target cur-
vature. Such an operation is proved to converge uniquely to the
metric with the target curvature, the convergence is exponentially
fast. In the process, curvature is diffused in the same way asheat
diffusion.

The new idea in this paper is to use the embedding obtained from
the Ricci flow algorithm andfill up the holes. Suppose the network
hask (circular) holes. For each interior holeCi, we take a Möbius
transform that essentially ‘reflects’ the network inward with respect
to Ci. This Möbius transform is conformal and maps circles to cir-
cles. Thus,Ci becomes the outer boundary of the reflected network
with all the nodes mapped inside it. This partially fills up the hole
Ci, except that there arek smaller circular holes. Now we can
continue such transforms so that all the holes are eventually filled
up, with infinitely many transformed copies of the original sensor
field. The collection of Möbius transforms used to generate these
mappings is captured in theSchottky group. Thus, one does not
need to precalculate any of these mapping and is able to generate
the reflections on the fly when necessary.

The generation of the covering space as described above asksfor
infinitely many transformed copies to completely cover the space.
We show that for any practical applications onlyO(log 1/ε) copies
are necessary, whereε is the threshold of the size of a hole. Indeed,
we prove that the total area of the holes shrinks by a fractionafter
each Möbius transform, and is reduced exponentially fast. When
the holes are tiny, the chance that data is hashed to be insidea hole
is very small and can be omitted. Similarly, the chance that adouble
ruling curve hits the boundary of a tiny hole is negligible. When it
does happen, we can get around the hole by following the greedy
routes along the circular hole boundaries. In our simulations only
5 reflections are necessary and for some applications 2 levels of
reflections give the best result.

With the regulation of the network shape by conformal Möbius
transforms, we can improve the performance of various data stor-

age schemes.

• GHT. When a piece of data is hashed to a geographical lo-
cationp inside a hole, in the original GHT scheme, it is al-
located to the sensor node whose Voronoi cell containsp.
Nodes on the boundary have larger Voronoi cells and share
higher load. With the covering space, the area inside the hole
is shared by theentire network, eliminating fundamentally
the storage and traffic overhead on the holes boundaries.

• Double rulings. Double rulings design can be directly ap-
plied on the covering space. When a curve hits a hole bound-
aryCi, it then enters another copy of the network mapped to
the interior ofCi. Equivalently, in the original embedding,
the curve ‘reflects’ on the hole boundary. The intersection
properties are still maintained with the conformal Möbius
transforms.

• Load balanced greedy routing.The embedding generated
by the Ricci flow algorithm allows greedy routing to work
with delivery guarantee, as greedy routing can not get stuck
at circular holes. However, such greedy routes still tend to
hug the hole tightly causing high traffic load on the bound-
ary nodes. Instead, we can execute the greedy routing in the
covering space. Instead of getting around the hole by fol-
lowing the circular hole boundary, one can ‘enter’ the hole
to route in another copy of the network, effectively reflect on
the hole boundary. Thus the boundary nodes are not used as
often, improving the load balancing. The greedy routing can
be used in combination with the GHT scheme to deliver and
retrieve data from the hashed location.

In summary, the covering space universally improve the loadim-
balance in data storage and routing in an irregular network.Essen-
tially, in the covering space the holes are filled up so there are no
‘boundaries’. The nodes on the boundary are now treated in the
same way as the other nodes with respect to data storage or relay
routing.

In the following of the paper we first present the mathematicsof
the conformal Möbius transform, the Scottky group, and the cov-
ering space. We then present the use of the covering space in ap-
plications such as GHT, double rulings and greedy routing with
simulation results.

2. THEORETIC BACKGROUND
This section focuses on the theoretic background of Möbius trans-

formation and reflections to generate the covering space. Werefer
readers to [5] and [22] for further details.

2.1 Conformal Mapping for Multiply Connected
Domain

Let (S1, g1) and(S2, g2) be two surfaces with Riemannian met-
rics g1, g2. A mappingφ : S1 → S2 is called aconformal map
(angle preserving map), if the intersection angle of any two curves
are preserved.

A planar domainD of connectivityn is called a circular domain,
if all its n boundaries are circles. It is known from conformal ge-
ometry that any genus zero multiply connected planar domaincan
be mapped to a circular domain by conformal maps. The differ-
ent circular mappings of a given planar domain differ by Möbius
transforms [4,22].

One way to compute the conformal mapping from a surface to
a circular domain is to use Ricci flow, as introduced in [15, 24].
Given a multiply connected domainΩ with m interior holes, de-
noted as∂Ω = {γ1, γ2 · · · , γm}, by Ricci flow, we can construct
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Figure 1. Circular Reflection and naming convention.

a conformal mapφ : Ω → C ∪ {∞} to a circle domain, such that
eachφ(γj) is a circle,

∂[φ(Ω)] = {C1, C2, . . . , Cm}, Cj = {z : |z − cj | = rj}.

wherej = 1, 2 · · · , m. Examples can be found in Figure 3, 7
and 8.

2.2 Möbius Transform and Circular Reflec-
tion

A Möbius transformationis a map that maps a complex plane
to itself, represented byf(z) = az+b

cz+d
, wherea, b, c, d are four

complex numbers satisfyingad−bc = 1. A Möbius transformation
is a conformal map and maps circles to circles. A special caseof
Möbius transformation

ρC(z) := c +
r2

z̄ − c̄

. (1)

is a circular reflectionthat maps the points inside a circleC with
centerc and radiusr to the points outsideC, and vice versa. For a
circular domainΩ with interior circular holesC1, C2, · · · , Cm, we
denoteρCj

by ρj for C = Cj . ρj essentially fills up the holeCj

by reflecting the points out ofCj . We use such circular reflections
to fill up the holes in a sensor network.

An example. Figure 1 (a) shows an example of a triply connected
circular domainΩ with boundary∂Ω = {C1, C2, C3}. ReflectΩ
throughCk to get

Ωk = ρk(Ω).

The circleCj is reflected byρi to be circleCij ,

Cij = ρi(Cj), i 6= j.

Ωk is a bounded domain with outer boundaryCk and 2 circular
inner boundaries. The boundary ofΩk ’s in Figure 1 (a) are∂Ω1 =
{C1, C12, C13}, ∂Ω2 = {C2, C21, C23}, ∂Ω3 = {C3, C31, C32}.

Now Ω1 has two small holesC12 andC13. We reflectΩ1 with
respect to each of the interior hole. Thus we have the reflected
domains in the next level. In general,

Ωij = ρij(Ωi), 1 ≤ i, j ≤ 3, i 6= j.

The new boundary circles are

C121 = ρ12(C1), C123 = ρ12(C13), ∂Ω12 = {C12, C121, C123}

C131 = ρ13(C1), C132 = ρ13(C12), ∂Ω13 = {C13, C131, C132}
The boundaries ofΩ21, Ω23, Ω31 andΩ32 are similar.

C0

C ′

2

C ′

3

C ′

1

C1

C2

C3

Figure 2. Schottky Group generators.

In general, for a circular domain withm interior holes, the re-
flected regions and circles are labeled with multi-indices

ω = ω1ω2 · · ·ωq, 1 ≤ ωj ≤ m, ωk 6= ωk+1, 1 ≤ k ≤ q − 1.

A reflected domain is defined by the reflections following the in-
dices.

Definition 2.1. The set of multi-indices of lengthq (q > 0) is de-
noted

σq = {ω1ω2 · · ·ωq : 1 ≤ ωj ≤ m, ωk 6= ωk+1, 1 ≤ k ≤ q − 1},
andω0 = ∅.

As shown in Figure 1 (b), ifω ∈ σq, q > 1, the circular domain

Ωω = ρω(Ωω1ω2···ωq−1
)

has exterior boundaryCω andm − 1 interior boundary circles

Cωωq−1
= ρω(Cω1ω2···ωq−1

),

and

Cωj = ρω(Cω1ω2···ωq−1j), j 6= ωq−1, ωq.

There arem(m − 1)q−1 elements inσq, at the levelq, and
m(m − 1)q−1 circles.

2.3 Schottky Groups
Taking reflections of a circular domain with respect to the circu-

lar holes to the limit will eventually have all the holes ‘filled up’.
This is shown by using the Schottky groups, as described below.

SupposeCj is the circle|z − cj | = r2
j , C0 is the unit circle

|z| = 1, denoteρ0(Cj) asC′
j (see Figure 2). The Möbius map

θj(z) = cj +
r2

j z

1 − c̄jz

maps the exterior ofC′
j to the interior ofCj (andC′

j to Cj).
The Schottky groupΘ is defined to be the infinite free group

of Möbius mappings generated by compositions of the2m basic
Möbius maps{θj |j = 1, · · · , m} and their inverses{θ−1

j |j =
1, · · · , m}. Consider the unbounded regionΩ of the plane exterior
to the2m circles{Cj |j = 1, · · · , m} and{C′

j |j = 1, · · · , m}.
The union of copies ofΩ generated by theθ ∈ Θ is denoted as

Θ(Ω) :=
⋃

θ∈Θ

θ(Ω).

This work is based on the following fundamental theorem of Schot-
tky groups.



(a) original network (b) circular domain

(c) level 1 reflection (d) level 2 reflection

(e) level 3 reflection (f) leveln ≥ 4 reflection

Figure 3. 4-level circular reflections for a 3-hole sensor network
with 5492 nodes. The initial network (a) is conformally mapped to
the circular domain (b). The level 1 reflection is in red colorin (c),
level 2 reflection is in green in (d), level 3 reflection is in blue in
(e), level 4 reflection is in yellow in (e).

Theorem 2.2. The complement set ofΘ(Ω)

Θ(Ω)c := C − Θ(Ω)

is a Cantor set of zero measure.

The detailed discussion can be found in [5], [22] and [4].
θj can be generated by two circular reflections: first the exterior

of C′
j is reflected through the unit circleC0, then the interior ofC0

is reflected throughCj . The composition of these two reflections
is θj . In this work, we use circular reflections instead of explicitly
using Schottky group.

2.4 Shrinkage Estimation
Asymptotically the whole plane can be covered by the copies of

the network using Schottky transformation. But in practice, only
a finite number of reflections can be used. Therefore, we need a
precise estimation of the size of holes aftern levels of reflections.
In the following, we give the estimation of the area shrinkage of the
holes. We follow the method in [22] and [4].

As shown in figure 4,Ω is a bounded double connected domain
on the complex planeC, with exterior boundaryΓ0 and interior
boundaryΓ1, ∂Ω = Γ0 − Γ1. There exists a conformal mapφ :
Ω → D, whereD is a circular domain, with inner radiusµ01 and
outer radius1,

D = {z ∈ C : µ01 < |z| < 1, }.

Γ0

Γ1 µ01
1

Figure 4. Conformal modulusµ01 of a doubly connected domain.

CkCj

C̃j

C̃k

γj γk

γj

µ̃jk
γk

µ̃jk

Figure 5. Separation modulus of a doubly connected circular do-
main.

We callµ01 the conformal modulus of the original domainΩ.

Definition 2.3. The separation modulus for two circlesCj , Ck is
defined as

µ̃jk :=
γj + γk

djk

< 1, j 6= k, 1 ≤ j, k ≤ m, (2)

whereγj andγk are the radii ofCj , Ck respectively, anddjk is the
distance between the centers ofCj , Ck.

The separation modulus of the region is given by

∆ := max
i,j,i6=j

µ̃ij .

As shown in Figure 5, supposẽCj is the circle with the centercj

and radius
γj

∆
, then 1

∆
is the smallest magnification of them cir-

cles, such that at least twõCj ’s just touch.
The following lemma shows that the separation modulus is bounded

by conformal modulus, the proof can be found in the Appendix.

Lemma 2.4. The conformal modulus is the lower bound of the
separation modulus:

µjk < (µ̃jk)2 ≤ ∆2.

Theorem 2.5. At level q + 1, the total area of holes is

∑

ω∈σq+1

S(C̃ω) ≤ ∆4q
m

∑

i=1

S(C̃i), (3)

whereS(Ci) is the area inside the circleCi.

This theorem shows that the total area of the holes is reducedex-
ponentially fast. Thus, after− log ε number of levels, each hole
has a maximum area ofε. This shows that only a small number of
levels is needed in practice. The proof of the theorem is put in the
Appendix.



3. ALGORITHMS
For a sensor network, we compute the covering space up to level

q (for a constantq typically) in the following steps.

1. Extract a triangulation of the network.

2. Apply a distributed Ricci flow algorithm as in [24] to embed
the triangulationT such thatT is a circular domain — it is
embedded in the plane with each hole (a non-triangular face)
embedded on a circle.

3. With the circular domainT we apply circular reflections to
compute the covering space.

Figure 3, 7 and 8 demonstrate the pipeline of the algorithm.

3.1 Network Triangulation and Distributed Ricci
Flow

Given a communication graph, we extract a planar graph from it.
All non-triangular faces are treated as network holes. Algorithms
for such purpose have been developed and are briefly reviewedbe-
low.

In our previous paper [24], a local, distributed algorithm has been
developed to obtain a triangulation from the connectivity graph.
The idea is to compute therestricted Delaunay graph (RDG)[10],
i.e., a planar graph containing all Delaunay edges of lengthno
greater than 1. The RDG can be computed by the nodes locally
when the communication graph follows a quasi-unit disk graph (q-
UDG)1 of parameterα ≤

√
2. The requirement of a quasi-UDG is

to ensure that crossing edges can be detected locally and handled
properly.

Funkeet al.[7] developed a location-free triangulation algorithm
by using landmarks and combinatorial Delaunay graph. The idea
is to select a set of nodes as landmarks. The landmarks flood with
a restricted range such that every node identifies the closest land-
marka and is grouped to the Voronoi cell ofa. A planar graph is
computed on the landmarks by connecting the landmarksa, b that
have 2-hop wide ‘channel’ of only nodes within cells ofa, b. The
authors showed that this graph is planar when the communication
model follows a quasi-UDG of parameterα ≤

√
2.

The two algorithms above both require a quasi-UDG model and
thus does not work when a sensor network does not follow the
quasi-UDG assumption. The following algorithms compute planar
graphs without such assumptions.

Kim et al.[12,17] addressed the problem that planarization tech-
niques using relative neighborhood graph or Gabriel graph fail when
the communication model does not comply to the unit disk graph
assumption. They developed a cross link detection protocolto
probe each link, detect and remove possible crossings with other
links. The resulting graph is combinatorially planar.

Zhanget al. [29] developed a location-free algorithm to extract
a planar subgraph from the connectivity graph. The main ideais to
planarize adjacent layers of a shortest path tree. Again this method
does not require a unit disk graph model or quasi-UDG model.

All these algorithms above can be used in our method. In our
implementation, we have used both the restricted Delaunay graph
approach [24] and the landmark based triangulation approach [7].
But all the other schemes can also work well with our framework.
In the worst case when a triangulation is not available, for example,
when crossing edges are introduced, the result of the Ricci flow
algorithm is theoretically unpredictable.
1In a quasi unit disk graphwith parameterα ≥ 1, if two nodes
are within distance1/α, an edge between the two exists, if they are
at a distance more than1, the edge does not exist; while for other
distances, the existence of the edge is uncertain.

(a) Original mapping; (b) Optimized mapping

Figure 6. Improve separation modulus by Möbius transformation.

Last we remark that the obtained planar graph should represent
a manifold with holes. In case of degeneracies (e.g., two holes
sharing a single path, or dangling paths), virtual nodes andedges
are introduced to resolve the issue. The details are shown inour
previous work [24].

3.2 Circle Estimation
For a circular domainT , for each boundaryγk, we need to

estimate the circleCk(ck, rk). We take three consecutive nodes
{z1, z2, z3} on the hole boundary to form a triangle, the circle
Ck(ck, rk) is the circumcircle of the triangle. Its center is

c =
|z1|2(z2 − z3) + |z2|2(z3 − z1) + |z3|2(z1 − z2)

z1(z3 − z2) + z2(z1 − z3) + z3(z2 − z1)
(4)

and its radius isr = |z1 − c|. The derivation of the equation above
can be found in [5].

Since the circle can be computed by any three adjacent boundary
nodes, the computation of the circular hole equation can be done
locally at each boundary node. The computation only involves a
constant number of algebraic operations.

3.3 Separation Modulus Optimization
From the theoretical result, we can see that the total area ofcir-

cular holes shrink to zero exponentially fast. The convergence rate
is governed by the separation modulus∆. In order to make the
holes as small as possible, we can find an optimal Möbius trans-
formation, that minimizes the separation modulus. In some sense,
this transformation will map the holes to be as ‘well-separated’ as
possible. We remark that this optimization step is optional.

A Möbius transformation preserving the unit disk is given by

φθ,z0
(z) = eiθ z − z0

1 − z̄0z
, |z0| < 1,

which maps circles to circles.φθ,z0
(Ck) is still a circle, whose

center and radius can be computed from

{φθ,z0
(A), φθ,z0

(B), φθ,z0
(C)}

using formula 4, whereA, B andC are three points on the origi-
nal circle. The rotation parteiθ doesn’t affect the separation mod-
ulus, in practice, we always set the rotation angleθ to 0. Let
µ(Cj , Ck) = µ̃jk be the separation modulus between circlesCj , Ck

as in formula 2. Define

∆(z0) := max
j 6=k

µ(φ0,z0
(Cj), φ0,z0

(Ck)).

The optimization problem is formulated as:

min|z0|<1∆(z0).

In practice, we use gradient descent method to solve this non-linear
optimization. See Figure 6 for an example.



To run this optimization step in a sensor network, we only need
the knowledge of the center and radii of the circular holes. One
node can pull the information of all circular holes togetherand
run the optimization to get the Möbius transformation, which is
then disseminated to all nodes in the network. The nodes apply the
Möbius transformation to obtain the new mapping.

3.4 Circular Reflection
In a circular domain we perform circular reflection of the net-

work. In our implementation, we use a Hermitian matrixH , HT =
H anddetH < 0 to represent a circle with centerc and radiusr.
Suppose

H(c, r) =

[

a b
b̄ c

]

Then the circle equation represented byH(c, r) is given by

0 = [ z̄ 1 ]

[

a b
b̄ c

] [

z
1

]

, (5)

where the center isc = − b
a

and the radiusr =

√
|b|2−ac

|a|
. For a

circle |z − c| = r, the corresponding Hermitian matrix format is

0 = [ z̄ 1 ]

[

1 −c
−c̄ |c|2 − r2

] [

z
1

]

. (6)

Orientation preserving Möbius transformation onC ∪ {∞}

m(z) =
αz + β

γz + δ

is represented as a matrix

M =

[

α β
γ δ

]

, α, β, γ, δ ∈ C, (7)

its inverse is given by

M−1 =

[

δ −β
−γ α

]

.

The reflection through a circleC is represented as

(ρC) =

[

c r2 − |c|2
1 −c̄

]

. (8)

Thus, the composition of Möbius transformations are represented
as matrix multiplications. A Möbius transformationm maps a cir-
cleH to a circle. The Hermitian matrix representation of the image
circle is given directly by

M−1
T
HM−1.

For orientation reverse Möbius transformation

m(z) =
αz̄ + β

γz̄ + δ
,

the matrix representation of the transformed circle is

M−T HM−1.

Therefore, all the computations are carried out using complex
matrix multiplication. Notice that the matricesH andM are only
two by two matrices. So the matric multiplication and the Möbius
transformation can both be done with a constant number of alge-
braic operations.

The reflectionρC through a circleC is given by the analytic
formula 1.

The reflection process is recursive. The naming conventionsfor
all the circlesCω and all the reflectionsCω have been explained in

details in subsection 2.2, whereω is a a word in the multi-index set
σn in definition 2.1. Suppose we are given a multi-index wordω =
ω1ω2 · · ·ωn, the recursive algorithms for computing the reflection
ρω and the circleCω (represented as matrices) are as follows.

Algorithm 3.1: MATRIX OFCIRCLE(wordω)

if |ω| = 1
then return (H(Cω1

)) //Eqn.6.
Matrix M = reflection(ω1ω2 · · ·ωn−1);
if ωn = ωn−2

then Matrix H = circle(ω1ω2 · · ·ωn−2);
elseMatrix H = circle(ω1 · · ·ωn−2ωn);

return (M−T HM−1)

Algorithm 3.2: MATRIX REFLECTION(ω)

Matrix H = circle(ω);
compute center and radius(c, r) from H ; //Eqn.5
return (M(ρ(c, r))); //Eqn.8

3.5 Computation and Communication Costs
The communication cost of the scheme is analyzed for each com-

ponent. In the first step of triangulation extraction, the algorithms
used to extract a triangulation as in [7,24] are localized algorithms.
Each node only requires the knowledge of nodes in a constant size
neighborhood. For most practical networks with constant average
node degree, the total number of messages required isO(n). The
Ricci flow algorithm is an iterative algorithm with all nodesad-
justing local metrics and local curvatures. The curvature error de-
creases exponentially fast. Therefore, the number of stepsto reach
the desired curvature error boundε is given byO(− log ε

δ
), whereδ

is the step size in the Ricci flow algorithm. The total communica-
tion cost is thusO(−n log ε

δ
). The computation of network reflec-

tions are done locally in an on-demand manner. When a message
hits a node on the boundary, depending on the number of levels
of reflections required, the node can locally compute the reflection
transform. The indices of the reflections are attached to themes-
sage. No additional communication is needed. Thus the communi-
cation cost in theory is linear in the number of nodes. In practice,
the Ricci flow algorithm is the dominating factor of the communi-
cation cost.

4. APPLICATIONS

4.1 Geographical Hash Tables
We apply the covering space with geographical hash table (GHT) [23]

for storing data in the network. Data is indexed with a key. Each
data itemx is hashed to a geographical location by using a ran-
dom hash functionh(x) = g′. The producer of the data item de-
livers the data towards the locationg′ using geographical routing
(GPSR [16] in particular). If GPSR can not find a node right at
the hashed location, it will eventually enter the face routing mode,
by following the edges of a planar facef enclosingg′. Such face
routing will necessarily fail to find the destinationg′ and return to
the first node when the message enters this face. At this pointthe
algorithm stops. The node on the facef closest tog′ is denoted as
the home node. The facef is denoted as the home perimeter. A
perimeter refresh protocol is used to maintain the home perimeter
when there are node or link failures. Except the home node, the



Figure 7. 3-level circular reflections for a 4-hole network with4764 nodes.

Figure 8. 3-level circular reflections for a 3-hole network with1376 nodes.

Figure 9. Voronoi diagram for the network in Figure 8 .

other nodes on the home perimeter are called replica nodes. The
home node stores the data. The replica nodes may also hold data,
to improve the system robustness to failures. GHT also has a hierar-
chically structured replication scheme where multiple hash images
are used. In our case as we examine the influence of the network
irregularity to the storage balancing, we use the basic scheme only.

A nodep is the home node for all the hashed locations inside its
Voronoi cell (which contains all the points closest top than all other
nodes). Thus the storage load of a node is directly proportional to
the area of its Voronoi cell. It can be seen that the nodes neara hole
has a large Voronoi cell and thus are allocated more data compared
with the average load. An example is shown in Figure 9. When the
replica nodes also store data, the storage load on boundary nodes is
even higher, as the hole creates a large perimeter face such that all
the data on the nodes of this face are shared.

One way to deal with the high concentration of data on the nodes
in sparse region or near network holes is to use rejection sam-
pling [27]. In particular, we select a random geographical location
g′ and round to the closest sensor nodeg. But we only accept the

nodeg with probability A/(cnA(g)), whereA(g) is the Voronoi
cell area of nodeg, A is the total area of the domain from whichg′

is selected,n is the number of sensors, andc is a sufficiently large
universal constant to make sureA/(cnA(g)) ≤ 1. In the case of
a sampleg being rejected, another random location is selected and
so on, until a sample node is accepted. This procedure will pro-
duce a sensor node uniformly randomly chosen from the network
after aboutc trials. With the presence of holes, the smallest area
of a Voronoi cell might be far smaller thanA/n. Thusc needs
to be large, leading to the waste of communication messages.To
ensure a data-centric query eventually finds the data, we assume
a source of randomness common to all nodes. Thus, if a nodeg
rejects a data, the data-centric query for this piece of datawill be
re-directed to the same node and eventually either finds the data or
claims failure (when the data is not rejected and the currentnode is
not holding the data). With rejection sampling the storage load can
be made uniform, but the rejections can increase the networktraffic
and energy consumption.

With the reflections and the covering space, the holes are filled by
transformed copies of the network. If we usek levels of reflections
for a m-hole circular domain, each node hasmk−1 + 1 images
(including itself) in the covering space. We calculate the Voronoi
diagram of the sensor nodes and their images in the covering space.
The chance that a random location is rounded to a sensor node is
proportional to the total sum of the area of the Voronoi cell of p
and all its images. Since the holes are now covered up, the area of
the holes are then distributed to the entire network. All nodes are
then selected with similar probability. Thus the maximum storage
load of any node is substantially reduced. When rejection sampling
is used, the maximum traffic load caused by delivering data tothe
hashed locations is reduced dramatically, as not only the number of
rejections is smaller but also the traffic of the greedy routes are also
spread more evenly in the network. For the improvement of traffic
load balancing for greedy routing with the covering space, please
see Section 4.3.

4.2 Double Rulings
We also apply double rulings, or quorum-based data storage and



retrieval scheme, with the covering space. In a double rulings
scheme, the producer stores data or data pointers along a storage
curve and the consumer (the user who would retrieve the data)
routes the request along a retrieval curve. As long as any stor-
age curve intersects with any retrieval curve, it is guaranteed for
successful discovery of data. In fact, any retrieval curve can dis-
coverall the data stored in the network making it more efficient to
retrieval data. These curves are often designed as some nicege-
ometric curves. When we route data or request packets, we use
greedy routing to select the next hope as the one near the geomet-
ric curve and making progress along the curve (e.g., the projec-
tion onto the geometric curve is further away) [21]. This leads to
routing paths that approximate the geometric double rulingcurves.
For example, when a network has a rectangular shape, one can use
the horizontal lines as storage curves and vertical lines asretrieval
curves [19, 26, 28], denoted as rectilinear double rulings.The data
packets are routed to the neighbor furthest in the vertical directions,
and the retrieval packets are routed to the neighbor furthest in the
horizontal directions.

Existing double rulings schemes all assume some nice regular
shape (rectangular or circular). When there are holes, manygeo-
metric curves may hit a hole. Thus the greedy routing paths ap-
proximating the double ruling curves may either get stuck ata lo-
cal minimum, or, when advanced hole bypassing techniques [6,16]
are used, cause high traffic load on the hole boundaries. Another
problem with an irregular shape is that it is not easy to design the
geometric double ruling curves that guarantee intersection without
using perimeter mode face routing. One can easily constructex-
amples such that rectilinear double rulings, or many other elegant
geometric curves fail to intersect inside the sensor domain.

h

h
∗

r

Figure 10. Stereographic projection.

With the covering space, the network is turned into a circular
diskD with radiusR. Designing geometric double ruling curves is
trivial. For example, one can use co-centric circles and rays emit-
ting from an origin as storage and retrieval curves respectively. In
our simulation, we use spherical double rulings [25]. We mapthe
covering space to the bottom hemisphere tangent to the center of D
with the stereographic projection [3]. We put a sphere with radius
r < R/2 tangent to the plane at the origin. Denote this tangent
point as the south pole and its antipodal point as the north pole.
A point h∗ in the plane is mapped to the intersection of the line
throughh∗ and the north pole with the sphere. See Figure 10 for
a cross intersection. We chooser < R/2. Thus the bottom hemi-
sphere is covered by image of the disk into which the network is
embedded. For a data itemx, we use a hash functionf to select a
random hash locationg∗ in the plane and store the data along the
storage curves, defined as the great circle through the producer and
g. The use of hashing is to allow multiple data items of the same
type to be possibly stored and aggregated at the hashed node.The
retrieval curve is any great circle through the consumer. Itcan be
shown that any storage curve and retrieval curve have a common
intersection in the bottom hemisphere. In the implementation, we
find the routing path traversing through the triangles that intersect
with a storage (or retrieval) curve. With a sufficiently highk (the

Figure 11. Path in covering space.

Figure 12. Path in real network.

number of levels of reflections), the holes are mostly filled up with
only tiny holes left in the domain. Thus the chance that a double
ruling curve hits a tiny hole is very small. For a retrieval curve
to discover the data, we only need the intersection of the retrieval
curve and the storage curve to be not in a tiny hole. The chancefor
this to happen is small as well.

4.3 Load Balanced Greedy Routing
Greedy routing selects the next hop as the neighbor whose dis-

tance to the destination is minimum, with the distance defined in
some coordinate system. It is an extremely simple and completely
local algorithm but may not always work if all the neighbors have
greater distances to the destination. In our previous work [24], we
embed a sensor network in the plane such that all the holes arecir-
cular. Thus greedy routing can not get stuck at any hole boundaries.
This leads to guaranteed delivery of greedy routing in the generated
virtual coordinates. Nevertheless, greedy routes that hita node on
the boundary of a holeC will lead to a path that follows the hole
boundary until the tangent point of the line through the destination
andC (i.e, when the packet is able to ‘see’ the destination). This
effect causes higher traffic load on the hole boundary.

By using the covering space, we can mitigate the imbalance of
traffic load caused by the greedy routing method. When a packet
reaches a node on the hole boundary, greedy routing directs it to en-
ter another copy (Figure 11), effectively reflect on the holebound-
ary and take a detour to get around the hole in the real network
(Figure 12). Therefore, not all the packets that arrive at a hole
boundary will necessarily route along the hole. The detoursthey
take are spread out in the network, reducing the traffic pressure on
the hole boundaries.

The routes, reflected on the holes, are possibly longer than be-



fore. But this is in some sense necessary in order to improve load
balancing. Minimizing the path length and minimizing the max-
imum traffic load are two contradicting objectives that cannot be
achieved at the same time [11]. There is also an interesting trade-
off as longer paths increase the total message cost and the average
traffic load. In our simulations we demonstrate that a small number
of reflections suffice to strike a good balance of path stretchand
load balancing.

5. SIMULATIONS
We carried out extensive simulation tests on several different net-

works to verify the utility of this method. The data presented in this
section are based on the network represented in figure 8. Thisnet-
work has about 1400 nodes in a perturbed grid distribution, spread
over a200 × 200 region, and a maximum communication radius
of 12 units. The graph is a quasi-unit disk graph of inner radius
12/

√
2.

The following are the important observations we obtained from
this set of simulations:

1. The reflection based covering space reduces the maximum
storage load at any sensor to almost half, compared with the
original embedding, if we uniformly sample geographical lo-
cations and then round to the closest sensors.

2. Greedy routing on the covering space has better load distri-
bution than GPSR on the original network.

3. Using the reflections, double ruling schemes can be extended
to networks of non-trivial topology. The storage cost is higher
but the retrieval cost is much lower.

5.1 In-network Storage and Sampling
As described in the previous section, when using a GHT type

storage scheme, the storage load at any node is proportionalto the
area of its Voronoi cell. The nodes at the boundary of a hole tend to
get higher load because their voronoi cells together cover the area
of the entire hole. We compared the maximum Voronoi areas of the
original embedding with those of covering spaces obtained by one
or more reflections. Reflections create multiple images of points
for each node, the load on the node is taken to be the sum of the
Voronoi cell area of all images.

The results are shown in Figure 13 and Table 1. The total load
is normalized to be1. It is shown that the covering space reduces
the max load to almost half that of the original embedding. This
is achieved with only 2 or 3 reflections, after which the load does
not change too much. This can be understood as follows. The
uneven loads are caused by big Voronoi cells, which can be created
by the presence of holes, and/or by distortions introduced by the
conformal map. After a few reflections the area of the holes are
shared by nodes of the entire network and do not contribute large
areas to any node in particular. Thus the larger cells created by the
distortion of the conformal map are the major reason for the uneven
load. This does not get smaller with more reflections.

We carried out rejection sampling on these embeddings, and
found that the covering spaces created by 2 or more reflections re-
quire about15% fewer trials on average. Further, when the commu-
nication costs are considered, the communication loads aremuch
better balanced in the covering space scheme. This is essentially
because greedy routing in generally is better load balancedon the
covering space than GPSR on the original network. We describe
the routing results in the next subsection.
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Figure 13. The largest fraction of the storage load at any sensor.

Table 1. Maximum storage load for GHT.
Scheme 1-ref 2-ref 3-ref 4-ref 5-ref

Covering Space 0.0092 0.0065 0.0062 0.0062 0.0062
Regular GHT 0.0106 0.0106 0.0106 0.0106 0.0106

+
n-ref - n depth reflection

5.2 Load Balanced Routing
We selected 2000 random source-destination pairs and computed

routes. On the original network we used GPSR. On the covering
spaces we used simple greedy routing, since greedy routing guar-
antees delivery in these networks. The number of reflectionsonly
shows the maximum number of reflections we permit. The cover-
ing space is not pre-computed to that depth, reflections are com-
puted locally as a route progresses and the relevant data is attached
to the message.

The results are shown in Table 2. Clearly, 2-3 reflections give the
best results. Beyond this point, the route lengths tend to increase
as some paths go through several reflections. However, the load
balancing is always good, since the covering space method does
not hug the boundary when going past a hole. The path bounces
off the boundary and spreads the load more evenly (see the plot in
Figure 14).

Table 2. Traffic load and path length for greedy routing.
Scheme Avg. load Max load Avg. length Max length
GPSR 33.6840 620.0 24.1915 92
1-ref 24.0682 319.0 17.571 42
2-ref 35.4960 190.0 25.439 117
3-ref 39.1742 241.0 27.9715 159
4-ref 43.9143 199.0 31.235 196
5-ref 46.3129 216.0 32.8865 228

+
n-ref - n depth reflection

Node lifetime experiments. We carried out experiments on how
the load balancing properties affect the longevity of nodes. Each
node is assumed to have the energy to transmit 200 messages, after
which it is considered dead. We count how many nodes die in the
process of delivering 4000 messages. As nodes die, the network
loses the property of circular holes and guaranteed delivery. We
count the number of messages that are delivered successfully under
these conditions. GPSR guarantees delivery, but with dyingnodes,
the network eventually gets partitioned and then some messages
fail. The results are shown in Table 3.

Double rulings. Double rulings is a general method that extends
GHT. The intuition being that storing data on a path makes it eas-
ier for consumers to find that data. Existing double ruling schemes
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Figure 14. Cumulative distribution of load. Showing that the cov-
ering space method has fewer nodes with high load, and also fewer
nodes with very low load. GPSR on the other hand has 5% to 10%
nodes with substantially high load.

Table 3. Death and message delivery rates for 4000 routing at-
tempts.

Scheme GPSR 0-ref 1-ref 2-ref 3-ref 4-ref
Deaths 286 33 29 50 122 154

Deliveries 3164 3361 3790 3849 3886 3842
+

n-ref - n depth reflection

such as [25] design the storage and retrieval paths with simple net-
works in mind. The covering space, byalmosteliminating the holes
in the network can be expected to make double ruling applicable to
more general networks. In particular, as the holes get smaller in
size, it can be expected that fewer of the storage and retrieval paths
hit them. We carried out experiments to test this and other prop-
erties on covering spaces of different depths. The radius ofthe
sphere was taken to be one-third the radius of the embedded net-
work in virtual coordinates. The results below are for 2000 random
producer, consumer and hash location triples.
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Figure 15. Percentage of successful double ruling retrievals for
different depths of covering space.

Figure 15 shows the success rate of double ruling with increas-
ing depth of covering space. For no reflections, the percentage of
successes are very small, about10%, but as holes get smaller, suc-
cess rate climbs to86% for 5 reflections. In the following, We
ugmented the process at the final level by perimeter mode traversal
of boundaries to obtain full success rate.

We carried out path length and load measurements. The results
are shown in figures 16 and 17 respectively. The storage costscan

be seen to be relatively high, as producers may sometime select a
curve that goes through many reflections. In comparison, consumer
retrieval costs are lower. This is because the consumer pathstops
as soon as it intersects a producer path. While this is also true for
double ruling in the original embedding, the covering spaceintro-
duces additional properties. there are many copies of a nodex in
the covering space. Imagine that the storage path passes through
a copyx′. Now it is possible that the retrieval path hits a different
copyx′′ before it intersects the storage curve in the coring space. In
such a case, the consumer has hit a storage node in the real network,
and can stop searching. This possibility reduces retrievalcosts even
further. In a sense, the higher storage costs are compensated by a
smaller retrieval cost.

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

Reflection Depth

P
ro

d
u

ce
r 

S
to

ra
g

e
 C

o
st

s
 

 

Avg Load
Max Load
Avg Length

Figure 16. Producer storage costs.
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Figure 17. Consumer retrieval costs.

5.3 Network Dynamics
Finally, we tested some effects of network dynamics. In a gen-

eral sensor network nodes may fail, and occasionally some nodes
added. These cause changes in the triangulation. For example, fail-
ure of a node creates a ‘hole’ in the triangulation. Many of these
changes can be handled by simple adjustments. Failure of a node in
a dense network can be handled by adding edges between its neigh-
bors to fill up the hole. In certain cases, say after several failures,
such simple local adjustments may no longer suffice and then the
embedding needs to be recomputed. However, instead of comput-
ing the embedding from scratch, we can use the existing configura-
tion as a starting point to speed up the process. We found thatfor



small changes to the triangulation, the re-convergence is quite fast.

Table 4. Re-convergence Time.
Error bound 1e − 1 1e − 2 1e − 3 1e − 4 1e − 5

# Iterations 129 274 697 1392 2221

We made some small changes to the triangulation, such as edge
swaps, and measured the time taken for the Ricci flow to converge
to some desired error. The results are shown in Table 4.

6. CONCLUSIONS
The network metric and embedding are crucial to sensor network

operations. In this paper we presented ideas of using Möbiustrans-
forms and Ricci Flow algorithms to regulate a sensor network. All
networks can be made to be circular with the interior holes filled
up. The created covering space embedding is universally useful to
even out sensor storage and traffic load for in-network data storage
schemes. We plan to investigate further applications of theembed-
ding in sensor network and sensor data management.
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APPENDIX

A. PROOF OF LEMMA 2.4

PROOF. Let µ denoteµjk and µ̃ denoteµ̃jk. The conformal
module can be calculated directly for circular domain as

µ =
d2

jk − γ2
j − γ2

k −
√

[(djk − γj)2 − γ2
k][(djk + γj)2 − γ2

k]

2γjγk

.

Then

α =
1

2
(µ +

1

µ
) =

d2 − (γ2
j + γ2

k)

2γjγk

(µ̃d)2 = (γj + γk)2,

It follows

αµ̃2 − 1 = (1 − µ̃2)
γ2

j + γ2
k

2γjγk

≥ 1 − µ̃2.

Then
1

µ̃2
≤ α + 1

2
= [

1

2
(
√

µ +
1√
µ

)]2.

Becauseµ < 1,

√
µ <

2
√

µ

µ + 1
≤ µ̃ ≤ ∆.

�

B. PROOF OF THEOREM 2.5
The proof depends on the following lemma. As shown in Figure

4, Ω is a bounded double connected domain on the complex plane
C, with exterior boundaryΓ0 and interior boundaryΓ1, µ01 is the
conformal modulus.

Lemma B.1. SupposeS(Γk) is the area bounded byΓk, k = 0, 1,
then

S(Γ1) ≤ µ2
01S(Γ0).

Detailed proof can be found in [22], Lemma 17.7c(a), P.503. The
proof for theorem 2.5 is as follows:

PROOF. As shown in Figure 18.Ω has three boundary circles
C1, C2, C3. Magnify each circle by factor1

∆
, we get (dashed) cir-

clesC̃1, C̃2, C̃3. By definition of separation modulus,̃C1, C̃2, C̃3

may touch, but have no overlaps. ThenC̃2, C̃3 are in the exterior
of C̃1.

ReflectC̃j through circleC1 (the red circle). Denote

C̃ij := ρi(C̃j), i 6= j, 1 ≤ i, j ≤ 3.

ThenC̃12 andC̃13 are contained inρ1(C̃1),

S(C̃12) + S(C̃13) < S(ρ1(C̃1)).

The annulus bounded byC1 and C̃1 has conformal modulus
∆. After reflection, the image is the annulus bounded byC1 and
ρ1(C̃1). By Lemma B.1,

S(ρ1(C̃1)) ≤ ∆2S(C1) ≤ ∆4S(C̃1).

Similarly

S(C̃23) + S(C̃21) < ∆4S(C̃2),

S(C̃32) + S(C̃31) < ∆4S(C̃3).

By induction, we can prove Equation 3. �


