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Abstract of the Dissertation

Geometric Abstractions

for

Information Processing in Sensor Networks

by

Rik Sarkar

Doctor of Philosophy

in

Computer Science

Stony Brook University
2010

Computerized devices are becoming smaller and more ubiquitous. Equally im-
portantly, they are becoming more interconnected. A Sensor Network is a model for
such interconnected systems. Each sensor device obtains and stores information
that is potentially useful to others. The challenge is to efficiently search and deliver
the important information to the relevant parties. Given the large number of devices
and corresponding quantities of data, this is not easy. Fortunately for us, commu-
nication is efficient and fast when addressing nearby devices. This permits us to
utilize their relative locations to construct efficient methods.

The proximity and location information can be leveraged through the use of ge-
ometry. The complexity of a network and data hide simpler geometric structures
that are not obvious at first sight. The objective in this dissertation is to identify
such concealed structures that can be useful and can be computed in the network.
An abstract structure or abstraction helps us to understand and represent the net-
work and data in more convenient ways. This approach is useful in managing the
data in the network, as well as in managing the network itself. Its utility is demon-
strated through accompanying algorithms in each part of the dissertation.
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Chapter 1

Introduction

A sensor network is a distinct type of computing platform. It consists of many tiny
computers interconnected into a somewhat arbitrary network. Each device has its
individual source of data and computing capabilities, the overall quantity of data is
therefore large, and spread over many components. A sensor device does not have
direct access to most of the information, therefore on its own is capable of only mini-
mal tasks. This sets the network apart as a system where intelligent communication
is the key. Unlike regular networks, communication has to be closely interleaved
with computation.

Sensor networks are data oriented [60, 129, 139]. The purpose of a sensor net-
work is to obtain and manage data, and respond to queries. These queries may
sometimes require knowledge of global properties. For a simple example, consider
a network where devices measure temperature. A very natural question is to ask
for the average temperature. Average is a global property and requires information
from all the sensors, therefore the computation requires communication all over the
network. The challenge is to keep communication and energy requirements low
when performing a computation.

These considerations have made sensor networks into a broad field of research
with requirements for new devices, and new methods for managing devices, data
and communication. Effectively, it is a new model that requires adaptation at ev-
ery level of computing from hardware to applications. Accordingly, specialized de-
vices [71, 72], operating systems [6, 35], databases [106], protocols [41, 93, 152, 161]
and many other technologies [73] have been developed for sensor networks. The
novelty and generality of the model have generated interest in all areas of computer
science and electrical engineering.

Networked information processing have further connections to a range of gen-
eral subjects. Later chapters of this dissertation utilize ideas from mathematics and
social networks. Some recent and significant developments in mathematics and al-
gorithms are seen to have applications in sensor networks. These relations are not
incidental or in the manner of analogy, but in a very precise sense with rigorous
correctness. In the other direction, the quest for efficient distributed algorithms for
sensor networks brings to surface some of the most fundamental questions and con-
cepts in mathematics, theoretical computer science and networks.

1



The first section of this chapter discusses more about sensor networks and some
of the important topics in network and data management. The next section explains
the close relation of sensor network issues to geometry and why a geometric view-
point is adopted in this dissertation. The last section explains the ideas behind the
organization of different parts of the dissertation.

1.1 Overview of sensor networks

Advances in miniaturized electronics and communication have made it possible to
create smart networked sensors. These devices are capable of monitoring physical
parameters of the environment such as temperature, humidity, or presence of vehi-
cles. Modern sensors are equipped with a micro-controller and therefore capable of
performing computation on acquired data. Computing ability allows more intelli-
gent sensing. For example, if a sensor determines that the environment is changing
rapidly or some other event of interest is taking place, it can decide to take samples
with greater frequency and possibly issue an alarm; at times of inactivity, sensing
frequency can be lowered to save energy and storage.

The networked communication capabilities open up a range of possibilities in
smart sensing. Communication allows a sensor to send out notifications of signifi-
cant events, while a user can query a sensor at will for data without the necessity for
physical access. Most significantly, communication capabilities allow sensors to talk
with each-other to collaboratively determine higher level implicit events [40]. For
example, an individual sensor may only be able to detect the presence of a vehicle
nearby, but by communicating with other nearby sensors that sense the vehicle at
different times, they can determine the velocity of the vehicle.

Such collaborative sensing is not simple to design or implement. A sensor net-
work has little networking capabilities – there are no routers, Internet style IP-
addresses or DNS services. In addition, the lower network layers are unreliable
due to wireless interference, noise and often unreliable equipments. Even a basic
scheme where each sensor performs minimal processing and forwards the data to a
server, poses non-trivial challenges.

Let us establish a model for sensor networks so that the important questions
and topics in collaborative operation can be discussed without fear of ambiguity. A
simple model is desirable over a complex one. As will be discussed later, this model
is in fact sufficiently general to cover a wide range of scenarios.

1.1.1 Sensor network model

Sensors and networks are often designed for specific tasks. There are however cer-
tain features that can be considered general for these networks. The following is a
list of these properties followed by a more detailed discussion of each. These will
be assumed in the following chapters. Certain topics may require additional con-
straints, and those will be introduced later as needed.

2



1. The network consists of a large number of small devices, often called sensor
nodes. The number may be in hundreds, thousands, or more.

2. Each device is equipped with one or more “sensors” that sense certain physical
quantities.

3. Each device has a limited source of energy, equivalent to a small battery. In
some cases it may be possible to harvest energy locally at a low rate from solar
power or other sources.

4. Each device has a small computation power - a low power CPU and a limited
memory.

5. A device is equipped with a wireless radio that it can use to communicate
within a small range.

6. A sensor is placed at a location in space. The location may or may not be
known, but it affects its sensor reading and its role in the network. The overall
set of locations spanned by the sensors is large compared to the transmission
range of the wireless radio on a node.

7. Individual devices and communication links are unreliable. Algorithms and
protocols should not depend critically on unfailing long term operation of in-
dividual sensors.

8. Identity of Individual devices are not significant. Device addressing is data
centric.

The characterizations above are admittedly not very precise. This is because
character of a sensor network varies by its aim, construction, domain of deployment,
and other parameters. Depending on these, a particular network may have different
properties from another. This variation allows viewing networks from many differ-
ent perspectives. The rest of this subsection elaborates these characteristics. Readers
familiar with sensor networks may wish to skip ahead to subsection 1.1.2.

Large number of devices. This sets sensor networks apart from ad-hoc networks
of fewer nodes. For small networks the scaling issues such as routing table size,
or cost of accessing all the data do not play a major role, therefore it is the large
networks that are worth investigating from a networking point of view. This is
also a different scenario from other large networks such as the computing clusters
or the Internet, which consist of powerful equipments and substantial resources.
Sensor networks therefore face the scaling problems of large networks within the
restrictions of ad-hoc networks. In the following, we denote the number of nodes
by n.

3



Each device is equipped with sensors. Sensors may be simple equipments to mea-
sure temperature, humidity or other physical quantities. In some cases there may be
more sophisticated sensors such as accelerometers or gyroscopes. In certain cases,
interesting sensing may not require specialized equipment. For example, the wire-
less communication system itself may be used to detect presence of other wireless
enabled devices nearby. In certain cases local parameters of the network itself, for
example, routing load, energy or local density of nodes may serve as the “sensed”
quantity. This suggests using the sensor network perspective of information pro-
cessing to handle networking questions (see chapter 9).

Small energy sources. Connecting to regular power lines may not always be prac-
tical. Therefore, we consider a model where sensors are supplied by a small energy
source. This may be a battery or local harvesting of energy. In either case, our focus
will be to keep energy consumptions low to allow each sensor to operate for long
durations without running out of energy.

Computing resources. The requirements for small size and low power consump-
tion force the devices to be constructed with restricted resources. The large number
also makes it financially impractical to use sophisticated devices. To be more pre-
cise, we assume that the memory is small compared to the size of the network. Data
of size Ω(n) is impractical at a node. Correspondingly an algorithm of Ω(n) com-
plexity is undesirable as a drain on energy and time. It is however possible to use
some nodes with greater resources to complement the model. This topic is discussed
in subsection 1.1.3.

Wireless communication. The wireless communication ability defines much of
the characteristics of the system. While communication enables innovative uses of
the network, wireless communication is also the largest drain on energy of a device.
Further, since the wireless medium works on local broadcasting of data, many nodes
transmitting at the same time can cause excessive interferences, slowing down all
communications.

The wireless radio on a sensor is not very powerful. A powerful radio is not
practical on a small energy constrained device. If many devices are transmitting
within range of each-other, that can slow down communication, therefore, from an
efficiency and throughput viewpoint, low power radios are desirable. These restric-
tion gives rise to many of the issues and research questions in sensor networks.

It is assumed that all the sensors are connected into a single network. Of course,
it is possible to have many networks, but our intent is to utilize the communication
abilities of nodes for collaborative data processing, so we consider one connected
component at a time.

Location and distribution of nodes. This is an important aspect of sensor net-
works. Location is often important with respect to sensor data, because data may
be relevant only when it is coupled with the information of where the reading was

4



obtained. Obtaining location for a sensor is a challenge on its own and much re-
search has been devoted to localization (see Subsection 1.1.2). Some such approachs
may be suitable in certain scenarios; in other cases, GPS service may be available
or a node may be able to obtain approximate locations from nearby or passing GPS
enabled devices.

In many situations, knowledge of location may not be a valid assumption at all.
But locations of sensor nodes still play an important role, particularly in determin-
ing the structure of the network. The low power radio on sensors means that a
node typically will be able to communicate directly only with a small set of nodes.
All other communication must be through multi-hop routing where nodes forward
messages on behalf of others. These multi-hop paths are restricted to the commu-
nication graph determined by the low power sensor radios. The locations therefore
determine the network.

In general, it is desirable to have nodes densely deployed - this gives better
sensing resolution and redundancy. However, it is not economical to have a very
high density, and a high density of active nodes may increase wireless interference.
Therefore, in subsequent chapters we will assume the density to be bounded from
above. There is also an implicit lower bound on a network, since a very low den-
sity network is likely to lose connectivity. In general, however, we allow network
domain to have large regions without sensors – often called holes.

Unreliable nodes and links. The small energy source makes sensors likely to fail
once the battery runs out. Once a device fails, its communication links are also lost.
The need to have a large number of low cost devices, that are possibly of different
types and from different manufacturers makes it difficult to have consistent quality
and behavior. Wireless communication itself often fails transiently and individual
links cannot be relied on. On the whole, it is preferable to have methods that do not
rely on long term reliability of individual nodes and links.

Data centric addressing. Given a large number of devices monitoring some ex-
ternal quantity, an individual sensor’s data is not useful. “What is the temperature
at sensor 42673?” - is not the most interesting question. Much more useful are
aggregate questions “What is the average temperature?” or “What is the maximum
temperature?” or “Which sensor has the maximum temperature?” Answering these
questions is a different sort of challenge.

Location also plays an important role in this respect - “What is the temperature
at location (X,Y)?” may be of interest. The answer possibly lies in finding the sen-
sor(s) nearest to that location. In fact, sensor network methods frequently rely on
location as a method of addressing instead of node id. The advantage is that every
node is then given a unique id as its location, also every location in the underlying
continuous domain maps to a node – the one nearest to that location.
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1.1.2 Common questions in distributed sensor networks

The combination of properties and restrictions described above have given rise to
questions that are unique to sensor networks. Even conventional well studied topics
like routing must be approached differently in this model.

The restrictions on communication costs force us to consider distributed process-
ing of data. Gathering all data at a sink has the shortcoming that much resource is
spent in simply forwarding data. Consider a network of 5000 nodes and one sink. If
all the data is sent to the sink, then the few nodes near the sink have to forward thou-
sands of messages in each pass when every sensor takes one reading. The numbers
can be higher when we consider retransmissions and acknowledgments. Other than
the loss of energy in such forwarding, this slows down data processing by slowing
down the routing. In certain applications, some types of data may be more signif-
icant than others. For example, an unusually high temperature at a sensor is more
significant than regular temperature readings. Again, high temperature at a close
group of sensors is more significant than high temperature at a single sensor. It is
faster and more efficient to be able to make such decisions locally, and inform the
sink only of the aggregate decision.

Of course, not all decisions can be made locally. Certain information are inher-
ently global, and some facts may only be deduced with a powerful central com-
putation. It is however desirable to have distributed local processing to the extent
possible, and reduce communication needed for the central operation by distributed
pre-processing. Therefore it is important to know to what extent computations and
deductions can be kept distributed. This will be the approach in this dissertation
– to perform non-trivial tasks while keeping operations as local and distributed as
possible.

The following are some of the important research topics in distributed sensor
networks. These have been considered in various forms and using different tools.
The diversity in possible constructions and applications of sensor networks makes
it difficult to solve any of these problems completely. Therefore, all these questions
remain open in some respect or other. We mention below only a few of the problems
and approaches that are relevant to the core chapters of the dissertation.

Wireless communication. The unreliable, possibly noisy nature of wireless links
coupled with signal interference make this a difficult question. Wireless com-
munication at the physical and medium access layers has been studied exten-
sively [41, 93, 152, 161] for sensor networks, and from the viewpoints of different
objectives. Specialized radios and protocols have been built. In this dissertation we
will not consider the details of wireless communication. The existing work lets us
assume that hardware and protocols exist such that devices are within communica-
tion range of each-other can communicate freely.

Localization. This topic deals with finding the locations of the nodes from the
knowledge of existing communication links. Since pairs of nodes are typically
within communication range of each-other only if they are within a reasonably short
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distance, the communication graph of the network is to an extent determined by the
relative locations of nodes. It is natural to ask if it is possible to determine the lo-
cations, given the knowledge of the communication graph. Typically, this problem
is considered in the case where all nodes are in a plane. Of course, the question of
finding perfect locations is impossible to solve. Consider nodes A, B and C within
a very small distance of each-other, so that they are all in communication, and in
addition are in communication with exactly the same set of other nodes. There is no
way to distinguish their locations purely from the communication graph.

A more reasonable question is to try to deduce a set of locations that is consistent
with some knowledge of the communication links. For example, one can assume the
communication links to be of the unit-disk nature, where two nodes are in commu-
nication if and only if they are within a unit distance of each-other. Another model
suggests that radio signal attenuates with distance and therefore for each link the
distance between communicating nodes is known from the signal strength. Both
these models are far from reality, because radio signals do not attenuate uniformly
at all directions and distances. The precise propagation characteristics depend on
the irregularities of the transmitter as well as the surrounding environment and
other transmitters. However, even under such unrealistic assumptions, finding a
consistent set of locations is known to be NP-hard [39].

We will not address the question of localization in this dissertation. Much work
has been done on this topic [12, 136, 137], and in most cases this has been shown
to be an intractable problem [15, 39]. The improvement of GPS technologies gives
us hope that in near future it may be possible to rely on it for localization. All
sensors need not carry a GPS unit. Presence of some GPS positioned sensors will
allow us to approximately localize the rest. Given the proliferation of GPS in cellular
phones and hand held devices, it may be practical for sensors to obtain locations
from nearby GPS enabled units.

Routing. Routing on sensor networks is different form routing in other environ-
ments. Here there is no routing infrastructure, and the nodes themselves have to
take responsibility for routing. The number of nodes being large rules out flooding
based methods such as AODV [125] and DSR [75].

Locations play an important role, leading to various forms of geometric rout-
ing [13, 77, 82, 91, 92]. Additionally, there are other forms of geometric routing that
rely on virtual coordinates [16, 17, 118, 128]. In these methods, coordinates are as-
signed to nodes artificially, and may not be related to their true location. This allows
a certain flexibility that aids geometric routing. Routing without the knowledge of
locations is a particularly interesting challenge, and various methods including vir-
tual coordinates, and landmark routing have been applied to this case. Landmark
routing [43, 47, 107] is a method where certain nodes are designated beforehand,
and other nodes know their respective distances to these landmarks. The routing
proceeds in multiple stages by moving in the direction of different landmarks.
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Aggregation. Aggregation may refer to either collecting all the data to one
place [105], or to the process of computing aggregate functions or summary of the
data such as sum, average, maximum, minimum or others. In either case, it requires
information from all the sensors, and repeated aggregation can be a challenge when
it is important to keep communication requirements under control. The unreliable
nature of communication links can create additional difficulties [27, 117, 140].

A variety of methods have been applied to aggregation. These have used meth-
ods from distributed systems, as well as those from database, signal processing and
information theory.

Preprocessing and spatial query. Sensor networks are expected to be able to re-
spond to queries that relate to the monitored space. For example, an aggregate value
(e.g. max or mean) in a given region R, or the problem of finding regions with a
reading higher than some user specified value. Ordinarily, answering this question
requires aggregating the values of all sensors in R. The efficiency can be improved
by constructing some initial summary of the data. Such preprocessing constitute
an important aspect of sensor data processing. The challenge here arises from the
global nature of the question, whereas we would prefer to pre-process and respond
using local distributed methods that do not require global coordination among sen-
sors [52,56,62,99]. Parts I and III in the following deal with questions of distributed
uncoordinated preprocessing to efficiently answer global queries.

Handling mobility. Mobility of sensors introduces many more considerations.
The network changes due to mobility makes it difficult to execute usual operations
of communication and routing. Change in locations of sensors makes it difficult to
correlate data. The final chapter of the dissertation presents an elegant method for
tracking and adapting to mobility for certain types of questions.

1.1.3 Sensor network as a general model

Let us reconsider our view of sensor networks. The model appears to place many
restrictions on the nature of a network, and one might question its validity in any
foreseeable real system. In fact, it is unlikely that any real system will satisfy all
the assumptions made here. It is therefore important to verify the sanity of the as-
sumptions that they are sufficiently general to be useful and we are not developing
methods that are applicable only in an unlikely or impossible universe.

The model we have set up is in general more difficult to work with than others.
In most cases, the assumptions constrain the resources available to the algorithm
designer. A method that works with a more restricted set of resources also works
when better resources are available. This makes the model more general than the
configuration of individual sensor networks, and therefore an effective baseline for
the initial algorithm or protocol design.

8



Heterogeneous networks. The assumption about the sensors do not address any
possibility of different nodes having different shares for resources. The subsequent
chapters treat all nodes to be identical to each-other in hardware and resources. A
real system is likely to be built of different types of components, particularly, some
nodes (let us call them super-nodes) may be more endowed in computation, storage
and communication resources than others. Treating them to be equal to the small
low power nodes may look like a suboptimal use of resources.

The difficulty of trying to design algorithms directly for a heterogeneous net-
work is that the configuration of such a network cannot be predicted beforehand.
There are no specific standards for the positioning and design of super-nodes. Other
conditions, for example the physical environment and financial considerations may
restrict the power and distribution of available super-nodes in networks. Therefore,
we need to design methods that are oblivious to the distribution of super-nodes.

Restricting design to homogeneous systems is not as wasteful as it may seem. An
algorithm or protocol designed specifically with some distribution of super nodes
in mind may not be able to operate at all, or work very inefficiently when the dis-
tribution of super-nodes is very different. The same problems may appear if some
super-nodes fail. However, an algorithm that is efficient on the homogeneous net-
works oblivious to super-nodes, also works on a network with super-nodes. To
better utilize the resources it is always possible to elect the super-nodes as leaders
who gather data from nearby sensors and perform part of the computation on their
behalf. This makes the homogeneous network model the more general one, and
covers the possibilities of heterogeneous networks.

Distributed computation. Similar reasons as homogeneous systems suggest a
more distributed computation effort compared to centralized methods. A design
for distributed computation works when computation can be or must be done in a
centralized fashion - the centralized entity can simply emulate the operations of the
interconnected nodes. This is particularly effective for the sensor network model.
The restrictions of small computation power and memory means that any algorithm
designed for the model is efficient overall and can be emulated relatively easily by
a centralized computer. The model therefore requires designing methods that are
efficient in both distributed and centralized settings.

Communication. The model mentions that the communication is assumed to be
wireless. But wireless communication is difficult to characterize. What we mean
really by wireless communication is the following.

1. For each node, there is a set of neighbor nodes that it can communicate bidirec-
tionally with at a bounded cost.

2. The number of neighbors is bounded for each node.

3. The communication graph is the graph created by connecting each node to its
neighbors with unweighted edges.
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4. The metric of the graph (each edge having equal weight) equals the commu-
nication costs in the multi-hop network.

Note that the assumptions do not rely on any fundamental way on the communi-
cation being wireless. A neighbor need not be one in direct wireless communication.
As long as it can be reached at some bounded cost, it qualifies as a neighbor. The sig-
nificance of the wireless model really is that the communication graph has bounded
degree. Depending on the scenario certain other assumptions may be made. This
topic will be discussed further in the next section in reference to geometric treatment
of sensor networks.

The model therefore is suitable even when some other efficient infrastructures
(wired, wireless or otherwise) are available for long distance communications. Even
if such facilities are available, it is reasonable to assume that nodes physically nearby
can communicate at a low cost. In distributed information processing, this is im-
portant. A sensor frequently needs to communicate with its physical neighbors to
compare data. For example, to decide if a node is a local maximum, its value needs
to be compared with others near it. Any reasonable communication infrastructure
should preserve this property that nodes very close to each other can communicate
at a low cost. As before, we are taking the more constrained option that only the few
close links are low cost. An algorithm that is efficient under these conditions will
also be able to operate when better resources are available.

The consequence of these properties is that we are considering a model that re-
duces to a type of graph, with certain data associated with the nodes and edges. This
is very general, not only for networks, but for questions related to graphs, metrics
and information processing. Thus, ideas developed on this model may well serve
as a starting point for more general algorithms.

The purpose of using this model is to test the limits of distributed local computa-
tion. In using it, we may be sacrificing certain possibilities. However, every model
has its shortcomings. In this case, this is the price to be paid for the generality of the
model. In cases where an efficient solution is not possible by distributed computa-
tion, an investigation can still be fruitful. It may bring to light new structures and
properties associated with the problem or may suggest efficient approximations -
both of which could be useful in other scenarios.

1.2 Geometric abstractions

Geometry is visual. This gives a certain advantage in working with geometric mod-
els. It is possible to apply intuitive thinking and diagrams in solving problems and
representing ideas. The solutions and ideas can then be verified for correctness with
the associated formal framework. In the other direction, a formal system, when
cast into a geometric form becomes easier to visualize, understand and manipulate,
thereby opening new possibilities. The subject has been investigated for centuries,
and many interesting structures, results and tools have been invented. Geometric
interpretation of a problem makes it possible to bring this arsenal into operation.
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To apply this approach to sensor networks, the elements of the network model
(including nodes, communication links and data) need to be associated with the
objects in a suitable model of geometry. The geometric representation forms the Ab-
straction in the given context. It is then possible to utilize different known properties
associated with the geometric abstraction. Geometric models and objects that have
been studied are rich in structure, which can create novel possibilities for applica-
tions and algorithms. The chapters of this dissertation are based on several such
versatile structures.

Geometry comes in many different forms and flavors. For each question, the
suitable geometric idea must be selected. In certain cases, it may be possible to
apply different abstractions to the same problem to obtain different structures and
therefore different properties and applications.

1.2.1 Geometry in sensor networks

There are two common aspects of sensor networks that suggest a geometric ap-
proach:

1. Node data are often associated with locations.

2. Communication is wireless.

Neither of these is necessary, but that they can be found in sensor networks has
encouraged the development of geometric methods. As will be seen in later chap-
ters of the dissertation, geometric ideas can be generalized sufficiently to provide
solutions to cases even where neither of these hold.

Let us consider for now a situation where nodes sense a certain quantity and are
aware of their own locations. In such a case, the data forms a sampling of a function
over the domain that is being monitored. Given this data, it is possible to analyze
this sampling of the function to recover information about the function implicit in
the data. The precision of the answer is necessarily restricted by the resolution of
the sampling, but that is a limitation of any real data. The implicit information
beyond the raw data is the target of any computational method. Consider a few
types of questions one may ask to be computed from raw data - for example, the
number and locations of maxima or minima. or the contours at a particular signal
value, or a compressed summary of the function, or aggregate in a certain region.
Similar questions can be asked of derived quantities - for example, the region where
the reading is changing the fastest. All these questions are geometric in nature. In
particular, they depend on comparison with data items close to each other in space,
or time, or both.

For multiple quantities being monitored the same ideas hold, but now at a higher
dimension. Locations and time can also be treated as additional dimensions of data
to get a unified view. The upshot is that when locations are available, the domain
and the important questions about it are fundamentally geometric. It is therefore
natural to consider geometric methods to address them.
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The most natural concept of a Location is as cartesian coordinate (x, y) in the
plane. But location need not always be in the plane. It may be in higher dimen-
sions, and also in non-euclidean spaces. For example, it may be more practical to
address a sensor location as L1=“Computer Science Building, East wing, Floor 2,
Server Room.” Of course, designing such a location description scheme is a chal-
lenge in itself. But putting that aside, the concept here is that locations may be from
more complicated spaces. The important aspect of locations is that they can still
supply proximity information. For example, L2=“Computer Science Building, East
wing, Floor 2, Corridor 3” may be close to L1. This proximity can be taken into con-
sideration the same way that nearby data is compared for locations in the euclidean
plane. An ability to determine neighborhoods this way makes it possible to apply
geometric techniques to process sensor information.

Wireless communication plays a strong role in determination of proximity. Radio
signal degrades with distance. Effectively, nearby nodes are in direct communication
with each-other. This naturally creates neighborhoods for nodes where information
can be exchanged efficiently. Since such local communincation is in any case neces-
sary in many of the information processing tasks, it can be hoped that a geometry
suitable for processing the data can be associated with the communication graph.

The Unit Disk Graph (UDG) has been considered widely as a theoretical model
to abstract the geometry of the communication graph. In this model, two nodes
are in communication if and only if they are within a unit distance of each-other.
While unit disks can be defined on any metric, they have generally been considered
as unit disks in R2. This makes it possible to apply local algorithms in determining
global structures that help network operations. For example, in this model, it is easy
to compute planar subgraphs such as relative neighborhood graphs and Gabriel
graphs of the communication graph. The planar structure of these graphs make it
possible to apply geometric techniques otherwise not applicable.

While UDG gives a simple model in the local neighborhood, the metric deter-
mined by it still does not quite represent a large network. Due to presence of large
regions without nodes, commonly known as communication holes, the UDG dis-
tance may be largely disproportionate to the true euclidean distance. Equally im-
portantly, true radio communication does not behave in a unit disk fashion. Spa-
tial variations in radio signal propagation produces communication graphs that are
much more uneven.

Note that while communication links do not quite form a UDG, they do form
a metric. It is the metric of the unweighted graph created by the communication
links. It is possible to apply geometric methods purely on the proximity determined
by this metric without regard to real physical distances of the sensors. This is the
basis of location-free geometric algorithms. This is an extremely general principle
that can potentially be applied to a wide variety of scenarios. For example, even in
domains outside of sensor networks or wireless networks.

Implicit in the discussion above is that geometry surfaces at several levels of
abstraction in the question of sensor information processing.

1. Local geometry at a node. Location of the node, nearby nodes and local signal
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characteristics determine its neighborhood in the communication graph. The
combination of all such local neighborhoods creates the graph itself.

2. Global geometry of the network. The network has an intrinsic geometry -
the hop count metric formed by the communication graph. This metric deter-
mines much of the communication possibilities in the network, such as short-
est paths, number of nodes within any k hop neighborhood of a node, and
costs of information dissemination.

Closely related to the intrinsic geometry of the metric is the extrinsic geometry
- the shape of the network. This is the shape of the “cloud” of nodes embedded
in a physical space. Sometimes it is useful to work on this more explicit and
intuitive idea of the network shape, where it is possible to directly deal with
aspects such as network boundary and holes.

3. Geometry of the signal. Beyond the network itself, the signal monitored by
the sensors has a geometry. Imagine a signal defined over the region where the
sensors are deployed - over the shape of the network. Plotting this signal in an
additional dimension creates a surface over the network. It is the geometry of
this surface that can be analyzed to extract hidden structures in the data and
the network.

For both the geometry of the network and of the signal, an interesting question is
how the local structures add up to create the large scale global properties. Since sen-
sors are best utilized as local operators, it raises the natural question of how much
of global problems we can solve through local algorithms. Much of this disserta-
tion deals with this local to global relation. In fact much of geometry deals with
questions of local to global integration. This topic will be revisited in the conclusion
chapter after we have discussed geometric algorithms for sensor networks.

1.3 Overview of the chapters

A sensor network has two types of tasks. The first is to manage the data in the
network. This implies acquiring, processing and storing the data suitably and af-
terwards answering queries on this data efficiently and quickly. In case of changing
data, it may also be necessary to update the stored information and data structures
to adapt to the changes.

The other task of the network is to manage itself. For example, localization,
scheduling sleep cycles and transmissions, handling interference and routing; and
other facilities that may be needed by efficient data processing algorithms.

Each part of the dissertation looks at these two types of tasks from different geo-
metric perspectives. As will be seen, these tasks are not too different, and similar ab-
stractions can help both. Routing will be used as the unifying network management
task and will be revisited in each part. Routing can be seen as an information pro-
cessing task – the search for a path in the network. In the other direction, informa-
tion processing can be seen as a routing question – finding route(s) to store/retrieve
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the right data. In the final part of the dissertation, routing and information process-
ing merge to be almost indistinguishable.

Part I: Metric Spaces and Spatial Distributions. This part abstracts the network
with its intrinsic geometry – the metric space. First we derive sufficient conditions
or routing in a metric with a short stretch – a path of length at most (1+ ε) times the
length of the shortest path.

Next, we consider growth bounded metric spaces. This is a slightly more re-
stricted type of metric space where the volume of a ball increases polynomially with
the radius. This restriction lets the local geometry at a node be arbitrary, but restricts
the global geometry to behave approximately like a euclidean metric. For this type
of metric, we show that (1 + ε) stretch routing can be achieved with small routing
tables. The routing tables themselves can be constructed efficiently provided some
approximate estimates of multi-hop distances are available. Parts of these results
have previously appeared in [134].

The last chapter in this part shows that for the growth bounded model, it is
possible to efficiently perform spatial gossip. This is a form of information exchange
where nodes select exchange partners by distances. After execution of the gossip,
it is possible to efficiently answer aggregate queries in sub-regions of the network.
This chapter is based on [133].

The results described above that depend on a growth bounded metric actually
utilize a spatial distribution that is known to create graphs with a small world struc-
ture. This structure is known to provide short stretch paths using relatively few
links, which is the secret of the (1 + ε) stretch routes. The short routes enable effi-
cient the gossip method in the last chapter.

Part II: Virtual Coordinates and Metric Deformation. Virtual coordinates are co-
ordinates assigned to nodes without performing localization. The availability of
coordinates allows using location based geometric algorithms. Additionally, virtual
coordinates permit the flexibility to modify the geometry so as to gain better prop-
erties from the geometric algorithm than when applied to raw locations.

The virtual coordinate computation in this part relies on Ricci Flow – a power-
ful technique in modern mathematics. This method can be applied distributedly.
The result is a set of coordinates in the plane that allows efficient routing and data
storage.

This part is based on differential geometry. The metric is modified locally to ob-
tain global properties. The local changes to intrinsic geometry lead to a simplified
shape of the network where the “holes” are circular. This simplified geometry al-
lows us to perform routing and storage more easily and more uniformly. In fact,
the simplified geometry makes it possible to eliminate the holes in a certain sense.
These results have recently been published in [130, 131]

Part III: Geometry and Topology of Information. The last part is more informa-
tion oriented than the rest. Here the emphasis is on analyzing available data to
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answer queries and routing requests with respect to the data.
The first abstraction in this section is a contour tree that is a compact distributed

summary of the data. This structure allows us to answer queries such as “What are
the regions in the network where the temperature is greater than 40?” or routing
queries such as “Find a path from A to B that does not go through a temperture
greater than 35.” This result has been published in [135].

The second abstraction is a differential form. Using this, it is possible to track
moving objects in the sensor field. The differential form essentially maintains infor-
mation to be able to answer questions like “What is the total weight of objects in
region R?” The solution in fact is an adaptation that lets us apply Stokes Theorem to
sensor networks. This basic primitive allows searching and delivering messages to
individual mobile objects, searching for a nearby object and several other function-
alities. The method also works when the network itself is mobile and dynamic. This
recent result is unpublished as yet, appearing for the first time in this dissertation.

These methods once again relate local properties to global properties, this time
for the data. The contour tree is a concept from Morse theory to interconnect critical
points of data in a meaningful way. While critical points are local features, the inter-
connections yield global properties. The differential form similarly adapts the local
data in suitable ways to efficiently answer questions at larger scale.
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Part I

Metric Spaces and Spatial
Distributions
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Chapter 2

Introduction to Metric Growth

The communication graph of a network in our model always induces a metric, a
measure of distances, and the properties of this metric can be utilized to build effi-
cient algorithms. An edge in the graph signifies that the end-points of the edge are
within direct communication of each-other. The ‘distance’ between any two nodes
is the number of communications (also called hops) that need to be executed. This
distance forms a metric.

Definition 2.0.1 (Metric.). A metric on a set S is a function d : S× S → R, where R

is the set of real numbers, such that d has the following properties for x, y, z ∈ S.

1. Positive definite: d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y

2. Symmetric d(x, y) = d(y, x)

3. Triangle inequality d(x, z) ≤ d(x, y) + d(y, z)

Function d is called the distance function, and S and d together are said to form a
metric space.

In our case, the distance function is really the communication cost between
nodes, and adjacent nodes in the graph can communicate within a unit cost - by
a single transmission, while nodes farther apart require more intermediate trans-
missions to communicate. Observe that the metric idea is not specific to the case
where the graph constitutes of pairs in direct communication. It can be used in gen-
eral where nodes adjacent to an edge are within a bounded communication cost or
‘distance’.

The first chapter in this part investigates the abstraction of a network as a metric
space to perform efficient routing. Routing a message from a source node to a des-
tination node is inherently a question of making decisions based on the metric. If
the metric over the entire network is known, routing becomes trivial. A node with
complete knowledge can always decide which of its neighbors is nearer to the des-
tination in the given metric, and forward the message to that neighbor to advance
the message further. In particular, complete knowledge makes it possible to find
the shortest route from source to destination. A shortest route is generally desirable
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because it delivers the message at fewest hops, therefore is in a sense most efficient
and reliable. The entire metric is however a great deal of information, and not really
practical to know except in very small networks. more precisely, it needs at Ω(n)
storage and processing at each node, which is impractical in our model.

In chapter 3 we present a concept that shows how a path almost as short as the
shortest one can be found without always storing large amount of data for the rout-
ing. This works even when the knowledge of the metric is only approximate. For-
mally abstracted as an approximate distance oracle that takes as input the pair of nodes
to return their metric distance to within constant factor. Under these conditions, we
derive a set of sufficient conditions that when satisfied, will deliver the message by
a path almost as short as the shortest path. The essential concept is general, and
holds for any metric.

Certain network metrics have additional structure. These have been considered
in different contexts to obtain better routing properties. For an unweighted graph
G and we denote by Nr(p) the set of nodes within r hops from p, also called the
ball of radius r centered at p. A graph is said to have ∆-expansion rate if |N2r(p)| ≤
∆|Nr(p)|, for any p, r [4, 76]. A graph is said to have doubling dimension ∆ if any ball
of radius 2r can be covered by at most 2∆ balls of radius r [64]. A graph is said to
have bounded growth rate ∆ if |Nr(p)| = O(r∆) [101]. All three models try to capture
that the metric growth is restrictive. For example, a binary tree does not satisfy any
of the definitions above.

In the sensor network model, we impose the (upper and lower) bounded growth
rate model. If we place at most a constant number of sensor nodes inside any unit
disk and the holes in the sensor networks are not very fragmenting, the number of
nodes at k hops from a node p will be around Θ(k). More precisely, we consider
a graph such that the number of nodes at a distance exactly r from p, represented
by |∂Nr(p)| is bounded by |∂Nr(p)| = Θ(ρrρ−1). This is equivalent to |Nr(p)| =
Θ(rρ). This model is shown to imply a bounded doubling dimension, therefore it is
stronger.

The significance of this model (and the implied bounded doubling dimension)
is that it acts as a coarse approximation of a Euclidean metric. Imagine the number
number of nodes |∂Nr(p)| in any ball to represent the volume of the ball in the met-
ric space. In Euclidean space, this volume grows in direct proportion to rd where
r is the radius and d the dimension. The growth bounded model is analogous and
asymptotically show similar growth, but the Θ(rρ) allows a sufficient relaxation that
a discrete graph can realize the growth. Consider for example the ZZ× ZZ lattice of
vertices with the natural two dimensional grid as the graph. This embeds isometri-
cally into R×R. The the area of a ball of radius r in the grid graph is approximated
to within constant factors by the number of lattice points in a ball of same radius
in the euclidean plane. The model we employ expands this idea to more general
graphs and allow for holes, occasional longer links and other irregularities to create
a better representation of network graph that can still be analyzed in analogy with
Euclidean plane.

The bound on metric growth allows construction of small world graphs. For any
two nodes that are a distance r from each-other, a link is added between with prob-
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ability proportional to 1
rρ . J. Kleinberg [86] showed that these links produce a small

world graph where any two nodes are at a small number of hops from each-other.
This property is utilized in each of the following two chapters. In chapter 3 the prop-
erty is used to create a routing scheme where the small world links coupled with the
sufficient conditions of small stretch routing guarantee efficient routing with only a
small amount of data stored at each node. In chapter 4 the small world property
is used (following Kempe et al. [79]) to build an aggregation scheme where nodes
exchange data randomly according to the distribution of the small world links, and
thereby obtain aggregate information for different neighborhoods - otherwise called
multiresolution aggregates.

In a sensor network, there is no freedom to change the network graph to insert
additional edges, therefore it is not possible to create actual small-world links. In-
stead, these links act as a suggestion for useful node-pairs for communication. The
actual communication is still achieved by multi-hop routing between these nodes.
In the following section we review the research in routing, small world models, and
information processing that are related to the chapters in this part.

2.1 Review of related research

In this section we survey related work and establish their connection to our results.

2.1.1 Spatial distribution and routing

The spatial distribution in selecting the long links in our chapter coincides with
the small-world model and decentralized search proposed by Kleinberg [85, 86] to
model Stanley Milgram’s famous experiment [110,151] on the small-world phenom-
ena in social networks. The setup in the small world model is the following. Given
a 2D grid (possibly of infinite size), each node chooses a long link with probability
1/r2 where r is the length of the long link. Together with the four neighbors per node
on the grid, a greedy routing with the location of the destination can be achieved

with O(log2 n) jumps (on either short links between neighbors on the grid or the
long links constructed) with high probability. Notice that in this setting an accurate
distance oracle is actually available and greedy routing on the original grid suffices
to deliver the message along the shortest paths on the grid. In the small world liter-
ature people care most about adding extra long links to create short paths between
any two nodes. In our setting the long links are realized as paths in the original

network. Nevertheless, our results show that if each node chooses O(log2 n) long
links, a slightly more sophisticated but distributed routing scheme with long links
has O(log n) jumps, and also a total travel distance at most 1 + ε of the distance
between source and destination on the grid.

The spatial distribution has been explored in a number of other data delivery and
information dissemination scenarios in sensor networks, e.g., for adding long com-
munication wires to reduce power consumption [138], or, for gossip and locality-
sensitive information exchange [79, 133].

21



Small state routing in sensor networks. To deal with the problem of local mini-
mum in geographical forwarding, various techniques have been proposed to solve
the problem of ‘routing around holes’. Earlier proposals assume unit disk graph
model on the communication network and propose to planarize the network and
apply face routing [13, 77, 92]. Such planarization unfortunately fails badly in prac-
tice due to complex radio characteristics [83]. Improvement of the planarization
process may selectively remove crossing edges [61], or use a generalized face rout-
ing on graphs with crossing edges [163], or planarize an abstracted graph to filter
out the local connectivity irregularity [49]. Alternatively, one may also develop vir-
tual coordinates to support greedy routing [16,43,47,118,119,128]. Most of them do
not guarantee small stretch routing and often require preprocessing to first discover
and understand the network topologies.

We explain two protocols in more details as they are more relevant and compare
with our scheme. In virtual ring routing (VRR) [17], proposed by Caesar et al., the
nodes are ordered by their node IDs (or any other identifiers) on a ring and the paths
for nearby nodes on the ring are stored in the routing tables of the nodes on these
paths. Notice that nearby nodes on the ring may be far away in the communica-
tion network. When a packet is routed to a destination, it is delivered by using the
local routing table to the next hop on the pre-constructed path leading to a node
closest to the destination in the ID space. VRR can be understood as building long
links connecting nodes with adjacent IDs, which can be arbitrarily far apart in the
network. The routing table size is roughly in the order of O(

√
n) in a uniform and

dense network. And there is no guarantee on the path stretch.

The small state and small stretch (S4) routing by Mao et al. [107] adopted the
idea of compact routing schemes by Thorup and Zwick [148, 149]. The basic idea
is to select about O(

√
n) landmarks. These landmarks flood the network and other

nodes record the hop count distance to these landmarks. In addition, a node p also
maintains routing table entries to the nodes that are closer to p than their closest
landmarks. The routing table size is about O(

√
n) and a greedy routing scheme is

guaranteed to deliver the message to the destination with maximum stretch of 3. By
exploiting the geometric properties of the sensor network deployment, we are able
to get 1 + ε stretch and reduce both the number of landmarks and the routing table
size to polylogarithmic in the network size.

Compact routing in general. From a theoretical aspect, compact routing that min-
imizes the routing table size while achieving low stretch routing has been studied
extensively [121]. There are two popular models in the literature, the labeled rout-
ing model and name-independent routing. In the labeled routing model [28, 37, 149],
one is allowed to produce for each node a label (typically of polylogarithmic size)
such that routing is done with the labels of the source and destination. In the name-
independent model [4, 89], the nodes are given generic IDs that are independent of
the routing scheme. Thus routing is inherently more difficult as the routing scheme
needs to also find out where the node is. To understand this in the case of sensor
network routing, name-independent routing works directly on the node IDs (such
as in the virtual ring routing scheme). If we use geographical locations or any other
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virtual coordinates, such coordinates are the ‘labels’ and to complete the solution
one needs to also employ a location service (as in [98]) that maps node IDs to their
geographical locations or virtual coordinates. Put in this perspective, our scheme
stays in between the labeled model and the name-independent routing model. We
have a label of the nodes (such as the geographical locations) naturally, but the labels
only give imperfect distance information and do not guarantee delivery.

Generally speaking, the theoretical results in compact routing in a graph whose
shortest path metric has a constant doubling dimension are able to obtain, with poly-
logarithmic routing table size, 1 + ε stretch routing in the labeled routing scheme
(see [20] and many others in the reference therein), and constant stretch factor rout-
ing in the name-independent routing scheme [3, 89] (getting a stretch factor of 3− ε
will require linear routing table size [3]). The results here are all centralized con-
structions and aim to get the best asymptotic bounds. Our focus in the following
chapter is on a principle for distributed implementation at each node and its practi-
cal implementation in the scenario of ad-hoc sensor network routing.

2.1.2 Information processing in sensor networks

Existing approaches for processing information in sensor networks can be classified
into two main approaches: the standard sink model and distributed indexing and
storage. In the standard sink model, data is delivered to the sink for out-of-network
processing. Queries are disseminated from the sink to sensor nodes who will then
report their readings. Data pruning and aggregation can be undertaken when data
propagates up the tree to the sink (e.g., in TinyDB) [105]. The sink model assumes
little or no in-network processing and most of the intelligence stays outside the net-
work.

The second approach uses in-network storage, builds distributed indices and
stores partial aggregates to facilitate user queries. Examples of this category include
DIMENSIONS [52–54], DIFS [62], DIM [99], and fractional cascading [56]. As stor-
age devices such as flash drives become cheaper and smaller, the approach of using
collective distributed storage becomes increasingly feasible. A distributed index-
ing structure typically involves a hierarchy to bring together data across different
attribute space or spatial separations (e.g., quad-tree or kd-tree). Partial aggregates
are computed bottom up for each node in the hierarchy. Queries take a drill-down
approach and traverse the hierarchy to visit nodes holding relevant data for de-
tailed information. Important considerations for distributed indexing and storage
include how the partial aggregates are computed and who holds the aggregated
data/indices. A straight-forward way is to take a hashing scheme and make certain
nodes be responsible to hold aggregated data/indices on the hierarchy (e.g., in DI-
MENSIONS and DIFS). Special care is typically taken for nodes holding data at high
levels of the tree to alleviate communication and query bottleneck [54].

The approach of fractional cascading in [56] belongs to the second category and
tries to avoid the bottleneck created by higher level nodes in the hierarchy. In [56],
the sensor field is recursively partitioned by a standard quad-tree. Aggregates from
each quad in the tree are computed and stored at all sensor nodes in the quad.
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Each node has the values of itself and aggregates of all the quads in which it re-
sides. This improves data survivability and query efficiency as important informa-
tion (e.g., the aggregates of larger regions) are naturally replicated more widely. Our
multi-resolution representation can be considered as an alternative way to achieve
fractional cascading. To see the difference of this method with [56], instead of a fixed
quad-tree partitioning, we keep the data summarization hierarchy of each node
adaptive and centered on the node itself. Thus any two nodes will have slightly
different world views at each scale, as their multi-resolution ranges differ, while
two leaf nodes in a fixed quad-tree may share the same data of many high-level
quads. Another novelty of this chapter is to investigate gossip-based algorithm to
disseminate information and construct the multi-resolution data representation. A
survey of gossip algorithms and applications in sensor networks is covered in the
next subsection.

2.1.3 Gossip algorithms

Gossip algorithm is attractive for sensor networks, due to its distributed nature,
robustness to network dynamics, and good load balancing. In a gossip algorithm
each node picks, according to some underlying deterministic or randomized rule,
another node and exchanges information with it [69]. There are two important as-
pects in a gossip algorithm: the gossip communication mechanism that decides which
node to communicate with; and the gossip computation protocol that decides what
data to exchange.

In the literature two rules to select node to gossip with are prevailing. In uniform
gossip, each node chooses to communicate with a randomly chosen node at each
step [33]. In standard gossip on a graph, a node picks, according to a probabilistic
distribution, one of its immediate neighbors in the graph [14,157,158]. Of particular
relevance to our work is the spatial gossip algorithm proposed by Kempe, Kleinberg
and Demers, where a node x selects a node y with probability proportional to 1/dρ,
where d is the distance between x and y and ρ is some constant parameter [79].
The intuition of the spatial distribution complies with the principle of fractional
cascading and our multi-resolution data representation. Data from a sensor node
should, intuitively, be disseminated more to its nearby neighbors and less to far
away neighbors.

On top of the gossip communication mechanism, a gossip computation proto-
col specifies what information to be exchanged. In probably the simplest setting,
information spreading [79], gossip is used to disseminate a piece of data from one
node to the rest of the network. When two nodes communicate, the message is
propagated. The protocol stops when all the nodes receive the message. More so-
phisticated information exchange protocols can be used to compute aggregations
and global statistics among the gossip nodes. For the problem of distributed aver-
aging [14], each node takes the average of the values of itself and its gossip part-
ner. The algorithm converges when all nodes hold values close to the true average.
Gossip-type protocols have also been developed in various settings to compute, in a
distributed way, consensus [14, 113], various aggregates [78, 115], distributed linear
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parameter estimation [157, 158], spectral analysis [80] or random linear projections
of the data field for information compression and recovery [127].
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Chapter 3

Routing in Metric Spaces Using
Spatial Distributions

We propose a generic design principle for scalable routing in ad hoc wireless sensor
networks. In our setting we assume an approximate distance oracle that estimates
the graph distance (hop count distance) of any two nodes up to constant factor up-
per and lower bound. Such an approximate distance oracle can be constructed by
using a landmark-based scheme, or obtained through the Euclidean distance of the
geographic locations of the nodes. We store a small number of routing paths for se-
lective pairs of nodes, which, when integrated with the approximate distance oracle,
allows 1 + ε stretch routing.

In particular, we first derive a set of sufficient conditions to select the next hop
of the routing path such that these conditions can be verified locally at each node
and enable 1 + ε stretch routing on any metric. These conditions will serve as the
‘greedy routing’ rule. Next, to satisfy these conditions, the routing paths from each

node u to O(log2 n) destinations are stored in the network, where the destination
is selected with probability proportional to 1/rα, with r as the distance to u and α
as an appropriate constant. For metrics of bounded growth, the routing algorithm
conforming to the set of sufficient conditions guarantees with high probability 1 +

ε stretch routing with routing table size O(
√

n log2 n) on average for each node.
This scheme is favorable for its simplicity, generality and blindness to any global
state. Global routing properties emerge from purely distributed and uncoordinated
routing table design.

3.1 Introduction

Scalable routing is one of the most challenging problems in distributed network
design — considerations include compact storage with aggressive address aggre-
gation, efficient propagation of topology update, and most importantly, distributed
and uncoordinated decisions to enable globally close to optimal routing properties.

Internet routing achieves scalability through subnetwork partitioning hierarchy
and address aggregation, with one routing table entry representing routing infor-
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mation to many IP addresses in a subnetwork, and extremely efficient high-end
switches to quickly classify and deliver packets. For resource constrained wireless
nodes used in ad hoc and sensor networks, scalable routing requires even more ag-
gressive methods to produce compact routing information, and innovative ways to
exploit the special properties of such networks.

Large-scale wireless sensor networks have strong spatial properties — they are
closely related with the underlying geometric domain in which they are embedded,
in terms of node distribution and the strong correlation of graph connectivity and
node proximity. Various properties of the geographical embedding of the nodes
have been exploited for compact routing in a sensor network — mostly in an explicit
manner, as the geographical locations used in geographical routing families [13, 77,
92], or as in many virtual coordinate system design [16, 43] that abstracts the global
geometric/topological properties of the embedding.

In this chapter we use the metric properties of a wireless network graph for rout-
ing implicitly, and store selective routing paths in the network, such that the average
routing table size is small, the path stretch is close to optimal (the length of the path
is 1 + ε times the shortest path for a given ε > 0), and both the preprocessing and
the routing can be achieved by the nodes making decisions on their own, blind to
any global state.

We investigate the following problem:

Given an approximate distance oracle O, how to design compact routing tables to help
deliver messages in a large network.

First we remark that if we are given an accurate distance oracle that returns the hop
distance of any two nodes in the network, then greedily selecting the next hop with
smallest distance to the destination will guarantee delivery along the shortest path.
Of course, the construction, maintenance and compact representation of an accurate
distance oracle is not easy in a distributed setting. As shown in [148], accurate dis-
tance oracle would require about Ω(n) storage per node in a network of n nodes. An
approximate distance oracle is easier to obtain. In many cases, some approximate
distance estimation is readily available.

For an example, in the sensor network setting, one can use the Euclidean dis-
tance to approximate the hop count distance of two nodes in the network. Obvi-
ously it is in most cases not an accurate distance oracle, and a message can get stuck
at a local minimum if the neighbor on the shortest path to the destination estimates
its distance to be larger than the distance estimation between source and destina-
tion [13, 77]. Therefore we will have to augment the approximate distance oracle
with additional routing information to help packets get out of or avoid the local
minimum.

With any approximate distance oracle, the solution we propose for routing is to
store the routing paths between some pairs of nodes that are not immediate neigh-
bors, called long links. In particular, for some selected pair u, v a path between u, v,
P(u, v), is recorded in the routing table of all nodes on this path. When a node p
wants to send a message to a node q, it uses its immediate neighbors, together with
the nodes with which p has long links. We define a forwarding region (see Fig. 3.1),
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from which p selects the next hop in the path. If the selected node x is a neighbor
through a long link, then the routing information stored on the path P(p, x) is used
to deliver the message to x. Node x then repeats an identical procedure to advance
the message. Now the question is, what long links should each node build and what
is the forwarding region, without any global knowledge of the network, such that
the routing table size is small, the path stretch is low, and delivery rate is high?

Our main theoretical results apply to arbitrary metrics of bounded growth. As an
illustration, we describe the special case with Euclidean distance as an approximate
distance oracle. That is, δ1|pq| ≤ σ(p, q) ≤ δ2|pq|, with δ1 ≤ δ2 as two constants, |pq|
as the Euclidean distance between p, q and σ(p, q) as the minimum hop count be-
tween p, q. This assumption makes no unit disk graph requirement on the wireless
radio communication model and uses two relaxation constants δ1 and δ2 incorpo-
rating both local distance disturbances due to wireless communication and global
irregularities such as fat network holes1. It also allows localization errors as accurate
location discovery is difficult. The routing tables are built by each node selecting its
long links randomly with a spatial distribution. In particular, a node p would select
a long link partner q with probability proportional to 1/|pq|2. The number of long

links for each node is O(log2 n) with the constant depending on the stretch require-
ment 1 + ε and the distance oracle error factors δ1, δ2. The routing algorithm using
the augmented long links is able to deliver the message along a path of stretch 1+ ε.

In fact, the theoretical results in this chapter address a general setting in which
an approximate distance oracle is given for a metric space with bounded growth
rate. A graph has bounded growth rate ρ if the number of nodes within r hops from
any node p in the network is bounded by c1rρ and c2rρ from below and above re-
spectively, with two constants c1 ≤ c2. This model has been used to capture any
physical constraints that disallow too many nodes ‘packed’ within certain distance
and the graph has a bounded polynomial growth pattern instead of an exponential
growth pattern (e.g., a balanced binary tree). This kind of geometric growth has
been observed in many different scenarios such as VLSI design, the delay metric on
the Internet overlay networks, and in our setting, wireless sensor networks. When
sensor nodes are roughly uniformly deployed in a geometric region with bounded
density per unit area2 and when the network is not too much fragmented by de-
ployment holes, the graph growth rate is typically 2. It is this packing property
that allows us to aggressively compress the routing table entries by a simple routing
table neighbor selection rule dominated by a spatial distribution.

For a metric with growth rate ρ, the long link p, q is selected by p with prob-
ability proportional to 1/rρ, for r = σ(p, q) being the network hop distance be-

tween p, q. With O(log2 n) long links per node and on average routing table size

of O(n1/ρ log2 n) per node, the 1 + ε stretch routing can be achieved with the help
of the approximate distance oracle and the long links. Thus this principle of using

1We define a hole to be fat if any two nodes on the boundary of a hole has its hop count distance
to be at most a constant factor of the Euclidean distance.

2If the density in a region becomes too high, it is easy to cluster neighboring nodes and operate
on clusterheads so that the density of clusterheads is bounded by a constant.
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spatial distribution in routing table design can be applied to applications in which a
decentralized search is desired with only some approximate proximity information.
For example, in an ad hoc network setting when location information is not avail-
able, one can use other distance estimation (e.g., by landmark scheme [43,87]). In the
design of overlay networks on the Internet, one can estimate the distance between
two peers by the round-trip delay estimation. For all these scenarios the results in
this chapter show a way to achieve distributed routing along approximate shortest
paths with a modest sized routing table on each node.

We also report simulation evaluations of this approach in a sensor network set-
ting, to complement the theoretical analysis. For a connectivity network in which
geographical greedy routing only achieves a delivery rate of 50% or so, with about
7 long links per node, we are able to achieve a delivery rate of 99% or higher. The
routing table construction can be implemented in a completely distributed manner.
Each node simply chooses its respective long links by sampling geographical loca-
tions under the spatial distribution, rounded to the nodes closest to the sampled lo-
cations, as in [133]. The routing table information for these long links is constructed
in a bootstrapping manner, with the routes for nearby pairs constructed first and the
routes for far away pairs constructed by using the routing tables already constructed
so far, in the same manner as regular routing requests.

We have a second implementation by using landmark-based routing to show
the power of the spatial distribution in routing table design. In particular, we se-

lect O(log2 n) landmarks that flood the entire network and each node records the
landmark distance vector. The approximate distance oracle is implemented by the
centered virtual distance as proposed in [43], which only requires the landmark
distance vector of two nodes. We select on the paths to the landmarks long link
neighbors to help improve the delivery rate. This implementation will involve some
preprocessing of flooding the network from the landmarks but the routing paths of
the long links are implicitly implied by the landmark distances. Thus the routing

table size is improved to O(log4 n), compared with O(n1/ρ log2 n) when the routes
have to be explicitly stored on the nodes of the paths.

In summary, the augmentation of long links with spatial distribution to get 1 +
ε stretch routing on an approximate distance oracle is favorable for its simplicity,
generality and ‘blindness’ to any global state. Global routing properties emerge
from purely distributed and uncoordinated routing table design.

3.2 Small stretch routing with approximate distances

In this section we describe the idea of routing with 1 + ε stretch in a suitable met-
ric spaceM. We use d(p, q) to represent the estimate of distance between p and q
supplied by the approximate oracle O, and σ(p, q) to denote the true but possibly
unknown graph distance (hop count distance) inM. We assume that a node is able
to get the approximate distance d(p, q) from just the names of p, q. The implementa-
tion of this distance oracle is elaborated in a later section. Here we show that when
the long links are carefully chosen the routing stretch is low.
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Accurate distance oracle. To demonstrate the basic concept, consider the case in
which the oracle is in fact accurate, that is, d = σ. The objective is to recursively
build a route from s to t with the help of the long links. Suppose s takes a long link
to node p, then we want σ(s, p) + σ(p, t) to be not very large compared to σ(s, t):

σ(s, p) + σ(p, t) ≤ γ · σ(s, t), (3.1)

Where γ ≥ 1 is a parameter depending on ε. Observe that inequality (3.1) defines
an ellipse in R2 with s and t at foci. Now we impose an additional restriction that
moving from s to p implies a certain progress in direction of t. In particular, p is
closer to t by a factor of at least 0 ≤ β ≤ 1:

σ(p, t) ≤ β · σ(s, t). (3.2)

This describes a disk centered at t.
Next, we select γ and β such that the selection procedure enforced by inequali-

ties (3.1) and (3.2) when applied recursively, produces a path of stretch at most 1+ ε:

R(s, t) ≤ (1 + ε) · σ(s, t), (3.3)

where R gives the length of the path created recursively.
A forwarding region Fε(s, t) is a set of points p in M from which s can select p

satisfying the above relations. The following lemma gives a detailed description:

Lemma 3.2.1. Values of γ and β satisfying γ + εβ ≤ 1 + ε constitute the forwarding
region, with the equality corresponding to the region boundary.

Proof: Observe that we have:

R(s, t) ≤ σ(s, p) + R(p, t)
≤ σ(s, p) + (1 + ε) · σ(p, t)
≤ σ(s, p) + σ(p, t) + εσ(p, t)
≤ γσ(s, t) + εβσ(s, t),

When γ + εβ ≤ 1 + ε, the right hand side is no greater than (1 + ε) · σ(s, t). �

It is easy to see that γ must lie in the interval [1, 2+3ε
2+ε ] for a given ε. For each

value of γ, we have a region Hγ,ε(s, t) ⊆M which is the intersection of the ellipse
bounded region and the disk. Thus, formally, the forwarding region is the union:
Fε(s, t) = ∪γHγ,ε(s, t). See Figure 3.1.

Approximate distance oracle. Now we look at the case in which the oracle sup-
plies an approximate measure of the distance, with δ1 and δ2 as the lower and upper
bounds: ∀p, q ∈ M, δ1d(p, q) ≤ σ(p, q) ≤ δ2d(p, q). Then, allowing for approxi-
mation error, it would be sufficient to guarantee the following inequalities (corre-
sponding to relations (3.1)-(3.2) respectively,):

δ2d(s, p) + δ2d(p, t) ≤ γδ1d(s, t)
δ2d(p, t) ≤ βδ1d(s, t)

(3.4)
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It can be verified that a sufficient relation between γ, β and ε is again given by
the same inequality as lemma 3.2.1. And we can obtain again that R(s, t) ≤
(1 + ε)σ(s, t).

The idea of forwarding region is very general and hold in any metric space. This
implies that for any metric space, including all network graphs, a routing scheme
based on this concept guarantees a low stretch. What is necessary is that a node
should have a long link to some node p in the forwarding region for the current
destination.

Routing Mechanism. The analysis above suggests a natural routing scheme. Each
node selects long links such that it has either an immediate neighbor or a long link
to the forwarding region of any destination, and keeps corresponding routing table
entries. The routes to the long link neighbors are stored on the routing table of the
nodes on the path. When a node s has a message to be delivered to a destination
t, s will check its routing table to find a node p (either s’s 1-hop neighbor, s’s long
link neighbor, or an endpoint of a long link whose route goes through s), such that
p lies in the forwarding region Fε(s, t). Node p on receiving the message will exe-
cute an identical procedure to forward the message into Fε(p, t) and so on. Efficient
randomized construction of the routing table is shown in next section.

3.2.1 (1 + ε)-stretch forwarding region

Geometric setting. We first discuss the case of the Euclidean plane R2, which
provides sound intuition about the geometry of the method. W.l.o.g. the coordinates
of s and t, separated by a distance r, are (−r/2, 0) and (r/2, 0) respectively. We
examine the forwarding region to select the long link neighbor p to realize a 1 + ε
stretch path to t.

With an accurate distance oracle, the relation (3.1) defines in R2 a region whose
boundary is given by an ellipse:

4x2

γ2r2
+

4y2

r2(γ2 − 1)
= 1.

And (3.2) defines a disk whose boundary is given by a circle:

(

x− r

2

)2
+ y2 =

(1 + ε− γ)2

ε2
r2.

As gamma is varied, the locus of intersection of these two curves traces out the
boundary of the forwarding region Fε(s, t) (see Fig. 3.1 (i)).

For any point q on the boundary of Fε(s, t), the angles ∠qst and ∠qts are func-
tions of γ and ε only, and are independent of r. This implies that the shape of the
forwarding region is scale invariant, i.e., it does not depend on the distance between
source and destination. Figure 3.1 (ii) shows the shapes of forwarding regions for
different values of ε. Smaller values of ε create smaller and narrower forwarding
regions.
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Figure 3.1. (i) Boundary of Fε as intersection of ellipses and circles. (ii) Forwarding regions
for different values of ε from 0.2 to 2. (iii) Forwarding regions for different values of ε from
0.2 to 2 for approximate oracle.

With an approximate distance oracle, the corresponding ellipse and circle equa-
tions are given by:

δ2
2

δ2
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· 4x2
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+
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δ2
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2
γ2 − 1

) = 1
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x− δ2
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2

)2
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(

δ1

δ2
· 1 + ε− γ

ε
· r
)2

The corresponding forwarding regions are shown in Fig. 3.1 (iii). Observe that in
this case the forwarding regions are smaller and source s is not in the forwarding
region. This is due inaccurate distance estimates and necessitates the use of long
links - without which s cannot access the forwarding region.

The graph setting. The geometric intuition needs to be realized in an ad hoc sensor
network setting. In this section, we use the concept of a graph and a continuous
metric space interchangeably for ease of description, but the results hold for any
metric space that fits the model. A graph metric refers to the shortest path metric.

In general, we consider a graph such that the number of nodes at a distance ex-
actly r from p, represented by |∂Nr(p)| is bounded by |∂Nr(p)| = Θ(ρrρ−1). This is
equivalent to |Nr(p)| = Θ(rρ). Note that the diameter D of such a graph is bounded
by Θ(n1/ρ). We have the following quick observation.

Lemma 3.2.2. Given an unweighted graph G with |Nr(p)| = Θ(rρ), the graph has a
doubling dimension η = O(ρ).

Proof: Consider a ball N2r(p), we use a greedy algorithm to select balls of radius
r to cover it. In particular, we select a node q in N2r(p) that is not yet covered,
and cover all nodes in Nr(q). Iterate until all nodes are covered. Now we bound
how many balls are selected (denote this set as Q). To see that, we take the selected
nodes q ∈ Q and the balls Nr/2(q). First they do not overlap as any two nodes
in Q are of distance at least r away. Thus by a volume argument we have |Q| ≤
|N2r(p)|/ min(|Nr/2(q)|) = O( (2r)ρ

(r/2)ρ ) = O(4ρ). �
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Lemma 3.2.3. In a metric space with doubling dimension η, a ball of radius R can
be covered with O(cη) balls of radius R/c.

Proof: A ball of radius R can be covered with 2η balls of radius R/2. We recursively
cover each such ball with balls of half the radius, until the size of balls used falls be-
low R/c. The resultant number of balls is 2ηk, where k = ⌈log c⌉. This is equivalent
to O(cη). �

We now show the presence of a sizeable forwarding region for such a graph,
when one routes from s to t:

Lemma 3.2.4. There is a ball of radius δ1
δ2

(

γ−1
2

)

r that lies inside Fε(s, t).

Proof: Consider a point q on the shortest path between s and t separated by d(s, t) =

r. Now, we take a ball of radius h = δ1
δ2

(

γ−1
2

)

r centered at q. One can verify that

all the points inside the ball Nh(q) are inside Fε(s, t), as they satisfy the inequalities
(3.4). In particular, for any point p ∈ Nh(q), d(s, p) ≤ d(s, q)+ h, d(p, t) ≤ d(q, t)+ h.
Now we can verify that δ2(d(s, p) + d(p, t)) ≤ δ2(r + 2h) ≤ δ1γr. Also δ2d(p, t) ≤
δ2(d(q, t) + h) ≤ δ1βr ≤ δ1

(

1+ε−γ
ε

)

r.

This ball is inside a neighborhood of δ2r − δ1
δ2

(

1+ε−γ
ε − (γ− 1)

)

r from s. The

number of nodes inside this ball is at least Ω
((

δ1
δ2

(

γ−1
2

)

r
)ρ)

. �

This lower bound on the size of forwarding region suggests that among long
links chosen randomly according to a spatial distribution, at least one is likely to lie
in the forwarding region with high probability. The next subsection shows that this
is indeed the case.

3.3 Routing table construction by spatial distribution

To build the routing table, we use a spatial distribution of directed links. In particu-
lar, for nodes p and q separated by a distance r, the probability of a directed link pq
being built is proportional to 1/rρ. The rest of this section analyzes random selec-
tion of long links to make sure there is a long link in the forwarding region for every
possible destination. Combined with the recursive routing in the beginning of this
section, the existence of such links guarantee 1 + ε stretch routing.

The analysis below uses essentially balls and bins probabilistic analysis. When
a long link is picked randomly with the spatial distribution, we have the following
lemma.

Lemma 3.3.1. For any µ > 1, a link from p lies in the annulus Nr(p)− Nr/µ(p) with

probability Θ
(

ln µ
ln n

)

.
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Proof: Suppose C is the normalizing factor of the probability distribution for the

given network. This means: C
∫ D

1
1
rρ |∂Nr(p)| dr = 1. Integrating, C = Θ

(

1
ρ ln n

)

.

The probability that a given link lies in an annulus Nr(p)− Nr/µ(p) is given by

Pr(r/µ, r) = C
∫ r

r/µ

1

ξρ |∂Nξ(p)| dξ = Θ

(

ln µ

ln n

)

.

Note that this probability is independent of r. �

Theorem 3.3.2. From each node it is sufficient to select k = O
(

(

2
ε

)O(ρ)
ln2 n

)

links,

to guarantee a link in the forwarding region for any destination with probability at
least 1− 1/n2.

Proof: Consider the forwarding region Fε(s, t), with d(s, t) = ℓ. We choose a valid

value γ. By lemma 3.2.4, there is a ball Bh of radius h′ = δ1
δ2

γ−1
2 ℓ within a distance of

r = δ2ℓ− δ1
δ2

(

1+ε−γ
ε − (γ− 1)

)

ℓ from s.

Choose µ′ such that Bh′ lies in the annulus Nr(s) − Nr/µ′(s). This implies that

µ′ = r
r−2h′ . Substituting, and simplifying, we have µ′ = Ω(1 + ε). To show that a

link lies in Bh′ , it is sufficient to show that it lies in a smaller ball Bh ⊆ Bh′ , which is
defined below. If h ≥ r/4 we assign Bh = Br/4, and µ = 2, where Br/4 ⊆ Bh, and
Br/4 ⊆ Nr(s)− Nr/2(s). If h < r/4, we assign: Bh = Bh′ and µ = µ′. Thus, the width
of the annulus Nr(s)− Nr/µ(s) is at most r/2, and µ ≤ 2.

Now we show that with k = O
(

(

2
ε

)O(ρ)
ln2 n

)

links, there is a link to Bh (and

hence to Bh′) with high probability. The basic idea is the following. The annulus
Nr(s)−Nr/µ(s) can be covered by a small number of balls, by the constant doubling
dimension property. Thus with randomly selected links, at least one will fall inside
Bh.

By Lemma 3.2.3, the ball Nr(s) can be covered by at most A = a
(

2µ
µ−1

)η
balls

of radius h for some constant a. Restricting attention only to links from s to inside
Nr(s)− Nr/µ(s), consider a covering of the annulus with balls of radius h. The ball
Bh belongs to this set, and each node in Bh is selected by s with probability at least
C 1

rρ , where C = Θ(1/(ρ ln n)) is the normalizing factor. Similarly, every node in the

other A− 1 balls is selected with a probability at most C
µρ

rρ .
Thus, given that a link is in the annulus Nr(s)− Nr/µ(s) the probability that it is

in Bh is:

Pr(Bh|(Nr(s)− Nr/µ(s))) ≥
(µ− 1)η

a(2µ)η µρ + (µ− 1)η .

Combining with the result of lemma 3.3.1 of the link being in the annulus, we

get that the probability of a random link to Bh is Pr(Bh) ≥
(

1
K ln n

)

, where K =

O
(

(

2
ε

)O(ρ)
)

.
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If 2K ln2 n links are chosen from s, then the probability that none of them lie in

Bh is
(

1− 1
K ln n

)(K ln n)2 ln n
. Therefore, the probability that at least one link lies in Bh

is
(

1− 1/n2
)

. Therefore, O(
(

2
ε

)O(ρ)
ln2 n) links per node suffice to obtain the given

probability. �

The theorem above describes a guarantee for a suitable link to a forwarding re-
gion to exist. In fact, the detailed proof says that a link exists to a ball Bh′ of a radius
h′ inside the forwarding region. However, we still need to prove the existence of a
path of (1 + ε) stretch for a given routing request, that will take us to within a small
constant distance of the destination. This is done by showing the existence of a short
sequence of forwarding links. First we show, that if the path exists, it only involves
a few long links.

Lemma 3.3.3. If a path obtained by appending the long links in the balls Bh′ exists
then it consists of O(log n) long links and has a stretch of (1 + ε).

Proof: As in the proof of theorem 3.3.2, there is a ball Bh′ of radius h′ = δ1
δ2

γ′−1
2 l

which by lemma 3.2.4 lies within a distance δ1
δ2

1+ε−γ′
ε l = δ1

δ2
β′l of t.

Thus, by selecting the long link to the ball Bh′ , we take the message to be within a
constant fraction β′ of the remaining distance to the destination at every step. Since
the diameter of the network is n1/ρ, this recursive forwarding will reach a constant
neighborhood of t using O(log n) hops. Given that Bh′ is selected to be inside the
forwarding region for each step, this path will have a stretch 1 + ε. �

Now we combine the number of links with the probability of each link to get the
final result:

Theorem 3.3.4. It is sufficient to select O
(

(

2
ε

)O(ρ)
ln2 n

)

long links per node to guar-

antee a path of stretch at most 1 + ε with probability at least 1− 1/n.

Proof: Observe that by lemma 3.3.3 the path consists of O(log n) long links, each
of which exists with probability at least 1− 1/n2, by theorem 3.3.2. Combining the

two, we get that the path exists with probability
(

1− 1/n2
)O(log n)

, which is at least

1− 1/n. �

And the routing table size is not too large.

Theorem 3.3.5. The average routing table size of the scheme is bounded by

O
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

.

Proof: The length of a long link is at most the diameter of the network, which is
O(n1/ρ). Thus a link can contribute at most O(n1/ρ) number of routing tables en-

tries. By theorem 3.3.2, each node of n nodes can add O
(

(

2
ε

)O(ρ)
ln2 n

)

such links

to the network. Thus, the average number of entries, when divided among n nodes,

is O
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

. �
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In the case of sensor networks in a plane (ρ ≈ 2), for a given stretch ε, this

amounts to a table size of O
(√

n ln2 n
)

per node. In the next section we describe

an implementation that implicitly stores the long links with substantially smaller

routing table sizes of O(ln4 n).

3.4 Implementation in sensor networks

Here we describe the implementation of the routing table design in a distributed
setting. In particular, how to implement the approximate distance oracle, how to
choose the long links with the spatial distribution and how to build routes rep-
resenting the long links. We give two different approaches to implement the dis-
tributed routing table, one with the geographical locations, one with landmarks and
landmark-based distances.

Note that the implementation of approximate distance oracle is really indepen-
dent of our routing table design and the implementations can be entirely decoupled.
Any method that provides reasonably good distance estimate can be used as a dis-
tance oracle.

3.4.1 Geographic routing table design

In this part we describe using the spatial distribution principle to augment stan-
dard geographical forwarding with additional routing information to increase the
delivery rate.

Approximate distance oracles. As mentioned in the introduction, the geographical
locations often serve as a good approximate distance oracle to the minimum hop
count distance metric on the communication network. To formulate this notion
rigorously, we assume that the sensor field is deployed in an environment with fat
(not necessarily convex) obstacles. That is, for any two points p, q on the boundary
of a hole, the geodesic distance3 g(p, q) is at most τ times the Euclidean distance
d(p, q) for a constant τ > 1, as shown in Figure 3.2. Given this, we can show that for

b2

p

q
g(p, q)

d(p, q)a1

b1 a2

Figure 3.2. The geodesic distance g(p, q) is at most τ · d(p, q) with fat holes.

3The geodesic distance between two points in a geometric domain is defined as the Euclidean
length of the shortest path connecting the two points in the domain, avoiding obstacles.
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any two points p, q in the underlying geometric domain, we have g(p, q) ≤ τd(p, q).
In addition, we assume that the sensor nodes are deployed in the environment
approximately uniformly such that the minimum hop count distance is at most τ′

the geodesic distance. Thus we have d(p, q) ≤ σ(p, q) ≤ δ · d(p, q), for a constant
δ = τ · τ′ > 1.

Geographic spatial sampling. We include the routing paths between pairs of nodes
chosen with a spatial distribution. With geographical locations, we will implement
the spatial sampling of a partner q of p by choosing with probability proportional to
1/r2 a geographical location q∗ and round it to the nearest node q. That is, the node q
whose Voronoi cell contains the sampled location q∗ is taken as the long link partner
of p. If the nodes are not uniformly distributed, the Voronoi cells have different areas
and the nodes are selected with a biased probability. Thus we use von Neumann’s
rejection sampling to ‘smooth out’ the non-uniformity introduced by the variation
of Voronoi cell area. This idea is originally proposed and used in taking a uniform
random sampling of sensor nodes [11, 33] and later adapted to get a similar spatial
sampling [133].

Incremental routing table construction. The last implementation problem is to dis-
cover and store the routes of the long links selected by the spatial distribution for
each node. Notice that here we have a seemingly chicken-and-egg problem, as route
discovery requires a routing algorithm, while the routing table construction is to
supply such a routing scheme. We actually find the routes with bootstrapping and
incrementally construct the routes for the long links with increasing lengths. Specif-
ically, every node first selects their long link partners (in fact, the geographical lo-
cations). The routes for the pairs with shorter distances are constructed first, and
the routes for the pairs with length k are discovered with the current routing table
information, that is, with the help of the long links with lengths smaller than k.

The route for a long link pq is stored on the routing table of the nodes on this
path. Specifically, each routing table entry is a tuple (p, q, Nq), where Nq is the next
hop neighbor leading to q. Thus a node maintains the routes to its long link partners
as well as the routes that pass through it.

The simplicity of this scheme also suggests an ‘on-demand’ implementation to
improve the basic routing. That is, when a packet is stuck at a local minimum we
will select long links according to the spatial distribution. Thus routing delivery rate
might be low or the delay can be long initially but as the routes for the long links are
constructed and recorded the network gradually ‘learns’ and ‘repairs’ the imperfect
distance oracle.

3.4.2 Landmark-based routing table design

When the location information is not available or when the sensor field is deployed
in an environment so that the Euclidean distance does not provide a good approxi-
mate distance oracle, we propose a second scheme with landmark-based distances.
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Specifically, we select m = O(log2 n) landmarks ℓi uniformly randomly in the sen-
sor network. For example, each node proposes to be a landmark with probability

log2 n/n. The landmarks then flood the network and every other node records the
hop count distance to these landmarks. The communication cost for the preprocess-

ing is O(n log2 n).

Landmark-based distance oracles. Each node p is given a landmark-based distance
vector, represented by the vector of minimum hop count distance to all m land-
marks, (σ(p, ℓ1), σ(p, ℓ2), · · · , σ(p, ℓm)). We would like to use the landmark dis-
tances to estimate the hop count distance of any two nodes. In the simulations we
used the centered distance measure proposed in [43], which is a ℓ2 norm of the cen-
tered landmark-based distance vector (σ(p, ℓ1)

2−M, σ(p, ℓ2)
2−M, · · · , σ(p, ℓm)2−

M), where M = ∑i σ(p, ℓi)
2/m.

Landmark-based sampling. To build the long links for a node p, we will use the
landmarks to help with sampling. In particular, we select first randomly k out of
the m landmarks. For each landmark ℓi, we select from the distribution 1/(r ln D)
(D is the network diameter) a distance ξ. If ξ ≤ σ(p, ℓi), we take the node q along
the path from p to ℓi with distance ξ from p as the long link partner. Otherwise we
drop landmark ℓi. Intuitively, we select along the path from p to ℓi a node q with
the spatial distribution restricted on this path. Since the landmarks are randomly
selected, the probability that a landmark ℓi is at distance r from p is proportional to
r. Now the probability that for each landmark ℓi we can obtain a valid long link is

Prob{ξ < σ(p, ℓi)} =
∫ D

0

∫ ζ

1

1

ξ ln D
dξ

2ζ

D2
dζ = 1− 1

2 ln D
.

Thus in expectation we obtain k(1− 1
2 ln D ) long links for each node. This means that

choosing m = O(log2 n) landmarks suffices to get enough long links for each node.
At last we remark that although different nodes use the same set of landmarks to
create their long links, the theoretical analysis in the previous section still holds – as
the only requirement is that we have a sufficient number of independent long links
for each individual node.

Landmark-based routing tables. With the long links constructed by the landmarks,
the routing table size can be further reduced. In fact, a node p remembers in its
routing table the long link partners and their landmark-based addresses. Different
from the geographical case, the routes for the long links are implicitly implied by the

landmark distances. The size of the routing table is therefore O(log4 n), for O(log2 n)

landmarks/long link neighbors, and a storage of O(log2 n) for storing the address
of each long link neighbor.

3.4.3 Routing scheme implementation

We implemented our routing algorithm for simulations, using both the Euclidean
distance oracle and the landmark based oracle. Each node keeps the routing table
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entries for its immediate neighbors, as well as the long link neighbors it has selected.
The routes to the long link neighbors are stored on the routing tables of the nodes
on the path. When a node s has a message to be delivered to a destination t, s
will check its routing table to find a next hop node p. The node p was selected
randomly from the set of feasible nodes in the forwarding region. Other than this
stretch guaranteed strategy, we also simulated the effects of selecting a long link
greedily from the routing table, where the p is the node in the routing table that is
nearest to t according to the oracle. The message may not travel the entire long link
if on a node in the the middle the message finds a closer neighbor to the destination.

The simulations (Figure 3.4) show that the greedy heuristic performs well in
practice. Both schemes achieve high delivery rate and low stretch. The greedy rout-
ing may sometimes have lower delivery rate, but has better stretch. These results
are understandable in the light of the fact that the forwarding region contains the
destination, and a large region in between the source and the destination. Thus, the
link in routing table that reaches closest to the destination is likely to be one in the
forwarding region. Which means, in many cases, this heuristic satisfies the condi-
tions of the algorithm, and because greedy choice is more likely to be nearer the
destination than a random choice, it results in a low stretch. Thus, in simulations,
we consider the greedy strategy to be comparable to the theoretical strategy. This
also suggests further study and analysis of the spatial distribution and routing table
constructions along these lines.

3.5 Simulations

In this section, we present simulation results to show the performance of the pro-
posed schemes in practice. We mainly focus on geographic routing table to show
the tradeoff of the routing table size v.s. routing stretch. We also evaluate the per-
formance of landmark-based scheme on a network of complex topology, for which
landmark-based approximate distance oracle captures the underlying network con-
nectivity more accurately. We compare our approach with two recently proposed
routing protocols, S4 [107] and VRR [17], on three important criteria, i.e., delivery
rate, the size of routing table and routing stretch. We also discuss the preprocessing
cost of each scheme. In summary, our approach achieves high delivery rate (above
99%) and small stretch (about 1.03) with only a small number of long links, and a
small routing table with modest preprocessing.

Simulation setup. We focus on evaluating the performance of all approaches at the
routing layer, and assume the underlying details (i.e., packet loss and interference)
have been handled at MAC and link layers. This is sufficient for our purpose of ver-
ifying the validity of the proposed ideas. Respecting reality, we adopt a lossy radio
model used in the standard simulator TOSSIM [97] to determine direct communi-
cation links between nodes. The lossy radio model is generated based on empirical
data and specifies the loss rate on the link between a pair of nodes. We only consider
links with sufficient low loss rate and the resulted network is not necessarily unit
disk graph, and could have directional links. We run simulations on three typical
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topologies, i.e., a sparse network with 1000 random distributed nodes, a network
with a large hole in the center and a network with multiple holes (see Figure 3.3).
Each simulation run is repeated 10 times. In each round, we randomly selected
10000 pairs of source and destination. All results are averaged on all pairs.

Figure 3.3. Network topologies used in simulations. (i) Topology 1. Random network: 1000
nodes, avg. degree 7.2; (ii) Topology 2. Network with one hole: 2400 nodes, avg. degree 9.5;
(iii) Topology 3. Network with multiple holes: 2000 nodes, avg. degree 10.6.
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Figure 3.4. (i) Delivery rate for Topology 2. (ii) Stretch for Topology 2.

3.5.1 Geographic routing table

We evaluate the performance of our approach with geographic routing table, as
explained in Section 3.4.1.

Delivery rate. To show the effect of long links on the delivery rate, we vary the
number of long links each node maintains from 0 to 16. When the number of long
links is set to 0, the routing protocol is essentially the geographical greedy rout-
ing based on the location information within one-hop neighborhood. Figure 3.6 (i)
shows that greedy routing performs very poorly without long links. The delivery
rate is only around 50%, 65% and 44% in Topology 1, 2 and 3 respectively. When
the number of long links increases, the delivery rate reaches 99% with 6, 8, 7 long
links per node in three different topologies, respectively. The results confirm that a
small number of long links are sufficient and can significantly improve the delivery
rate in most of typical network topologies. Since our scheme behaves similarly in
various topologies, in the rest of this subsection, unless mentioned otherwise, we
only present results on Topology 2 due to space limitation.
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We show the preprocessing cost of our scheme with varying number of long links
in Figure 3.6 (iv). More long links results in higher preprocessing cost and increased
delivery rate.

Routing table size. The size of routing table is measured by the number of entries
in the table. We compare the average routing table size of our scheme with VRR and
S4. For VRR, each node maintains routes to a set of virtual neighbors on the ID ring.
Those virtual neighbors can be viewed as “long links”. Thus, we show the change
of routing table size as the number of long links changes for both our scheme and
VRR in Figure 3.6(ii). It is easy to see that the size of routing table is proportional to
the number of long links. But our scheme uses much smaller routing table than VRR
when maintaining the same number of long links. Our scheme saves routing table
size by taking long links with probability 1/r2 rather than the uniform distribution
used in VRR. Thus, our scheme favors relatively shorter links. Figure 3.5 shows the
distribution of the lengths of the long links in terms of hop counts. In our scheme
there are fewer long links, while the distribution in VRR is more uniform.

Size of routing table Our scheme S4 VRR

Topology 1 26.08 68.83 41.52

Topology 2 39.02 105.85 62.48

Topology 3 37.28 90.62 63.82

Table 3.1. Average size of routing table.

Table 3.1 shows the routing table size of three schemes with a set of fixed param-
eters. For comparisons, we use 50 landmarks for S4 and each node maintains routes
to 4 virtual neighbors in VRR. We select those parameters since they give the best
performance of S4 and VRR in terms of both routing table size and stretch. For our
scheme, we use 6, 8, 7 long links in three topologies respectively to get above 99%
delivery rate. We use the same set of parameters in other Tables. From Table 3.1,
S4 requires the largest routing table, since each node needs to maintain routes to
roughly O(

√
n) landmarks and O(

√
n) nodes within its local cluster. Our scheme

has the smallest routing table size, but achieves comparable delivery rate.

Figure 3.5. The distribution of long links w.r.t their lengths in hops.

Stretch. Figure 3.6(iii) shows the average stretch of our scheme and VRR with vary-
ing number of long links. The stretch of our scheme is always below 1.1 and de-
creases when the number of long links increases. With 6 long links, the stretch is
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only about 1.03. With more long links, each node has more choices when choosing
the next hop and can switch to the best direction as soon as it finds a neighbor or
long link closer to the destination. Table 3.2 compares the average stretch of three
schemes. It shows that our scheme achieves similar stretch as S4 (but with smaller
routing table) and is much better than VRR.
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Figure 3.6. (i) Delivery rate of geographical routing table with varying number of long links
in different network topologies. (ii)-(iv) Performance of our scheme and VRR in Topology
2. (ii) The average size of routing table. (iii) Average stretch. (iv) Communication cost in
preprocessing stage.
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Figure 3.7. Delivery rate for different topologies. (i) Topology 1. (ii) Topology 2. (iii) Topol-
ogy 3.

Diversity of inaccuracy. The inaccuracy of distance oracle is due to diverse distur-
bances of the network, like low density of node distribution or holes and obstacles.
Here, we study the impact of different types of links (relatively short links and long
links) on different types of network topologies. We compare spatial-distribution
link selection scheme with other four schemes, i.e., schemes that only select nodes
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Average stretch Our scheme S4 VRR

Topology 1 1.03 1.03 1.73

Topology 2 1.03 1.03 1.80

Topology 3 1.04 1.02 1.75

Table 3.2. Average stretch.

within 5 hops (< 5), within 10 hops (< 10), at least 5 hops apart (> 5) and at least
10 hops apart (> 10). From all three figures (Figure 3.7), we can see that spatial
distribution with a mixture of short and long links (blue line) achieves the highest
delivery rate for all topologies. Relatively short links (< 5 hops) works best for
Topology 1 compared to the other two topologies, and the scheme with only links
shorter than 10 hops even performs better than other schemes with relatively longer
links, because the local disturbance due to sparsity can be resolved by short links to
close nodes. Longer links (> 10 hops) performs significantly better than pure short
links in Topology 3, since global disturbance (big holes) requires longer links to com-
pensate the inaccurate distance measure. Different network topologies may require
different types of links, but the spatial distribution with a mixed set of short and
long links gives a generic solution and hides the diversity of distance inaccuracy,
with high delivery rate, small routing table size, low stretch and cost.

3.5.2 Landmark-based routing table

We evaluate the performance of the landmark-based routing table (in 3.4.2) on three
topologies, compared with S4, as both use a set of landmarks. The benefits of our
scheme are that it incurs much cheaper preprocessing cost with smaller routing ta-

ble size than S4. Our scheme needs fewer landmarks (O(log2 n) rather than O(
√

n)
landmarks). Each node only needs to remember the next hop to each landmark and
the sample along the path to that landmark, and does not construct any additional
local routing tables. So the size of the routing table is exactly the number of land-
marks. The total preprocessing cost is just the message flooding from the landmarks.
After that, routes to all long links are built up automatically.

Simulation results show that 30 landmarks are sufficient to achieve good deliv-
ery rate (above 94%) and small stretch (about 1.04) in our scheme. In S4, we use 50
landmarks with an average routing table size of 90.62 to achieve the best stretch and
routing table size tradeoff. The routing table size in our scheme is 30, with the total
preprocessing cost only about 1/3 that of S4 on Topology 3.

3.6 Conclusion

We presented in this chapter a geometric theory to build a small number of routing
links in very general domains. The method is distributed and uncoordinated, but
guarantees global properties such as routing with low stretch and compact routing
tables. The use of spatial distribution ensures that the routing works well at all
scales and distances.
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We have presented here implementation details and simulation results for sensor
networks, but the core results are expected to be useful in a wide variety of graphs.
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Chapter 4

Spatial Gossip and Multi-Resolution
Aggregation

In this chapter we propose a lightweight algorithm for constructing multi-resolution
data representations for sensor networks. We compute, at each sensor node u,
O(log n) aggregates about exponentially enlarging neighborhoods centered at u.
The ith aggregate is the aggregated data among nodes approximately within 2i hops
of u. We present a scheme, named the hierarchical spatial gossip algorithm, to ex-
tract and construct these aggregates, for all sensors simultaneously, with a total com-
munication cost of O(n polylog n). The hierarchical gossip algorithm adopts atomic
communication steps with each node choosing to exchange information with a node
distance d away with probability 1/d3. The attractiveness of the algorithm attributes
to its simplicity, low communication cost, distributed nature and robustness to node
failures and link failures. We show in addition that computing multi-resolution ag-
gregates precisely requires a communication cost of Ω(n

√
n), which does not scale

well with network size. The approximation in aggregate computation like that in-
troduced by the gossip mechanism is therefore necessary in a scalable efficient al-
gorithm. Besides the natural applications of multi-resolution data summaries in
data validation and information mining, we also demonstrate the application of the
pre-computed spatial multi-resolution data summaries in answering range queries
efficiently.

4.1 Introduction

Distributed wireless sensor networks provide revolutionary ways to attain large
scale, dense data collection and long-term environment monitoring. The imme-
diate challenge is to develop efficient methods to extract, encode, and distribute
information gathered by sensors, for both the robustness and survivability of data,
as well as the flexibility and efficiency to answer user queries. In this chapter we
study the problem of constructing multi-resolution data representation in a sensor
network to facilitate routing and answering multi-dimensional range queries. Our
approach of processing data in a multi-resolution format follows the principle of
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fractional cascading that states: “a sensor knows a fraction of the information from
distant parts of the network, in an exponentially decaying fashion by distance” [56].
This multi-resolution, locality-preserving representation is motivated by observa-
tions that sensors are typically monitoring a physical phenomena, which exhibits
high correlation in both the spatial and temporal domain. Naturally information
relevant to each node is decaying with the distance to this node.

In the setup of this chapter we have n sensors deployed uniformly and densely
inside a region monitoring a continuous data field. We compute, at each sensor
node u, O(log n) aggregates about exponentially enlarging neighborhoods centered
at u. The ith aggregate is the aggregated data among nodes approximately within
2i hops of u. The specifics of aggregation techniques will be application depen-
dent. For example, the aggregates can be the MAX/MIN or AVG, or more involved
aggregates such as histogram [140], parameter estimations [157], or random lin-
ear projections used for compressed sensing and information recovery [127]. This
multi-resolution scheme is inherently load-balanced. The storage requirement at
each node is bounded by O(log n). We present a scheme to extract and construct
these aggregates, for all sensors simultaneously, by a hierarchical spatial gossip al-
gorithm. The total communication cost is O(n polylog n), only a small polylogarith-
mic factor of the cost for flooding or information aggregation at a sink, yet we obtain
multi-resolution aggregation for each and every sensor node in the network.

The multi-resolution data summaries provide a basis for information mining,
data validation and efficient range queries. One of the major challenges in a sensor
network is that nodes start with no idea of the big picture over the data field. Thus
it is difficult for a node to assess whether its sensor reading is valid or not since
detection of outlier or abnormality usually requires comparison with other sensor
readings. In certain applications, the sensor field is deployed to detect events of
interest to the owner. A sensor node often needs to decide, by itself, whether it holds
interesting data or not. In some cases it is trivial, e.g., an unusually high reading by
an acoustic sensor typically means activities in its vicinity. Sometimes this requires
comparison with the average of sensor readings in an appropriate neighborhood.
For example, the temperature threshold considered as ‘high’ in winter is different
from that in summer. With the summarized data from each of its exponentially
enlarging neighborhoods, a node has a basis against which its own reading can be
compared, in order to spot local spikes which indicate data significance [155]. In
addition, these partial aggregates can be used to support range queries injected from
any node in the network. Queries for the aggregated value inside a geographical
region can be answered by combining the pre-computed partial aggregates, without
the necessity of examining each and every node in the geographical range. Thus
both communication cost and query delay can be improved.

The major contribution of this chapter is the development of a light-weight algo-
rithm for constructing multi-resolution data representations for sensor networks, as
well as the application of multi-resolution data for range queries.
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4.1.1 The challenge and our contribution

To construct the multi-resolution data representation, we first note that simple flood-
ing and aggregation from each node will incur too high communication cost – O(n2)
since each node incurs a cost of O(n) to flood the network. In this chapter we inves-
tigate gossip algorithms with almost linear communication cost.

In our setting the metric we care most is the total communication cost of the
gossip algorithm, which depends on two factors: the cost of communication for
each iteration step, and the number of iterations for it to converge. Existing gossip
protocols either assume that every two nodes can communicate with a unit cost
(e.g., in peer-to-peer networks and distributed systems), or allow only immediate
neighbors to gossip (e.g., in the standard gossip model). In our setting, we allow far
away nodes to be chosen as gossip partners, and communication between them is
performed by multi-hop routing. Thus the cost of each gossip step may involve any
two nodes and have a higher cost if the nodes are far apart. This idea is also adopted
in geographical gossip to reduce the communication cost of distributed averaging
in a random geometric graph [33].

Under the objective of minimizing the total communication cost, the selection
of gossip communication mechanism needs to balance two important factors. First,
the fast convergence of a gossip protocol depends critically on the selection of gossip
partners. Intuitively fast convergence requires information to be well mixed — one
of the best is to select a random node in the network as the gossip partner. On
the other hand, if we choose a random node to gossip in each iteration, the cost of
communication with multi-hop routing is proportional to the distance to a random
node in the network, which is roughly O(

√
n) in a grid-like network with uniformly

deployed sensors. To reduce the communication per each iteration, the best is to
simply gossip with its immediate neighbors. But analysis of standard gossip on
a random geometric graph or a 2-dimensional grid shows a slow convergence of
roughly O(n2) gossip steps1 [14, 156], which is asymptotically the same order with
that of naive flooding.

The second challenge of the gossip algorithm in this chapter, different from all
the other gossip protocols, is on its multi-resolution nature. We would like infor-
mation to be exchanged and mixed for fast convergence but also want to make sure
that information does not travel too far and pollute the aggregates at other nodes.
Thus the two conflicting considerations – fast convergence and restricted propaga-
tion range – also need to be carefully balanced.

We propose to use a hierarchical spatial gossip algorithm that automatically
takes care of all the issues we worried about above. Our hierarchical gossip al-
gorithm proceeds in O(log n) phases. In phase i, we compute, for all sensor nodes,
their respective aggregates in a roughly 2i neighborhood. This is achieved by a spa-
tial gossip algorithm in a restricted range, where each node x picks, from nodes
within distance 2i, a node y with probability proportional to 1/d3, where d is the
distance between x and y, 1 ≤ d ≤ 2i. Each phase stops after O(poly(i)) itera-

1Here we use ‘gossip step’ to refer to the atomic operation of one node gossiping with its partner.

49



tions, i ≤ log n. At the end of phase i, we compute for each node u the aggregate
of a subset of nodes Si(u) that contains all the nodes within distance 2i from u with
high probability, and does not contain any node more than distance poly(i)2i apart.
The total communication cost over all phases is bounded by O(n polylog n). Notice
that this achieves a substantial improvement in terms of communication cost to the
naive flooding approach and is only at most a polylogarithmic factor away from an
obvious lower bound of Ω(n log n) for constructing the multi-resolution data repre-
sentation2.

In this chapter, we use the spatial distribution in the form 1/d3 to simplify dis-
cussion. This is really equivalent to a distribution 1/dρ+1 on a growth bounded
graph, and this distribution also produces a small world. All the analysis here can
accordingly be adapted to the graph scenario. Our aim here is really to summarize
a continuous signal sampled from a physical space. This is typically useful when
the sensors are aware of their locations. Therefore we assume here that the sen-
sors know their coordinates, and work in terms of an explicit embedding in the two
dimensional euclidean plane.

What is critical to the success of our hierarchical gossip algorithm is that we
use order and duplicate insensitive synopsis (ODI-synopsis) [27, 117] to compute
and represent the partial aggregates. The idea of an ODI-synopsis is that the same
data can be aggregated multiple times but it is counted only once. Certain aggre-
gates such as MAX/MIN are naturally ODI-synopses. ODI-synopsis for other ag-
gregates such as COUNT and SUM/AVG are available, by implementation through
MAX/MIN or boolean OR computations [26, 27, 55, 117]. ODI-synopsis combined
with gossip algorithm removes trouble caused by the same data disseminated and
aggregated multiple times. In addition, ODI-synopsis is helpful for range queries
as we do not need to worry about over-counting resulting from partial aggregates
from overlapping regions.

One last note is that our gossip-based method is randomized. The multi-
resolution aggregation covers roughly the 2i neighborhood, for i = 0, · · · , log n.
The question of computing an accurate set of multi-resolution aggregates, i.e., the
aggregate of all the nodes precisely within 2i hops, is considered in section 4.4. We
describe a deterministic algorithm to achieve this. This algorithm has a communica-
tion cost of Θ(n

√
n). We show that this is in fact asymptotically optimal, and there

is a lower bound of Ω(n
√

n) for the message complexity. Accurate multi-resolution
computation therefore does not scale well with network size. This makes it neces-
sary to introduce approximate neighborhoods, as considered in our spatial gossip
method.

4.2 Network setup

In this chapter we consider a network of n sensor nodes in a square. The sensor
nodes are deployed with sufficient sensing coverage such that any unit disk cen-

2For each sensor node simply reading in their log n data summaries it requires a communication
cost of Ω(n log n).
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tered inside the region contains at least 1 sensor node. Each sensor node knows its
own location and generates a reading which is the sample of an underlying contin-
uous data field at the location of this sensor.

Notice that the above assumption guarantees sufficient coverage but does not
prevent regions with dense node distribution. We can further improve the unifor-
mity of the sensor sampling by clustering. We compute a set of clusterheads such
that every two clusterheads are of distance at least 1 away and every node is within
distance 1 of at least one clusterhead. The clustering can be easily implemented by a
greedy and distributed algorithm. Each node checks its nearby nodes to see if there
is a clusterhead within distance 1. Otherwise it will promote itself as a clusterhead.
By local communication the nodes can select a subset of nodes as clusterheads as
desired above.

The set of clusterheads has bounded density. Every two clusterheads are at least
distance 1 apart, as specified by the algorithm. Further, inside any disc of radius
2, denoted by D2, there are at least 1 clusterhead — this is because any clusterhead
outside this disc cannot cover the unit-radius disk D1 co-centric with D2. Thus by
the sampling assumption there is at least one node inside the unit disk D1, whose
clusterhead must be within D2.

Thus, without loss of generality we will assume in the following of the chapter
that: (i) any two sensor nodes are of distance at least 1 apart; (ii) any disk of radius
2 contains at least one sensor node.

We assume that two sensor nodes can communicate with each other directly if
they lie within a small distance of each other. However, we do not enforce that the
connectivity corresponds to a unit disk graph or any specific model. We assume
that the deployment permits the existence of a multi-hop routing algorithm that can
carry a message from node x to node y using at most O(dx,y) hops, where dx,y is the
Euclidean distance between the two nodes. For sensors uniformly deployed, simple
geographical forwarding would suffice to find a path with length proportional to
the Euclidean distance between them.

4.3 Spatial gossip

In this section we describe the hierarchical spatial gossip algorithm to compute
multi-resolution data summaries for every sensor node.

4.3.1 Hierarchical spatial gossip

We use a gossip mechanism where each node selects from a restricted neighborhood
a node to gossip with and sends a message to it. The algorithm proceeds in phases.
The phase i calculates for each node the aggregate of values inside a roughly 2i

neighborhood centered at itself. The phases are completely independent so that
phase i + 1 starts fresh. Since we have a network of n nodes, with a lower bound on
density, O(log n) phases are sufficient for the phase with the largest neighborhood
to cover the entire network.
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For phase i, we adopt a restricted spatial gossip algorithm. We implement the se-
lection of gossip partner with geographical routing. At each round, a node x chooses
a location y∗ in the sensor field with probability:

pi(x, y∗) =

{

1
π · 1

(|xy∗|+1)3 , |xy∗| ≤ 2i;

0, |xy∗| > 2i.

where |xy∗| is the Euclidean distance between nodes x and y∗. Notice that y∗ is
not necessarily the location of a sensor. x will send the information towards y∗ and
eventually reach the node y whose location is closest to y∗. Then y is x’s gossip
partner and takes the information delivered by x.

With the above gossip algorithm and the uniformity of sensors, the probability
that a node x chooses a sensor node located at y (also denoted by y by slightly
abusing the notation) is also proportional to 1/|xy|3.

Lemma 4.3.1. At phase i, let the probability that a node x gossips with a node y be
qi(x, y). Then if 2 ≤ |xy| ≤ 2i + 2,

qi(x, y) ≤ 4

(|xy| − 1)3
;

and if |xy| ≤ 2i − 2,

qi(x, y) ≥ 1

16(|xy|+ 3/2)3
;

if |xy| ≥ 2i + 2, qi(x, y) = 0.

Proof: We compute the Voronoi diagram of all the sensor nodes (a partitioning of
the region into cells such that all the points inside one cell are closest to the same
sensor node) and only inspect the part inside the bounding square. In order for x
to choose node y as its gossip partner, x must have chosen a location y∗ that falls
inside the Voronoi cell of sensor node y. Denote by V(y) the Voronoi cell of y, then
we have qi(x, y) =

∫

y∗∈V(y) pi(x, y∗).

y

u

v

Figure 4.1. The Voronoi cell of a sensor node y is enclosed inside a disk of radius 2 and
contains a disk of radius 1/2.

We now upper and lower bound the Voronoi region for y. V(y) is a convex
region. The point on the boundary of V(y) furthest from y is realized at a Voronoi
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vertex (u in Figure 4.1), which has three sensors (including y) as its closest nodes.
Thus the disk centered at u with radius |yu| has no other sensor nodes inside. Since
any disk of radius 2 has at least one sensor node inside, |yu| < 2. Thus V(y) is
enclosed by a disk centered at y with radius 2, denoted by D2(y). On the other
hand, the point on the boundary of V(y) closest to y, say v, is realized as the mid-
point connecting y and one of its Delaunay neighbors (the sensors whose Voronoi
cells are adjacent to that of y’s). Thus |yv| ≥ 1/2. Consider that y can be placed
at the corner of the sensor bounding square. V(y) includes at least 1/4 of a disk of
radius 1/2 centered at y.

With the upper and lower bound of V(y), we will bound the probability qi(x, y).
Take the point in V(y) closest to x, denoted by w. |xw| ≥ |xy| − 2. Therefore
qi(x, y) =

∫

y∗∈V(y) pi(x, y∗) ≤ pi(x, w) · π22 = 4/(|xw| + 1)3 ≤ 4
(|xy|−1)3 . Similarly,

we have qi(x, y) ≥ 1
16(|xy|+3/2)3 .

The above bound is valid when V(y) is completely within distance 2i from x,
which is true if |xy| ≤ 2i − 2. If |xy| ≥ 2i + 2, then all points in V(y) are of distance
2i away. Thus y will never be chosen as x’s partner. qi(x, y) = 0. �

We assume that all the nodes gossip in a synchronous way. At each clock tick,
every node selects and shoots its information to its respective gossip partner. We
consider each clock tick as a round. Once a node x chooses another node, say y,
with distance at most 2i from it, x sends its current synopsis to y. y will incorporate
the information it receives from x and maintain the aggregation of synopsis of its
old value with the synopsis from x. Note that this is asymmetric as only node y
updates its synopsis and node x keeps its current synopsis value. The asymmetry is
an attractive feature as reliable round-trip multi-hop routing adds communication
overhead and implementation difficulty. Denote by si,j(x) the synopsis at any node
x after round j of phase i. The original value at x is thus given by s0,0(x). After
round j, each node updates its synopsis to be the aggregation of its synopsis at
round j− 1 and all the values it received in this round. The value computed at node
x at completion of phase i is denoted by si(x).

All the aggregates in our scheme are order and duplicate insensitive synopsis.
In particular, given a set of values S, an ODI-synopsis is an aggregate computed for
values in S that remains the same no matter how many times one duplicates some
values in S or what order the aggregation was performed. For example, MAX/MIN
are naturally ODI-synopsis. ODI-synopsis for other aggregates such as SUM or AVG
are available [26, 27, 55, 117] by essentially implementing them by MAX/MIN or
Boolean operations. We remark that some of the ODI-synopsis are probabilistic in
nature. In this chapter we often use MIN as the example, but the algorithm works
with any ODI-synopsis.

The use of ODI-synopsis is key to the success of the spatial gossip algorithm for
constructing multi-resolution data representation. The insight is that aggregation by
ODI-synopsis tremendously simplifies gossip computation protocol. Each node u
keeps only a value s(v) which is the ODI-synopsis of the set of values it has received
so far and does not keep the set of values in its original form. When one node
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u chooses to gossip with v, u sends to v its aggregate s(u) and v computes and
keeps the ODI-aggregation of the synopsis of both u and v. s(v) ← s(u) ⊕ s(v),
where ⊕ represents the aggregation function of the ODI-synopsis. This not only
reduces the cost of transmission as only one aggregated value is delivered each step,
but also guarantees that over-counting is eliminated although the same value may
potentially be received multiple times. In short, with ODI-synopsis the model of
gossip computation is the same as alarm spreading — each node starts with its own
value and in each gossip step one node will send all the values it has received so far
— but with reduced communication cost since only the aggregate (not the whole set
of values) is delivered. When the algorithm stops, a node keeps the aggregate of all
the values it has received.

To make the analysis easier, we also denote by Si,j(x) the set of nodes whose val-
ues x should have received if we deliver all the original values instead of a synopsis
in the gossip algorithm. In other words, si,j(x) is the aggregation of the values in the
set Si,j(x). The set corresponding to the value si(x) at node x at the completion of
phase i is denoted by Si(x).

To summarize, there are at most O(log n) phases in the hierarchical spatial gossip
algorithm. In phase i, every node executes O(i3.4) synchronous rounds. Each round
consists of a single gossip operation performed by every node, and each phase con-
sists of sufficient number of rounds so that nodes x and y that lie within a distance
2i of each-other obtain each-other’s values with high probability. Thus, at the end
of phase i, any node has considerable information about values within a distance
2i from it. Thus the synopsis aggregate at each node has incorporated sufficiently
many nodes within its 2i neighborhood.

The gossip algorithm for each phase is very similar to the spatial gossip protocol
proposed by Kempe et al. [79], except that we restrict the maximum range of gossip
partners. This modification is to reduce the level of pollution such that a node does
not receive information from nodes too far away, as will be made clear later.

4.3.2 Multi-resolution representations

In this section, we analyze the multi-resolution information computed by the al-
gorithm described above. We show that if we stop the algorithm at phase i after
j∗ = O(i3.4) rounds, the synopsis kept at node x, i.e., the aggregated value of a set
of nodes Si,j∗(x), captures the information is a roughly 2i neighborhood around x.
Without loss of generally we denote by Si(x) and si(x) the respective values when
j = j∗.

Specifically, we show upper and lower bounds for the set of nodes in Si(x). The-
orem 4.3.4 says that Si(x) includes with high probability each node within distance
2i from x. Theorem 4.3.5 says that Si(x) does not include nodes O(2ii3.4) away for
sure and with high probability does not include nodes with distance O(2ii2.4) or
more away.

Before we prove our main theorems, we first observe that when we run more it-
erations of the gossip algorithm, the amount of information each node gets is mono-
tonically non-decreasing within a phase. Recall that Si,j(x) is the set of nodes whose
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values have reached x, after j rounds at phase i. Thus,

Observation 4.3.2. Si,j(x) ⊆ Si,j+1(x), for any i, j, x.

Lower bound

We first show a lemma that bounds the rate of information propagation by the re-
stricted spatial gossip algorithm. Intuitively the lemma says that after O(polylog d)
rounds information at one node reaches a node at distance d with high probability.

Lemma 4.3.3. In phase i, if the distance between nodes x and y is d ≤ 2i then

Si,j(x) ⊆ Si,j+α(y) within α = O(log3.4 d) rounds of iterations with probability at

least 1−O( 1
d).

The proof is an adaptaion of the proof in [79] that bounds the information spread
rate in spatial gossip, with necessary modification that additionally takes care of
the restricted range. While the essential proof is the same, the adjustment to get
the specific result is not entirely trivial. We therefore include the complete proof
in the appendix. This lemma shows that information propagates pretty fast in the
network. Thus we can stop the algorithm in O(poly(i)) rounds for phase i, i ≤ log n,
in order to collect information from almost all nodes inside the desired range 2i.

Theorem 4.3.4. With probability at least 1−O(1/2i), the set Si,w(x) includes node
y with |xy| ≤ 2i in phase i consisting of w = O(i3.4) rounds.

Proof: Obviously x ∈ Si,0(x). We apply Lemma 4.3.3 with d = 2i to obtain the
theorem. This implies that in round i, any node collects information from each node
in its 2i neighborhood with probability at least 1−O(1/2i). �

Upper bound

The subsection above shows that in phase i, any node receives the information
within a distance 2i with high probability if we run the algorithm for O(i3.4) rounds.
Now we show an upper bound that a node does not get information from nodes too
far away. Thus the ‘pollution’ from far away nodes is under control.

Theorem 4.3.5. After k rounds of phase i,

1. Si,k(x) does not include nodes with distance d > k2i away from x, for sure.

2. Si,k(x) does not include nodes with distance d >
3k2i

i+1 away from x with proba-

bility at least 1− o(1/2k), when i is greater than a sufficiently large constant.

Proof: To make the analysis easier, we assume that we actually propagate, by the
hierarchical spatial gossip algorithm, the list of values together with their source
nodes. Initially each node has only its own value. Then they propagate to other
nodes. We examine, for the value of a node u ∈ Si,k(x), the path it may take to get
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from u to x, denoted by P = {u, u1, · · · , uℓ = x}. ℓ ≤ k. In round j, uj selects uj+1 as
its gossip partner.

Claim 1. The value of u cannot travel further than k2i because in any iteration, a
gossip step can go as far as 2i at most and there are total k rounds.

Claim 2. Intuitively, for the value of u to reach a node x that is distance d =
(3+ε)k2i

i+1 away (ε is very small) via a path of length at most k, it must make enough
number of long jumps. We argue that the probability for this to happen is small.
The following analysis is to make this intuition rigorous.

First observe that the probability of a node uj choosing a node uj+1 of distance

d′ > 2i/(i + 1)− 2 away is at most

∫ 2i

2i/(i+1)

2r

(r + 1)3
dr ≤ i + 1

2i−1
.

Now consider a path P of at most k hops that starts from u and ends at x. Let k′ be
the minimum number of steps of length 2i/(i + 1) or more in P. Then the minimum
value of k′ satisfies the relation

(k− k′)(
2i

i + 1
− 2) + k′(2i + 2) ≥ d = 2i (3 + ε)k

i + 1
.

When i is sufficiently large, k′ ≥ (2 + ε/2) k
i . Therefore, for a k-hop path to reach

node x, it needs to have at least k′ long jumps, the probability of which is at most

( k
k′)
(

i+1
2i−1

)k′
. Thus, the probability that a k-hop path P does not have k′ or more links

of length 2i/(i + 1) or more is at least

(

1− ( k
k′)
(

i+1
2i−1

)k′
)

.

In each round, a node that has a data sends a copy of it to another node. Thus,
every existing copy gets replicated at a new node. At the end of k rounds, the total
number of copies in the network is at most 2k. We bound the probability that none
of these 2k paths reach x. This is at least

(

1− ( k
k′)
(

i+1
2i−1

)k′
)2k

≈ 1− ( k
k′)
(

i+1
2i−1

)k′
2k ≥ 1− 22k

(

i+1
2i−1

)k′

≥ 1−
(

(2(i+1))2/i

2ε/2

)k
≥ 1− 1/2k.

The last step is true when i is greater than a sufficiently large constant. �

For a phase i, with k = i3.4 rounds, the probability that the value at a node

does not spread beyond a distance 2i 3k
i+1 is at least 1− o(1/2i3.4

). Thus with high

probability Si(x) does not include nodes with distance O(2ii2.4) away.
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4.3.3 Communication cost

In this section we show that the communication cost of constructing the multi-
resolution data representation is almost linear.

Lemma 4.3.6. The communication cost incurred by any node in a single round of
phase i is O(i).

Proof: The expected distance to the gossip partner chosen by a node x is at most

2 +
∫ 2i

0
2r

r

(r + 1)3
dr ≃ O(i).

Since the cost of routing to a node distance d away is O(d), the communication cost
by any node in a round of phase i is O(i). �

Theorem 4.3.7. The algorithm creates multi-resolution data as described above at

every node using O(log4.4 n) rounds and total communication cost O(n log5.4 n).
The storage requirement at each sensor node is O(log n).

Proof: In an n node network, with a constant lower bound on density, the maximum
distance between any two nodes is O(n). Thus, the number of phases required by
the algorithm is O(log n). Each phase i consists of O(i3.4) rounds. Thus, the num-

ber of rounds is ∑
log n
i=1 O(i3.4) = O(log4.4 n). In phase i, at each round, a node uses

a single message with an expected communication cost of O(i). Thus, the commu-

nication cost per node for the algorithm is: ∑
log n
i=1 O(i · i3.4) = O(log5.4 n). The total

communication cost is thus O(n log5.4 n). Notice that during the spatial gossip al-
gorithm for phase i, each node at any time only keeps one value. The total storage
requirement for each node is O(log n). �

4.4 Accurate multi-resolution data

The gossip based algorithm is randomized, and therefore has some inaccuracy as-
sociated with the aggregates it computes. In this section, we discuss a determinis-
tic algorithm to compute multi-resolution aggregates and show a communication
lower bound of Ω(n

√
n) messages on computing multi-resolution data. These re-

sults show that approximation is necessary in order to achieve near linear commu-
nication cost.

For the ease of description we use the ℓ∞ metric, and assume that the n nodes are
placed on a unit grid in a square. A disk in this metric looks like a square. Suppose
the aggregate minimum is being computed. The algorithm works as follows:

At step i, every node p finds the aggregate of the ℓ∞ disk of radius 2i centered at
itself. This is done as follows: p collects the aggregates of step i − 1 from each
node q at distance 2i−1 from p, and computes the minimum to find the aggregate
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minimum of its 2i neighborhood. Each node q needs to send its (i − 1)th average to
nodes at a distance 2i−1 from it. This is done by traversing the boundary of the disk
of radius 2i−1, at a cost of O(2i−1).

The total cost per node is therefore
log
√

n

∑
i=0

O(2i−1) = O(
√

n).

The following example shows that this is in fact a lower bound on the asymptotic
complexity of computing multi-resolution data.

Suppose that the left topmost corner of the grid has position (0, 0). The node at
row i and column j has position (i, j) and value vij = i

√
n + j. More importantly,

this is also the rank of the value. Now consider the quadrant with i, j ∈ [
√

n/2,
√

n]
and in particular the node at (

√
n/2,

√
n/2). The minimum of its

√
n/2 neighbor-

hood is given by v00. The corresponding aggregate of any node in the quadrant at
(
√

n/2 + i,
√

n/2 + j) is given by vi,j. Therefore, each such value has to be trans-

mitted a distance Ω(
√

n). Since at least a constant fraction of the values have to be
transmitted this distance, the lower bound on the message cost is Ω(n

√
n).

4.5 Range queries

The pre-computed data summaries by the hierarchical spatial gossip algorithm can
be useful in answering user queries about aggregates in large regions of the network
with reduced cost. For example, the aggregate for the entire network is available at
any single node. Similarly, it is possible to obtain probabilistic information about a
large region of radius 2i by visiting a single node at its center. If the query requires
better estimates of the aggregate, then it can be answered by making use of the
different ODI synopses computed at different phases of the algorithm. Thus, the
query response mechanism can adapt to the quality of estimate and restriction on
pollution desired by the user.

In the rest of this section we discuss a case where the user wishes to obtain with
high probability the correct ODI synopsis of a rectangular region, without any pol-
lution. The query consists of an a × b axis aligned rectangular area A, and a small
probability δ. The response to the query is the ODI synopsis s corresponding to a
set S, such that, for any node x, if x ∈ A then x ∈ S with probability at least 1− δ,
and if x /∈ A then x /∈ S. That is, no node outside the region A should be included
in set S, and no node inside A should be excluded with a probability more than δ.
Without loss of generality, we can assume that a ≤ b.

By Theorem 4.3.4, after phase i, the ODI synopsis at any node x includes the
value at any other node inside a disk of radius 2i with a high probability. For dis-
tances measured in the L∞ metric, this disk corresponds to a square of side 2 · 2i. We
refer to such a square as a square of radius 2i (analogous to a disk of same radius),
and use a set of such squares to cover the given query region.

We denote by Bi(x) a square of radius 2i centered at node x. For a node y ∈ Bi(x),
by Theorem 4.3.4, y /∈ Si(x) with probability O(1/2i). Corresponding to any square
Bi(x), there is a square Gi(x) of radius ηi3.42i, for a proper constant η, such that
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for any node y /∈ Gi(x), y /∈ Si(x), by Theorem 4.3.5. If the user query requires no
pollution from outside the query region, the bigger square Gi(x) must be completely
inside the query range.

We refer to a square Bi(x) as a maximal piece if Gi(x) ⊆ A and Gi+1(x) * A, and
i as the maximal level of node x. Let Bp(x) be the largest maximal piece in A, then
formally

p = max
x∈A
{i : Bi(x) is a maximal piece}.

Then, we have

ηp3.42p ≤ a

2
< η(p + 1)3.42(p+1).

This implies that p = O(log a). Now we can collect the partial aggregates from these
maximal pieces to answer the query. This can be done in a manner similar to that
in [56] by starting at the boundary and spiraling inward accumulating synopsis for
maximal pieces that together cover the entire region. Additionally, we must ensure
that the probability of any node being excluded in the synopsis is small.

Query Range

Bi(x)

Gi(x)

Spiral
x

Figure 4.2. The spiral used for response for a given query region. Nodes are visited individ-
ually in the shaded region at the perimeter. The figure also shows the maximal square Bi(x)
for a node x of maximal level i, and the corresponding pollution region Gi(x).

We use a spiral path that guarantees the required probability for every node
in the query region. By Theorem 4.3.4, if a node is covered by a maximal piece
Bi(·), the probability of it being included in the corresponding synopsis set Si(·)
increases with the size of Bi(·). This implies that given a δ, nodes more than a certain
distance (depending on delta) away from the boundary are covered by one or more
maximal pieces that provide the required probability. Thus, our spiral starting at
the boundary accumulates synopsis from all individual nodes up to this distance,
and makes use of maximal pieces to obtain the synopsis for the rest of the region.
Figure 4.2 shows a schematic representation of this idea. The following theorem
gives the cost for such a computation.

Lemma 4.5.1. Given a query (A, δ) where A is an a × b rectangular axis aligned

query region, the query can be answered at a cost of O(max(a, b) log4.4 min(a, b) +

max(a, b)(1/δ) log3.4(1/δ)).

Proof: For a node x, let dx be the distance of node x from the perimeter of the region

A. If i is the maximal level of x, then ηi3.42i ≤ dx < η(i + 1)3.42(i+1). This implies
that all nodes of maximal level i occur in an annular rectangular region of inner
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boundary (b− 2η(i + 1)3.42(i+1))× (a− 2η(i + 1)3.42(i+1)) and outer boundary (b−
2ηi3.42i)× (a− 2ηi3.42i). The thickness of this annular rectangle is O(i3.42i).

To obtain the result with parameter δ, we start at the perimeter of region A,

and spiral inward accumulating the synopsis s. At a distance ηd log3.4 d from the
boundary, a maximal piece of level log d can be used, and the probability of a node
at this level being missed by a maximal piece is O(1/d). By the requirements of the
query, it has to be ensured that δ = O(1/d). Thus, the spiral visits each individual

node until the distance to the boundary reaches O((1/δ) log3.4(1/δ)). At every node
x, the synopsis is updated as s = s ⊕ s0(x). The cost of such a path is O((a +

b)1
δ log3.4(1/δ)).
After this point, the synopsis are updated according to maximal levels. At a

node x of maximal level i, we set s = s⊕ si(x), which is equivalent to the operation
S = S ∪ Si(x). The lowest maximal level that we can use for the given query is
γ = O(log(1/δ)). The cost incurred to process nodes at any maximal level i ≥ γ is
O((a− i3.42i)i3.4 + (b− i3.42i)i3.4) = O(b · i3.4).

The cost for the spiral covering all maximal levels i for γ ≤ i ≤ p is given by

p

∑
i=log(1/δ)

O(b · i3.4) = O(bp4.4) = O(b log4.4 a).

Thus, the total communication cost for answering the query is

O(max(a, b) log4.4 min(a, b) + max(a, b)(1/δ) log3.4(1/δ)). �

Spatial gossip with no maximum range restriction. We note that the hierarchical
spatial gossip for phase i makes only one change to the spatial gossip algorithm
as in [79]. Essentially a node chooses its gossip partner with a maximum distance
range 2i. This way we are able to restrict the amount of pollution from distant nodes.
In the above range query, we make use of the fact that the data summaries do not
include information beyond a certain distance threshold (claim 1 in Theorem 4.3.5),
to answer queries with no false positive errors.

For applications in which small false positive errors are not a problem, we can
propose to use the single-phase spatial gossip algorithm to construct the multi-
resolution data representations. Essentially, we just run the standard spatial gos-
sip algorithm where each node chooses another node with distance d away with

probability roughly 1/d3. We run the algorithm for O(log3.4 n) rounds. During the
algorithm, we keep the current aggregation value after round O(i3.4), as the data
summary of the 2i-hop neighborhood. Notice that the probabilistic upper bound on
pollution as the second claim in Theorem 4.3.5 still holds. Thus the ith data sum-
mary we compute has a large probability to include every value inside a 2i-hop
neighborhood and not include values outside 2ii2.4 neighborhood. This alternative
solution saves a factor of O(log n) in the total communication cost, at the cost of
more pollution from far away nodes. For range query, a probabilistic solution with
both small false positives and small false negatives can be obtained. In practice
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either variation can be adopted, dependent on application requirements. We evalu-
ated and compared the gain of each variation in the simulation section.

Error introduced by ODI synopsis. The analysis above considers the probabilistic
error introduced by the gossip. ODI-synopses for aggregates such as SUM, AVG are
probabilistic with small probabilities of error. Thus, the overall system error may
incorporate this factor, which will depend on the actual ODI synopsis used.

4.6 Simulations

In this section, we show that simulation results confirm our expectations on the
properties of the hierarchical spatial gossip. We compare our approach with the
naive flooding and standard spatial gossip (single phase, with no restriction max-
imum range) for the total communication cost and the effectiveness of multi-
resolution representation. We focus on evaluating the performance of our ap-
proaches at the algorithm level, and do not consider the underlying details, such
as collisions and packet loss, at MAC and link layers. We use geographical routing
in the simulations. Each packet transmitted only contains necessary location infor-
mation and a piece of aggregate data of the source node. All simulations are done
in C++ on a unit-disk graph model. For the simplicity of explanation, we denote
the set of nodes within 2i distance from node x as Di(x). The aggregate of Di(x)
is referred as the aggregate of resolution level i at node x. We compute the aggre-
gate MIN as an example in the following simulations, other ODI-synopsis can be
evaluated in the same way. All simulation results are averaged on 10 runs.

4.6.1 Total communication cost

We simulated a grid network where the sensor nodes have a fixed transmission
range 2. Nodes can communicate directly if they are within the transmission range
of each other. Keeping the density of the network constant, we vary the number
of nodes from 256 to 4900, and vary the size of the sensor field from 32 × 32 to
140× 140.

In the hierarchical spatial gossip, each phase i was terminated when at least (1−
0.5/i) fraction of nodes in the entire senor field correctly computed the minimum
value of resolution level i. This condition was found to provide a reasonable balance
between fast information propagation and low pollution rates.

Figure 4.3 shows the total communication cost in grid networks with various
sizes. Naive flooding incurs dramatically higher cost, because in a network with n
nodes, it requires O(n) transmissions for propagating one piece of data, and O(n2)
transmissions in total. As expected, the hierarchical spatial gossip costs slightly
more than the spatial gossip, but is still almost linear in the network size.
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4.6.2 Effectiveness of multi-resolution representation

The approach of flooding the network is communication expensive. But with flood-
ing we can compute the accurate multi-resolution data summaries by labeling each
flood message with the location of its starting point. Thus, we only compare the ef-
fectiveness of multi-resolution representation of our approach with the single phase
spatial gossip here.
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Figure 4.3. Total communication cost in grid networks with various size.
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Figure 4.4. (i) Maximum distance reached in each phase. (ii) Relative pollution in each phase.

We compare the standard spatial gossip with hierarchical spatial gossip when
they reach roughly the same state. For example, if round 15 of spatial gossip is the
first round at which at least a fraction of (1− 0.5/3) nodes correctly compute the
aggregates of resolution level 3, then the states of the 15th round is comparable to
phase 3 in hierarchical spatial gossip. The following simulations are conducted in
a 128× 128 grid network with 4096 sensor nodes. We take one piece of data s of
the node located in the center of the network as a representative, and evaluate the
entire process of its propagation. All other data is propagated in the same way.
Intuitively, an ideal multi-resolution representation should compute aggregates at
level i of almost all nodes belonging to Di, and little or no pollution beyond Di.

The example of one execution in Figure 4.6 shows different phases of the prop-
agation of s in the hierarchical spatial gossip. We can see that the information s
is propagated within a restricted range in each phase and pollutes very few nodes
beyond a certain distance. In the following, we use three measurements, viz., per-
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centage of coverage, maximum distance and relative pollution, to compare the per-
formance of our approach with the spatial gossip.

Coverage. We define the percentage of coverage at distance d as the percentage of
the number of nodes receiving s at distance d from the origin of s. In Figure 4.5,
we show the percentage of coverage in an intermediate phase (phase 4) for both
standard spatial gossip and hierarchical spatial gossip. The result confirms that
there is a disk such that nodes within it receive the value with high probability. And
the probability of a node outside this disk receiving the values falls sharply with the
distance from the origin.
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Figure 4.5. Coverage of phase 4.

In the hierarchical spatial gossip, all nodes within a disk with radius 8 from the
center receive s. The percentage of coverage decreases quickly as the distance in-
creases, and goes below 10% beyond distance 30. The propagation quickly stops at
distance 44.6. In standard spatial gossip, all nodes within a disk with radius 6 from
the center receive s, but it pollutes the information at distant nodes up to a distance
of 78, almost to the boundary of the network.

Pollution. The small coverage in hierarchical spatial gossip implies low pollution
rates. This is visible in figure 4.5. The single-phase spatial gossip always selects
nodes from the entire network, thus it cannot guarantee a comparable restriction on
pollution. We characterize and compare the pollution caused by the two approaches
using two more criteria - maximum distance and relative pollution. We define the
maximum distance of phase i as the distance between the center and the furthest node
receiving s in phase i. The relative pollution of phase i is defined as the ratio of the
number of nodes receiving s beyond Di(center) and the number of nodes receiving
s within Di(center).

Figure 4.4(i) shows the maximum distance reached at the end of each phase in
both approaches. Since we simulate in a 128× 128 grid network, the farthest point
from the center is at a distance of about 90 units. In the hierarchical spatial gos-
sip, the maximum distance increases relatively slowly with phases, while in the
single-phase spatial gossip, the data often reaches distant nodes within the first
few rounds. From Figure 4.4(ii), we can see that there is a big gap between the
single-phase spatial gossip and the hierarchical spatial gossip in terms of relative

63



pollution. The peaks are 9 and 2 respectively. Since we compare the states of the
standard spatial gossip at the point of reaching the same state in the hierarchical
spatial gossip, the number of nodes getting s within Di is roughly the same in both
approaches. However, to build up the same level resolution, the single-phase spatial
gossip would pollute data at about 4 times as many nodes beyond that level than
the hierarchical spatial gossip.

Conclusion. Efficient communication and sharp multi-resolution representation are
two conflicting goals. The naive flooding can obtain exact accurate aggregates but
with high communication cost. The standard single phase spatial gossip is com-
munication efficient, but it is possible that the information propagates to distant
nodes before a sufficient number of nearby nodes gets the data. The hierarchical
spatial gossip balances the above two goals by restricting the range of information
propagation. Compared with the single-phase spatial gossip, it achieves a sharper
multi-resolution representation with only a slightly higher communication cost.

(i) Phase 1 (ii) Phase 2 (iii) Phase 3

(iv) Phase 4 (v) Phase 5 (vi) Phase 6

Figure 4.6. Propagation of one piece of data of the node located in the center of the field.

4.7 Conclusion

In this chapter, we propose an efficient algorithm with a total communication cost of
O(n polylog n) to extract and construct sharp multi-resolution data representations
for sensor networks. We believe that the multi-resolution data summary is a fun-
damental data storage paradigm to equip each node with compact sketches of the
global picture of the data field. As the future work we will explore more applications
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of multi-resolution data summaries for advanced data processing and validation, as
well as efficient query evaluations.

Appendix

Proof (Lemma 4.3.3): From the setup of the network described in section 4.2, ob-
serve that the density of the node deployment has lower and upper bounds in any
region of the network. In particular, for the following analysis we assume that there
are constants β1, β2 (β1 < β2) such that the number of nodes in any disk of radius
r ≥ 1 lies between β1r2 and β2r2.

The probability 1 − O( 1
d) can be rewritten as 1 − γg(d) for γ =

O(log
−2.4− log d

log log d d) and a suitable function g(d) = O(log2.4 d). And the number

of rounds O(log3.4 n) can be written as τg(d) for a suitable τ = O(log d).
Note that, if in the jth round of phase i a node x selects a node y to gossip, then

Si,j(x) ⊆ Si,k(y), ∀k > j. And this property holds transitively. So, all we need
to prove is that there would be a sequence of gossip selections taking the message

from x to y within g(d) = O(log2.4 d) rounds with probability at least 1− γg(d).
Our induction hypothesis is that the result holds for distances upto d3/4.

First note that for the base case of r equal to some constant, any constant prob-
ability 1 − γg(r) of the value from x reaching y can be obtained with constant k
number of selections by x. This constant will depend on β2, the upper bound on
density since there can be β2d2 nodes that are nearer to x than y.

u

yx
u′

d3/4d3/4

B̂

B B′

Figure 4.7. In a time interval τ, the long link uu′ exists with high probability, and links xu
and u′y exist with corresponding high probability.

Consider the disk B̂ of diameter d containing both x and y. Inside B̂, we take two
disks B and B′ of diameter d3/4 containing x and y respectively. Our induction hy-
pothesis is that the result holds for pairs of nodes d3/4 apart. Thus, g is the recursive

function g(r) = 1 + 2g(r3/4). It can be shown that g(r) = O(log2.4 r).
We divide the time interval τg(d) into intervals τg(d3/4), τ and τg(d3/4). We

need to show, that with high probability, some node u from B selects some node u′

from B′ to gossip with in a time interval of length τ. The rest follows by induction.
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The probability that in τ rounds, no node from B selects any node from B′ to gossip
with, is given by

(

1− cβ1
k3/2

4k3

)τβ1k3/2

≤
(

1

e

)cτβ2
1/4

.

We select τ such that
(

1
e

)cτβ2
1/4

= γ. Then the probability that some node u in B

selects some node u′ in B′ in an interval of τ rounds is at least 1− γ. In other words,
assuming that u has the message at the end of τg(d3/4) rounds, the probability that
some u′ ∈ B′ receives the message in the τ is at least 1− γ.

By induction hypothesis, u receives the message from x with probability 1 −
γg(d3/4) in the first τg(d3/4) rounds. And y receives the message from u′ with prob-
ability 1− γg(d3/4) in another τg(d3/4) rounds after u′. Thus, the probability that
in τg(d) rounds the message propagates from x to y is at least 1− γ− 2γg(d3/4) =
1− γg(d).

Since γ = O(log
−2.4− log d

log log d d) and τ = O(−1
β2

1c
log γ), we have τ = O(log d).

Therefore, in τg(d) = O(log3.4 d) rounds the message travels from x to y with a
probability of 1−O( 1

d). �
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Part II

Virtual Coordinates: Modifying
Network Geometries
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Chapter 5

Introduction

This second part handles sensor networks through virtual coordinates. Instead of
relying on the default geometric properties of the graph metric, the approach will
be to modify the metric to suit our needs. By modifying the metric, we simplify
the shape of the network to have useful geometric properties. Of course, the shape
or the metric of a network itself cannot be modified without extensive re-wiring
or physically moving the nodes. The method therefore is to use artificial virtual
locations unrelated to a node’s physical placement, and modify that at will. We
apply virtual coordinates to perform easier routing, and for in-network storage.

Ricci flow is a powerful technique in differential geometry. It can be used to de-
form the metric and shape of a surface. We use it for our modification of the network
in virtual coordinates. The flow acts locally at every node as an iterative algorithm,
interleaved with communication with neighbors. In this respect, its pattern of oper-
ation is very much like a distributed gossip algorithm. As in the first part, routing
is a reference application. Along with introducing Ricci flow, we demonstrate its
utility in directly enabling greedy routing, which is perhaps the simplest possible
routing scheme.

Greedy routing has received a lot of attention since it was proposed for routing
in ad hoc wireless networks [13, 77], due to its simplicity and efficiency. A node
forwards the packet to its neighbor whose distance to the destination is the smallest.
Thus routing decision is made with only local knowledge. On a dense network
without holes greedy routing typically works very well and gives close to optimal
routing paths.

A well-known problem with geographical forwarding is that packets may get
stuck at nodes with no neighbor closer to the destination. There have been many
ways to handle this problem, the most well-known one is face routing [13,77,92]. In
this paper we take the approach of constructing a map of the network and finding
virtual coordinates for the sensor nodes such that simple greedy routing with virtual
coordinates always succeeds.

The property of Ricci flow that makes greedy routing possible is that the flow
causes the network holes to converge to circular holes in the virtual coordinate. As
will be seen in the following chapter, this suffices for successful greedy routing.

In chapter 7 we extend the virtual coordinate system for better routing and data
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storage. The data storage question can be seen as a map from the data space to the
physical network space - each piece of data is stored somewhere in the network. We
store the data on a covering space of the network. The covering space can be imag-
ined as the virtual coordinate system of chapter 6 from which the holes have been
practically removed. This provides better load balancing in routing and data stor-
age. In general, the practical absence of holes goes further in simplifying geometry
of the network, and methods conceived for a flat uniform plane are more readily
adaptable to a space without holes.

The mapping from the logical data space to the physical sensor field, done in a
straightforward manner, often leads to high data concentration on nodes near net-
work boundaries, simply for the reason that they are adjacent to empty or low den-
sity regions. In GHT, for example, all the data hashed inside a hole will eventually
be mapped to the nodes on the hole boundary, that get a higher storage load. When
GHT exploits the nodes on the boundary of a planar face to also store the data (for
robustness to node failures), the load imbalance is even higher. Similarly for DIM,
the node near a zone empty of nodes will substitute to store the data. Nodes near
hole boundaries store more data and carry more traffic.

When the sensor field is irregular, many geometry based data storage and re-
trieval schemes run into problems. As another example, double rulings, or quo-
rum based schemes, store data on a curve and retrieve data along another curve.
As long as the data retrieval curves intersect with the data storage curve, one can
successfully discover the desired data. When a sensor field has a regular shape (a
square region or a disk, for example), one can design the storage/retrieval curves
as the horizontal/vertical lines [104,145,159], or proper circles (great circles through
a stereographic mapping) [132]. Both of them may get stuck at network bound-
aries. Of course one can use various hole bypassing techniques to get around the
holes [42, 77]. This may also lead to higher storage and traffic load on the hole
boundaries – the same problem encountered earlier.

The imbalance of storage or traffic load adversely affects the system perfor-
mance. On one hand, the nodes with high load are bottleneck nodes. They carry out
more tasks than average. If the nodes are battery powered, this means the highly
loaded nodes would run out of battery sooner. When these heavily used nodes are
on hole boundaries the problem is worse, as holes are enlarged and the network
may be disconnected prematurely. In addition, the nodes with high traffic load de-
note the bottleneck of communication. Spatial diversity is not best utilized to avoid
wireless interference, leading to lower network throughput.

5.1 Research review

Using virtual coordinates for greedy routing was first used in NoGeo routing pro-
posed by Rao et al. [128]. In this method the network boundary is pinned on a
convex planar curve (such as a square or a circle) and the interior nodes are embed-
ded by using the rubberband representation [102]. The rubberband representation
is obtained by each node (that is not fixed) running an iterative algorithm of putting
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itself at the center of mass of the neighbors’ current locations until convergence.

Motivated by NoGeo, a few theoretical works ask under what conditions em-
bedding of a given graph in the plane exists such that greedy routing always
works [21, 120]. Such an embedding is called a greedy embedding. It is known that
not every graph admits a greedy embedding, for example a star with 7 leaves [120].
Some graphs are known to have greedy embeddings, for example, any graph with
a Hamiltonian path, any complete graph, any 4-connected planar graph (since they
are Hamiltonian [147]), and Delaunay triangulations. It still remains open to fully
characterize the class of graphs that admit greedy embeddings.

Papadimitriou and Ratajczak [120] made the conjecture that any planar 3-
connected graph1 has a greedy embedding in the plane. Dhandapani discovered
that any planar triangulation (without holes) admits a greedy embedding in the
plane for which greedy forwarding always succeeds [32]. Recently the 3-connected
graph conjecture was proved to be true by Leighton and Moitra [96], and indepen-
dently by Angelini et al. [7]. Later the algorithm in [96] was improved such that the
coordinates use O(log n) bits for a graph with n vertices [59].

A recent observation by Kleinberg [88] shows that if we use hyperbolic space
then greedy routing becomes easy. He showed that any connected graph has an em-
bedding in the hyperbolic space such that by using the hyperbolic distance greedy
routing from any node to any node always succeeds. The intuition is to embed a
tree in a hyperbolic space such that greedy routing works on the tree. Since any
connected graph has a spanning tree, greedy routing works at all times. A similar
idea was used in [38].

For all the virtual coordinates schemes, one needs to have a location service such
that any node can inquire the virtual coordinate of any other node in the network.
Efficient location services for sensor networks have been developed [98, 129]. Such
location services can be used in routing with virtual coordinates developed in this
paper. The virtual coordinate addresses in this case, as in [128], are simple euclidean
coordinates of the form (x, y). The service simply needs to have tables of such coor-
dinates for the nodes.

Prior research on sensor networks have proposed the ‘data-centric’ notion [73,
129] for sensor network design. The generation, collection, processing, storage and
retrieval of sensor data are the most critical functions around which the network
protocols should be designed. As the state of the art, networks in the size of thou-
sands of sensor nodes are deployed [1,112] with the target size of hundreds of thou-
sands in the next few years. As networks grow large in size, centralized data col-
lection has a fundamental bottleneck at nodes near the sink. Distributed in-network
data storage in which there is no single sink is more desirable for its robustness.

For distributed in-network storage, data is mapped to rendezvous sensors for
storage and processing. Such a mapping is often obtained by considering data in
a logical space with indices mapped to geographical locations. For example, in ge-
ographical hash table (GHT) [129], data keys are hashed to a random geographi-
cal location in the sensor field and the sensor node closest to the hashed location

1A graph is 3-connected if it remains connected after the removal of any 2 nodes.
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is denoted as the home node and stores the data. In DIM [99], data in a multi-
dimensional attribute space is mapped to the sensor field by using a quad-tree, such
that data with nearby indices are mapped to physically nearby zones, in order to
support range queries. Variations of quadtrees have also been used in other schemes
to organize data and the corresponding storage [52, 56, 62].
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Chapter 6

Ricci Flow and Greedy Routing

Greedy forwarding with geographical locations in a wireless sensor network may
fail at a local minimum. In this chapter we propose to use conformal mapping to com-
pute a new embedding of the sensor nodes in the plane such that greedy forwarding
with the virtual coordinates guarantees delivery. In particular, we extract a planar
triangulation of the sensor network with non-triangular faces as holes, by either us-
ing the nodes’ location or using a landmark-based scheme without node location.
The conformal map is computed with Ricci flow such that all the non-triangular faces
are mapped to perfect circles. Thus greedy forwarding will never get stuck at an in-
termediate node. The computation of the conformal map and the virtual coordinates
is performed at a preprocessing phase and can be implemented by local gossip-style
computation. The method applies to both unit disk graph models and quasi-unit
disk graph models. Simulation results are presented for these scenarios.

6.1 Introduction

To find virtual coordinates for the sensor nodes in a network, we look at a more fun-
damental problem of studying maps between spaces. This is motivated by the fact
that most practical applications of sensor networks require sufficient sensor density,
for both sensing coverage and system robustness/redundancy to cope with node
failure. Taking the view point of maps of spaces also introduces some insensitiv-
ity to link dynamics and local disturbances. In a wireless network, communication
links are volatile and may go up and down. Nodes may also die or be replaced
periodically. The shape of the geometric region for which the sensors are deployed
and aim to monitor, is much more stable, provided that the sensor network still has
sufficient coverage for its normal functioning.

The question we ask is, given a domain surface R ⊆ R2, is there a continuous
map f : R → D such that greedy routing on D always succeeds? If the domainR is
a simply connected convex region (i.e., with no holes), then the identity map is good,
since greedy routing is essentially straight line routing inR and always successfully
delivers a message. If the domain R has holes, especially some concave ones, then
we need a non-trivial map to prevent greedy routing from getting stuck at hole
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boundaries. In fact, we would like to map the domainR to a domain D such that all
the holes in D are circular — since greedy routing never gets stuck at circular hole
boundaries. Thus the map that achieves this will produce virtual coordinate system
for the nodes with guaranteed delivery for greedy routing.

The map we will use is a conformal map, as shown in Figure 6.1. A conformal
map between two surfaces preserves angles. For any two arbitrary curves γ1, γ2 on
the surface S, a conformal map φ maps them to φ(γ1), φ(γ2) with the same intersec-
tion angle as that of γ1, γ2. According to conformal geometry theory, a genus zero
surface with multiple boundaries (a topological multi-holed annulus) can be con-
formally mapped to the unit disk with circular holes, as shown in Figure 6.1. Such
a conformal mapping is unique up to a Möbius transformation in each homotopy
class of degree one mappings. Recent advances in differential geometry, in particu-
lar, on Ricci flow lead to computationally efficient algorithms to construct such kind
of conformal mapping.

Ricci flow was introduced by Richard Hamilton for Riemannian manifolds of
any dimension in his seminal work [65] in 1982. Intuitively, a surface Ricci flow
is the process to deform the Riemannian metric of the surface. The deformation is
proportional to Gaussian curvatures, such that the curvature evolves like the heat
diffusion. It has been considered a powerful tool for finding a Riemannian metric
satisfying the prescribed Gaussian curvature in mathematics and has been applied
in the proof of the Poincaré conjecture on 3-manifolds [122–124]. Chow and Luo [24]
proved a general existence and convergence theorem for the discrete Ricci flow on
surfaces, and proved that the Ricci energy is convex. Jin et al. provided a computer
algorithm in [74].

6.1.1 Our contribution

We investigate in this paper algorithms for computing a conformal map of a sen-
sor field and the application in enabling greedy routing. We first extract from the
communication network a planar graph H such that all non-triangular faces map
to network holes that will be later mapped to circular holes in the embedded do-
main D. Ideally these holes in H are also real holes in the network/environment.
Thus the triangulated mesh H is a discrete representation and approximation of the
underlying domain R. We show that when the sensors are deployed densely in
R such that any disk with diameter 1 has at least one sensor inside, the unit disk
graph on the nodes contains such a triangulation H of R that can be computed lo-
cally. Note that the density requirement here is simply a condition for detecting the
topology faithfully and is not necesaary for successful routing. We present a method
to construct a suitable triangulation from any unit disk graph. Similar results can
be proved as well for certain quasi-unit disk graphs (when there must be a link
between two nodes within distance 1/α < 1 and no link when distance is greater
than 1). When node locations are not known, we use a landmark-based scheme as
in [43, 49] to locally select landmarks of constant bounded density (i.e., the Voronoi
diagram of each landmark has O(1) nodes) and compute a planar triangulation on
the landmarks. The conformal map is computed on this triangulation. The planar
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triangulation algorithm for a sensor network may be of interest by itself since many
surface processing algorithms assumes a nice triangular mesh and now can be ap-
plied in the network setting.

The triangulation and conformal map computation are performed as a prepro-
cessing phase during network setup. There are two major advantages of using Ricci
flow method for computing the virtual coordinates: distributed nature and confor-
mality.

1. Ricci flow algorithm is intrinsically distributed, each node only requires the
information from its one-hop neighbors, and the curvature at that node can be cal-
culated, the metric deformation is proportional to the curvature, therefore the flow
can be performed completely in parallel.

2. Asymptotically, Ricci flow leads to a conformal mapping. We set the virtual
edge lengths of the triangulation to be one, therefore each triangle is an equilateral
one in the original triangulation.

The virtual coordinates are disseminated to every node with which they can use
greedy routing for point-to-point message delivery. In our simulation section we
demonstrate the efficiency of conformal map computation, in terms of the number
of messages used per node, different network topologies and node density.

On a last note, we remark that the rubberband representation used in NoGeo
algorithm [128] is essentially the discrete version of finding a harmonic map be-
tween the simply connected domain defined by the sensor field outer boundary
and a convex planar domain. However, harmonic maps for multi-holed annulus
can not be guaranteed to be a diffeomorphism. Therefore holes in the network are
not handled properly. In particular, near a non-convex hole, the network may be
folded over itself, causing the routing to fail. Our algorithm can be considered as
an extension of Dhandapani’s result that any triangulation (without holes) admits a
greedy embedding. Our method considers triangulation of a domain with possible
holes and converges to an embedding of the network with holes mapped to circles
as long as such embedding exists [68]. The existence of embedding can be verified
by the combinatorics of the network as explained in [5]. An embedding can always
be ensured by appropriate local refinements to the triangulation. For conventional
methods, it is more challenging to handle dense networks. Our method is espe-
cially good at handling dense networks. In fact, our discrete mapping converges to
smooth conformal mappings with the increase of density. The proof can be found
in [15].

In the next section we will briefly introduce the theory behind the Ricci flow
algorithm to compute a conformal map. Readers may also choose to read the algo-
rithm section first in which we introduce the implementation of the algorithm in a
network setting and the entire pipeline for computing virtual coordinates for greedy
routing.
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(a) Face surface (b) Conformal Mapping (c) Möbius transformed (d) Texture Mapping

Figure 6.1. Conformal Mapping. Genus zero surface (a) with multiple boundaries can be
mapped to the unit disk with circular holes conformally. Two such conformal mappings
differ by a Möbius transformation are shown in (b) and (c). The checker board image is
applied for texture mapping in (d), where all the right angles of the checkers are well pre-
served, therefore, the mapping is conformal.

6.2 Theory

In this section, we introduce several important concepts in differential geometry and
the theory of the Ricci flow.

6.2.1 Riemannian metric and curvature

Suppose a surface S is embedded in R3, then it has a Riemannian metric, induced
from the Euclidean metric of R3. The metric tensor is denoted by g = (gij).

Riemannian metric determines the Gaussian curvature K and the geodesic cur-
vature k . Gauss-Bonnet theorem states that the total curvature is a topological in-
variant

∫

S
KdA +

∫

∂S
kds = 2πχ(S), (6.1)

where ∂S represents the boundary of S, χ(S) is the Euler characteristic number of S.
Suppose u : S → R is a scalar function defined on S, then it can be verified that

e2ug is another Riemannian metric on S, denoted by ḡ. It can be proven that angles
measured by g are equal to those measured by ḡ. Therefore, ḡ is conformal to g and
now e2u is called the conformal factor. The Gaussian curvatures are related by

K̄ = e−2u(−∆u + K), (6.2)

where ∆ is the Laplace-Beltrami operator under the original metric g. Similarly, the
geodesic curvatures satisfy

k̄ = e−u(∂nu + k), (6.3)

where n is the tangent vector orthogonal to the boundary. According to Gauss-
Bonnet theorem (equation 6.1), the total curvature doesn’t change.

6.2.2 Surface Ricci flow

Suppose S is a smooth surface with Riemannian metric g. The Ricci flow is the
process to deform the metric g(t) according to its induced Gaussian curvature K(t),
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where t is the time parameter

dgij(t)

dt
= −2K(t)gij(t). (6.4)

Suppose T(t) is a temperature field on the surface. The heat diffusion equation
is dT(t)/dt = −∆T(t), where ∆ is the Laplace-Beltrami operator induced by the
surface metric. The temperature field becomes more and more uniform with the
increase of t, and it will become constant eventually.

In a sense, the curvature evolution induced by the Ricci flow is exactly the same
as heat diffusion on the surface, as follows:

K(t)

dt
= −∆g(t)K(t), (6.5)

where ∆g(t) is the Laplace-Beltrami operator induced by the metric g(t). We can

simplify the Ricci flow equation 6.4. Let g(t) = e2u(t)g(0), then Ricci flow is

du(t)

dt
= −2K(t). (6.6)

The following theorems postulate that the Ricci flow defined in 6.4 is convergent
and leads to the conformal uniformization metric.

Theorem 6.2.1 (Hamilton 1982). For a closed surface of non-positive Euler charac-
teristic, if the total area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is constant everywhere.

Theorem 6.2.2 (Chow [23]). For a closed surface of positive Euler characteristic, if
the total area of the surface is preserved during the flow, the Ricci flow will converge
to a metric such that the Gaussian curvature is constant everywhere.

The corresponding metric g(∞) is the uniformization metric. Moreover, at any
time t, the metric g(t) is conformal to the original metric g(0).

The Ricci flow can be easily modified to compute a metric with a prescribed cur-
vature K̄, and then the flow becomes

dgij(t)

dt
= 2(K̄− K)gij(t). (6.7)

With this modification, any target curvatures K̄, which are admissible with the
Gauss-Bonnet theorem, can be induced from the solution metric g(∞).

6.2.3 Discrete Ricci flow

Smooth surfaces are often approximated by simplicial complexes (triangle meshes).
We consider such a triangle mesh Σ with vertex set V, edge set E and face set F.
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Figure 6.2. The circle packing metric.

Discrete Riemannian Metric In the discrete setting, the edge lengths on a mesh Σ

simply define the Riemannian metric on Σ,

l : E→ R
+,

such that for a face fijk the edge lengths satisfy the triangle inequality: lij + ljk > lki.
The discrete metric determines the angles. Suppose we have a triangle fijk

with edge lengths {lij, ljk, lki}, and the angles against the corresponding edges are
{θk, θi, θj} (see figure 6.2). By the cosine law,

l2
ij = l2

jk + l2
ki − 2ljklki cos θk, (6.8)

The discrete Gaussian curvature is defined as the angle deficit on a mesh,

Ki =

{

2π −∑ fijk∈F θ
jk
i , interior vertex

π −∑ fijk∈F θ
jk
i , boundary vertex

(6.9)

where θ
jk
i represents the corner angle attached to vertex vi in the face fijk.

In the discrete setting, the Gauss-Bonnet theorem (equation 6.1) still holds on
meshes with the discrete Gaussian curvatures, as follows.

∑
vi∈V

Ki = 2πχ(M).

The circle packing metric was introduced [144,150] to approximate the conformal
deformation of metrics. Let us denote by Γ a function which assigns a radius γi to
each vertex vi.

Γ : V → R
+

We also define a weight function:

Φ : E→ [0,
π

2
].
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by assigning a positive number Φ(eij) to each edge eij. The pair of vertex radii and
edge weight functions on a mesh Σ, (Γ, Φ), is called a circle packing metric of Σ. Figure
6.2 illustrates the circle packing metric. Each vertex vi has a circle whose radius is ri.
On each edge eij, an intersection angle φij is defined by two circles of vi and vj, which
intersect with or are tangent to each other. Two circle packing metrics (Γ1, Φ1) and
(Γ2, Φ2) on a same mesh are conformal equivalent, if Φ1 ≡ Φ2. Therefore, a conformal
deformation of a circle packing metric only modifies the vertex radii.

For a given mesh, its circle packing metric and the edge lengths on the mesh can
be converted to each other by using cosine law.

l2
ij = γ2

i + γ2
j + 2γiγj cos φij (6.10)

Let ui to be log γi for each vertex. Then, the discrete Ricci flow is defined as
follows.

dui(t)

dt
= (K̄i − Ki) (6.11)

Discrete Ricci flow can be formulated in the variational setting, namely, it is a
negative gradient flow of some special energy form.

f (u) =
∫ u

u0

n

∑
i=1

(K̄i − Ki)dui, (6.12)

where u0 is an arbitrary initial metric. The integration above is well defined, and
called the Ricci energy. The discrete Ricci flow is the negative gradient flow of the
discrete Ricci energy. The discrete metric which induces k̄ is the minimizer of the
energy.

Computing desired metric with prescribed curvature K̄ is equivalent to minimiz-
ing the discrete Ricci energy. The discrete Ricci energy is strictly convex (namely, its
Hessian is positive definite). The global minimum uniquely exists, corresponding
to the metric ū, which induces k̄. The discrete Ricci flow converges to this global
minimum [24].

Theorem 6.2.3 (Chow & Luo: Euclidean Ricci Energy). The Euclidean Ricci en-
ergy f (u) on the space of normalized metric ∑ ui = 0 is strictly convex.

The convergence rate of the discrete Ricci flow using equation 6.11 is governed
by the following theorem

Theorem 6.2.4 (Chow & Luo). The Ricci flow 6.11 converges exponentially fast,

|K̄i − Ki(t)| < c1e−c2t, (6.13)

where c1, c2 are two positive constants.
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(a) Nodes (b) Triangulation (c) Virtual Coordinates (d) Zoomed in

Figure 6.3. Algorithm pipeline. Given a network in (a), a triangulation is constructed in (b). The
boundaries are traced as γk’s in (b). A cut between γ1 and γ2 is located as η. The triangular mesh is
sliced open along η. By using Ricci flow the sliced mesh is flattened to a parallelogram in (c), then
mapped to the unit disk with circular holes in (c). Local region is zoomed in as shown in (d), which
shows all the triangles are with acute angles.

6.3 Algorithms

This section describes the distributed algorithm to compute the virtual coordinates
corresponding to the conformal map. The first step is to obtain a triangulation from
the network that is a compact manifold with boundaries and is homeomorphic to a
bounded subset of R2. Later, we describe the algorithm to compute the conformal
map of this triangulation.

6.3.1 Obtain a triangulation

We describe methods for obtaining a triangulation in cases where the nodes are
aware of their locations as well as in cases where locations are not available. The
methods apply to quasi-unit disk graphs with suitable parameter. For unit disk
graphs in the plane, the only requirement is that the graph should be connected. We
denote the set of neighbors of a node u as N(u).

Location-based triangulation

A method for computing a triangulation of a unit disk graph through local compu-
tations is described in detail in [57]. This graph is called the restricted delaunay graph
(RDG). The essential method is as follows:

1. At each node u, compute the delaunay triangulation of N(u) ∪ {u}, denote
this triangulation as T(u).

2. For each node u, if an edge (u, v) is in T(u), then it is valid if and only if
(u, v) ∈ T(x), for all common neighbors x of u, v, i.e. ∀x ∈ (N(u) ∪ {u}) ∩
(N(v) ∪ {v}).

3. All invalid edges are removed.

It is proved in [57] that RDG is connected and planar. The essential reason being
that for a pair of crossing edges of a unit disk graph, at least one of the four nodes

80



that lie at the end points of the edges is aware of both the edges, and hence can
force the crossing to be removed. Our goal here is to obtain virtual coordinates
for routing, but we would like to approximate the true topology of the network as
closely as possible. The following theorem suggests that at least for dense sensor
networks, the method above preserves the topology:

Lemma 6.3.1. If a bounded set R ⊆ R2 is covered by sensors P such that any
disk with unit diameter centered inside R has at least one node inside, any non-
triangular face in the RDG computed above is of distance at most 1/2 away from
the boundary ofR.

Proof: Denote by D(P) the Delaunay triangulation on P and D′(P) the graph with
all the Delaunay edges on P with lengths smaller than 1. It has been shown in [57]
that the restricted Delaunay graph RDG computed is a planar graph that includes
D′(P). Therefore, any non-triangular face in the RDG must map to a non-triangular
face in D′(P). In the following we argue that there can not be a non-triangular
face ‘deeply inside’ the region R. Consider any Delaunay triangle △uvw in D(P),
if its circumcircle C is centered inside R, then the circumcircle has radius at most
1/2 — otherwise the sensor density requirement will put one node inside C, which
contradicts with the property that the circumcircle of a Delaunay triangle is empty of
any other nodes. This shows that all the three delaunay edges of△uvw have length
at most 1 and are then inside D′(P). Therefore any Delaunay triangule △uvw not
in D′(P) must have its circumcircle centered outsideR. The circumcircle has radius
greater than 1/2 — otherwise the three edges are no longer than 1 hence the triangle
△uvw is in D′(P). Now we argue that all three nodes u, v, w are within distance 1/2
from the boundary of R. Otherwise, we can shrink the circumcircle C of △uvw to
a unit diameter circle, completely inside C, with its center within R. By the density
requirement there must be a node inside the shrunk circle, thus inside C. This again
contradicts the Delaunay triangulation property. �

The above Lemma shows that the RDG we get indeed provides a triangular mesh
that covers the regionR′ = {p|p ∈ R, d(p, ∂R) ≤ 1/2}, which does not include the
points within 1/2 distance from the boundary ∂R.

This distributed algorithm can be adapted to produce a planarization algorithm

for connected quasi unit disk graphs (quasi-UDG) 1 of parameter α ≤
√

2. This is
done as follows:

1. Compute the RDG with 1/α sized disks for neighborhoods instead of unit
disk neighborhoods. The RDG algorithm applies without modification, hence
produces a planar graph. The planar graph produced may not be connected.
It is possible that connectivity of the quasi-UDG relied on some edges longer
than 1/α.

1In a quasi unit disk graph with parameter α ≥ 1, if two nodes are within distance 1/α, an edge
between the two exists, if they are at a distance more than 1, the edge does not exist; while for other
distances, the existence of the edge is uncertain.
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Figure 6.4. Restoring connectivity. Dark edges are RDG edges, light blue edge is a quasi-UDG edge
not in RDG. Dotted lines are virtual edges. (A) Crossing edge belonging to connected component of
u (B) Crossing edges belonging to different connected components.

2. Restore connectivity using edges of quasi-UDG.

The following method shows that connectivity can be restored without sacrific-
ing planarity.

Restoring connectivity. First, observe that any two nodes that are within distance
1/α must be in the same connected component of the RDG. Therefore, if RDG has
more than one connected component, then somewhere there must be a quasi-UDG
edge (u, v) longer than 1/α where u and v belong to different components. If no
edge of the current RDG crosses (u, v), we can simply add the the edge, and connect
u and v.

If an existing edge (x, y) in RDG crosses (u, v) at point p, then one of the nodes
x, y must be within a distance 1/α to one of the nodes u, v, and therefore neighbors
in quasi-UDG [90]. Without loss of generality, we assume that u and x are within
distance 1/α. Then these nodes are in the same connected component of RDG. Note
that by this argument, for any RDG edge crossing (u, v) its endpoints must belong
to the connected component of u or v.

Now, consider the scenario of 6.4(A), where the crossing edges belong to the con-
nected component of u. If there are more than one such edges, we consider the edge
whose intersection with (u, v) is nearest to v. Observe that by construction, no edge
crossing (x, y) can exist in RDG. To restore connectivity, we insert the edge (x, v).
This can be done without compromising planarity, since no RDG edge intersects
(p, v) or (x, p), we can lay down an edge that is infinitesimally close to the path
(x, p, v), that does not intersect any RDG edge. Note that we only need a combina-
torial planar graph and do not require a straight-line planar embedding under the
original coordinates.

If another crossing edge such as (w, z) exists, in the connected component of v,
then we similarly choose to insert the virtual edge (x, w) via the corresponding path
(x, p, q, w).

These virtual edges do not correspond to real quasi-UDG edges, communication
between their endpoints are achieved in the network by routing through the quasi-
UDG edge (u, v).

Orientation and degeneracy removal. We need an oriented planar triangulation to
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Figure 6.5. Handling degeneracy. (A) Holes sharing a boundary vertex, (B) Holes sharing a boundary
edge and (C) triangulation using virtual nodes.

obtain a manifold on which the conformal map can be applied. Therefore, we start
with detecting all the triangles (K3) in G. This is done simply by gathering 2-hop
information at each node. Based on this, we find boundary edges:

Definition 6.3.2. Boundary Edge. Any edge that does not belong to exactly 2 dif-
ferent triangles.

The boundary cycles can now be determined by traversing connected components
of boundary edges. The boundary cycles bound the holes in the network.

Then we start with any triangle in G, and assign an arbitrary orientation to it.
This determines orientations of all faces of G, and are computed distributedly as
follows:

1. Once a triangle is oriented, any triangle adjacent to it can compute its own
orientation, by orienting the shared edge in the opposite direction.

2. Once an edge on a particular boundary cycle has been identified, that deter-
mines the orientation of the hole, and is propagated along the boundary cycle.

Observe that given any vertex, the orientation of edges and faces incident on it,
determine a cyclic (clockwise or counterclockwise) order of incident edges.

The planar graph consists of two types of oriented faces - triangles and holes. For
our purposes, it is necessary that the union of the triangles form a 2-manifold. At
this point, however, the planar graph may not contain such a triangulation. In par-
ticular, it is possible that an edge may belong to the boundary cycle of two different
holes - see Figure 6.5(B).

We handle such a case by creating triangulation of virtual nodes (Figure 6.5(C)).
First, the degenerate edge (v1, v2) is copied to a new edge (v′1, v′2). Then we add in
edges (v1, v′1), (v2, v′2) and diagonal (v1, v′2). Note that to maintain a triangulation,
one of the edges incident on each of v1 and v2 must be duplicated. For example,
in Figure 6.5(C), the edge e has been duplicated. Each other edge incident on an
original vertex is assigned to one of the copies, the assignment being uniquely de-
termined by the cyclic order defined by the orientation, and the choice of the dupli-
cated edge. Orientation of all new triangles and edges are also determined uniquely
by the orientation of existing faces.

A degeneracy of the form of Figure 6.5(A) is also possible, where two holes share
a common boundary vertex. In this case, we duplicate the degenerate vertex v into
v1, v2 and connect by an edge. Then we repeat the method for the previous case.
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Note that we need not assign coordinates to the new virtual nodes, since we are
working purely on the graph structure, and our mapping algorithm does not require
coordinates.

This method extends to chains of degenerate edges, dangling edges and to mul-
tiple holes sharing a vertex. We omit the details at this point, and skip ahead to the
next topic.

Landmark-based triangulation

In a network where location information is not available, we have to rely only on the
hop-count distance metric to obtain a triangulation. This is achieved by means of the
landmark Voronoi diagram. From the landmarks, we flood messages, that measure
distance of other nodes from the landmarks. This creates a set of Voronoi cells in the
graph. The adjacency of these cells give rise to a dual combinatorial delaunay complex
(CDC).

Landmark based Voronoi and delaunay graphs have been used to do routing
in [43, 49].

We follow the approach of [49, 50], to select landmarks. The idea is to choose
landmarks such that:

• Any two landmarks are k hops apart (for a small k = 5 or 6).

• Any non-landmark node is within k hops of some landmark.

This method requires a flood from a landmark to last only k hops, hence the over-
all cost is linear for a network of bounded density. This produces a dense set of
landmarks. But the CDC obtained from the adjacency is not planar. The following
method for obtaining a planar graph from the CDC is described in detail in [50]:

An edge of CDC is valid if there is a path between the corresponding landmarks a and b such
that no node on the path has a neighbor that belongs to the Voronoi cell of any landmark other
than a and b. The graph formed by the set of valid edges is called the Combinatorial delaunay
map (CDM).

This method is proved to produce a planar graph from a quasi unit disk graph

(α ≤
√

2). At this point we can apply the methods from the previous discussion
to obtain a triangulation. While this landmark based method is more natural and
intuitive for large scale networks of high density, it applies in principle to any net-
work corresponding to a suitable quasi unit disk graph. The theory suggests that in
certain cases it may be necessary to refine the triangulation further. However, this
was not necessary in any of the networks we have tried.

6.3.2 Other triangulation methods

The algorithms above both require a quasi-UDG model and thus does not work
when a sensor network does not follow the quasi-UDG assumption. The following
algorithms compute planar graphs without such assumptions.
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Kim et al. [61,82] addressed the problem that planarization techniques using rela-
tive neighborhood graph or Gabriel graph fail when the communication model does
not comply to the unit disk graph assumption. They developed a cross link detec-
tion protocol to probe each link, detect and remove possible crossings with other
links. The resulting graph is combinatorially planar.

Zhang et al. [162] developed a location-free algorithm to extract a planar sub-
graph from the connectivity graph. The main idea is to planarize adjacent layers of
a shortest path tree. Again this method does not require a unit disk graph model or
quasi-UDG model.

All these algorithms above can be used in our method. In our implementation,
we have used both the restricted Delaunay graph approach and the landmark based
triangulation approach [50]. But all the other schemes can also work well with our
framework. In the worst case when a triangulation is not available, for example,
when crossing edges are introduced, the result of the Ricci flow algorithm is theo-
retically unpredictable.

6.3.3 Computing the conformal map

Figure 6.3 shows the algorithm pipeline for computing the conformal mapping.

Algorithm description The conformal mapping can be achieved by using the dis-
crete Ricci flow algorithm. The algorithm only requires the connectivity informa-
tion. The locations of nodes are irrelevant, and all edges are assumed to be of length
1.

Discrete Ricci flow Each node vi is associated with a disk, with radius eui . For
simplicity, the length of each link connecting vi and vj equals to eui + euj . The corner
angles of each triangle can be estimated using cosine law by each node locally. The
curvature can be computed by each node directly. Then ui is modified proportion-
ally to the difference between the target curvature and the current curvature. Once
the curvature error is less than a given threshold, the process stops. The details can
be found in the algorithm 1.

Flattening The virtual coordinates can be estimated by flattening triangle by tri-
angle using the resulting metric (edge length) from the Ricci flow algorithm. First,
the root face is chosen. Given three edge lengths of the root triangle [v0, v1, v2], the
node coordinates can be constructed directly. Then the neighboring triangle of the
root, e.g. [v1, v0, vi], can be flattened, the virtual coordinates of vi is the intersection
of two circles, one is centered at p0 with radius l0i, the other is centered at p1 with
radius l1i. Furthermore, the normal of the triangle [v1, v0, vi] is consistent with the
root triangle. In similar way, the neighbors of the newly flattened triangles can be
further embedded. The whole network can be flattened by the flooding process.
The details can be found in the algorithm 2.
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Algorithm 1 Discrete Ricci Flow

Require: Triangular Mesh M, Target curvature for each vertex k̄i. Error threshold ǫ.
Step length δ.

Ensure: Discrete metric (edge lengths) satisfying the target curvature.
1: for all vertex vi, ui ⇐ 0
2: while true do
3: Compute edge length lij for edge [vi, vj],

lij = eui + euj

4: Compute the corner angle θ
jk
i in triangle [vi, vj, vk],

θ
jk
i = cos−1

l2
ij + l2

ki − l2
jk

2lijlki

5: Compute the curvature ki at vi

ki =

{

2π−∑jk θ
jk
i , vi 6∈ ∂M

π −∑jk θ
jk
i , vi ∈ ∂M

6: if max |k̄i − ki| < ǫ then
7: return The discrete metric {lij}.
8: end if
9: Update ui

ui ⇐ ui + δ(k̄i − ki)

10: end while

Conformal Mapping Given a triangular mesh M, which is a multi-holed annu-
lus (genus zero surface with multiple boundaries), using above algorithm it can be
mapped to a canonical unit disk with circular holes. Furthermore, the mapping is
an approximation of a conformal mapping. In smooth case, the conformal mapping
is unique upto a Möbius transformation as shown in Figure 6.1. In the following
algorithm, the Möbius ambiguity is removed.

First, the boundary loops of M are traced, and sorted by their lengths decreas-
ingly using hop distance, denoted as γk, where k is from 1 to n, as shown in Fig-
ure 6.3 frame (b). Second, the target curvature is set, such that all interior nodes
have zero curvatures, nodes on γ1 and γ2 are of zero curvatures also. Nodes on γk,
k > 2 has the target curvature −2π

|γk| , where |γk| denotes the length of γk. The edge

lengths satisfying the target curvatures are computed using the Ricci flow algorithm.
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Algorithm 2 Flattening

Require: Triangular Mesh M, Discrete metric {lij} with zero curvatures on all inte-
rior vertices.

Ensure: Virtual coordinates for each vertex.
1: for each node vi, label vi as un-accessed
2: flatten the first triangle [v0, v1, v2], such that

p0 ← (0, 0), p1 ← (l01, 0), p2 ← l20(cos θ12
0 , sin θ12

0 ),

label v0, v1, v2 as accessed.
3: for each un-accessed node vi, check all its neighboring faces [vi, vj, vk], if vj, vk

have been accessed, then pi is the intersection point of two circles

|pi − pj| = lij, |pi − pk| = lki,

furthermore (pj − pi)× (pk − pi) > 0. Label vi as accessed.

Third, a shortest path η from γ1 to γ2 is traced, suppose η intersects γ1 and γ2

at v1, v2 respectively. M is sliced along η to form another mesh M̃, vk is split to
v1

k , v2
k ∈ M̃, k = 1, 2. The edge lengths are copied from M to M̃, M̃ is flattened to

the plane. The virtual coordinates of v1
k , v2

k, k = 1, 2 form a parallelogram. Without

loss of generality, v1
1, v2

1 are mapped to the y-axis and their distance is h , as shown

in Figure 6.3 frame (c). Then by the following conformal map e
2πz

h , M̃ is mapped to
the canonical unit disk with circular holes, as shown in Figure 6.3 frame (c). Then
the virtual coordinates of nodes are copied from M̃ to M. This algorithm guarantees
to map γ1 and γ2 to concentric circles, and the only ambiguity left is a rotation.
Detailed description can be found in algorithm 3.

In practice, in order to make the inner holes more circular, the target curvatures
of vj ∈ γk, k > 2 can be updated and more iterations of Ricci flow algorithm are
performed. The target curvatures can be updated using the following formula

k̄j = −2π
lj−1 + lj

∑ei∈γk
li

where lj and lj−1 are the current edge lengths of edges adjacent to vj, li is the cur-
rent edge length of ei which is in the boundary γk. In general, 4 or 5 iterations are
good enough. Figure 6.3 frame (c) and (d) show the computational result of this
algorithm. In (c), all the boundaries become circular, in (d), all the triangle corners
are acute, the triangulation is with good quality.
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Algorithm 3 Conformal Mapping

Require: Triangular Mesh M, genus zero with multiple holes.
Ensure: Virtual coordinates pj for each node vj, all the boundaries are circular.

1: locate all the boundaries γ1, γ2, · · · , γn, sorted increasingly according to their
lengths using the hop distance.

2: set target curvature,

k̄i =







0 vi 6∈ ∂M
0 vi ∈ γ1 ∪ γ2

−2π
|γk| vi ∈ γk, k > 2

3: Compute the metric using Ricci flow algorithm 1.
4: compute the shortest cut from γ1 to γ2, denoted as η, η intersects γ1, γ2 at v1, v2

respectively.
5: slice M along η to get another mesh M̃, vk is split to two nodes v1

k , v2
k , where

k = 1, 2.
6: compute the virtual coordinates of M̃ using algorithm 2, such that p1

1, p2
1, p1

2, p2
2

form a parallelogram. p1
1, p2

1 are along y-axis. The distance between them is h.
7: for each node vj ∈ M , there exists a corresponding node ṽj ∈ M̃, pj = (xj, yj),

pj ← e
2π
h (xj+iyj)

Robustness The accuracy of the computation is mainly controlled by the curva-
ture error bound ǫ in the Ricci flow algorithm 1. According to theorem 6.2.4, the
curvature error decreases exponentially fast. Therefore, the number of steps to reach

the desired error bound is given by O(− log ǫ
δ ), where δ is the step size in the Ricci

flow algorithm. In practice, if the number of triangles in the network is about tens
of thousands and the error bound is about 1e− 8, the algorithm is stable.

6.3.4 Routing

Having obtained the virtual coordinates, greedy routing is straight forward. As
mentioned earlier, a message cannot get stuck on the boundary of a circular hole. It
has been shown in [42] that greedy routing cannot get stuck at vertices with an angle
less than 2π/3. In the mappings we obtained, all angles were acute. However, in
a case of a large angled triangle appearing in the final embedding, the routing can
be handled by routing on edges as follows. Suppose in △ABC the angle ∠BAC >

2π/3, and the current routing request to destination D arrives at A, and has no
nearer neighbor. We can create a virtual node E (representing the edge BC) and the
message is delivered from A to BC (or E) in the sense that the edge BC is closer to the
destination. As all the non-hole faces are triangles, the triangle adjacent to △ABC
sharing the edge BC must have another edge closer to the destination. Thus greedy
routing will guarantee delivery.
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Figure 6.6 shows the effect of greedy routing on the virtual coordinates. The
routing cannot be successful under normal greedy routing (Figure 6.6(a)). The path
under the virtual coordinates, however, easily gets past the hole to the other side
(Figure 6.6(b)).

(a) (b) (c)

Figure 6.6. Routing. Network of about 8700 nodes, average degree of about 20 in quasi-UDG setting,
and nodes in a perturbed grid distribution. (a) Geedy routing gets stuck at a hole boundary. (b)
Routing based on virtual coordinates successfully goes around the hole. (c) The routing path in the
virtual coordinate space.

The domain can also be triangulated using landmarks as described in sec-
tion 6.3.1. Figure 6.7 shows the CDM triangulation of the domain of Figure 6.6,
and the corresponding virtual coordinates.

(a) (b)

Figure 6.7. (a) Landmark based triangulation of domain of fig 6.6. (b) The corresponding virtual
coordinate map.

Routing in the landmark based scheme is achieved in the usual way. At every
stage, the next Voronoi tile to visit is decided based on the virtual coordinates of the
landmarks of neighboring tiles. Then a local routing scheme is applied to reach the
chosen neighboring tile. This local routing can be executed in different ways. For
example, since the size of the tiles are constant in a bounded density network, it is
possible to store a routing table for the entire tile. Alternatively, it is possible to flood
a tile from the boundary with each neighbor, and thus obtain paths to neighboring
tiles from each node.
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In theory, and in practice, the method also works for very fragmented networks
with many holes. Figure 6.8 shows an example.

Figure 6.8. (a) Network of 7000 nodes with many holes (b) Virtual coordinates

6.4 Experimental results

We conducted extensive experimentation on UDG or quasi-UDG based network of
Figure 6.6 with about 8700 nodes, and on networks of similar topology but different
number of nodes. From a routing performance point of view, the following are
important observations from the experiments and simulations:

• 100% Routing guarantee. We selected 10,000 random source-destination pairs
in the network, and performed greedy routing based on the real coordinates
and using our virtual coordinates. With the real coordinates, the success rate of
routing is only about 52.29%, while with the virtual coordinate greedy routing,
we achieve 100% success rate.

• Small routing stretch. The path length of the virtual coordinate routing
was compared with the shortest path in the graph for 5000 random source-
destination pairs. The average stretch (ratio of routing path length to shortest
path) was 1.59, while the maximum stretch was 3.21.

Since our mapping algorithm uses a numerical method, we carried out some
tests to estimate the convergence time of the algorithm, and compared the results
with the convergence of NoGeo [128]. While NoGeo does not guarantee delivery
even on full convergence, the comparison is interesting, as described in the intro-
duction. The results are shown in Figure 6.9. Note that NoGeo iterates on the actual
node coordinates, whereas the Ricci-flow reduces the error in the curvature. The
result shows that in this case, the Ricci-flow method converges faster than NoGeo,
and guarantees delivery.

We further compared our method with NoGeo on routing stretch and delivery
guarantee on the network of Figure 6.6, over 5000 source-destination pairs. The
results are shown in table 6.1. Our algorithm incurs a larger stretch (ratio of routing
path length to shrotest path length) than NoGeo, but guarantes delivery.
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Figure 6.9. The solid blue curve shows the error in curvature after a number of iterations by the
Ricci flow method, the dashed green curve shows the error in location after a number of iterations
by NoGeo.

Table 6.1. Stretch and Delivery Comparison

Method Delivery rate Avg Stretch Max Stretch
Our Method 100% 1.59 3.21

NoGeo 83.66%∗ 1.17 1.54

*NoGeo performs extremely well in simply connected networks and networks with convex
holes, as shown in [128]. But as discussed earlier, in this case the presence of concave holes
and holes of large aspect ratio affects its performance adversely.

The algorithm was executed on networks of several different sizes but of same
essential topology. We measured the number of iterations required to obtain a small
enough error on curvature to get a successful embedding and routing. The resulting
plot is shown in Figure 6.10. The curvature error bound was selected as 1e− 6.

Table 6.2 lists some statistics about the triangulations of different networks
shown in the chapter.

Table 6.2. Experimental Statistics

Case Nodes Faces Edges Holes
Graph of Figure 6.7 250 378 630 3

Network of Figure 6.6 8714 17091 25807 3
Network of Figure 6.3 5299 10179 15482 6

6.5 Conclusion

This work proposes a novel method for greedy routing with guaranteed delivery
based on Ricci flow algorithm. The method has solid theoretic background and
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Figure 6.10. The number of iterations required to obtain a given error bound on the curvature.

competitive performance, compared with prior algorithms under the metric of pre-
processing cost and routing quality. The distributed nature of the Ricci flow method
makes it valuable for the practical applications on wireless sensor networks. Net-
work dynamics such as node failures and resultant topology changes can be han-
dled efficiently by incrementally recomputing the map starting from the previously
computed one. Analysis and experiments related to this aspect are under investiga-
tion.
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Chapter 7

Data Storage on Virtual Coordinates

For in-network storage schemes, one maps data, indexed in a logical space, to the
distributed sensor locations. When the physical sensor network has an irregular
shape and possibly holes, the mapping of data to sensors often creates unbalanced
storage load with high data concentration on nodes near network boundaries. In
this chapter we propose to map data to a covering space, which is a tiling of the plane
with copies of the sensor network, such that the sensors receive uniform storage
load and traffic. We propose distributed algorithms to construct the covering space
with Ricci flow and Möbius transforms. The use of the covering space improves the
performance of many in-network storage and retrieval schemes such as geograph-
ical hash tables (GHTs), and the double rulings (or quorum based schemes), and
provides better load balanced routing.

7.1 Introduction

We propose to solve the imbalance of storage and traffic load in an irregular sensor
network by ‘uniformizing’ the sensor field shape. As the logical data space is often
regular, we make the sensor field regular as well — irregular shape is turned into
circular, and holes are filled up. We propose to create a covering space of the sen-
sor network, which is a tiling of the space with transformed copies of the network
itself. Data hashed to a geographical location inside a hole is actually mapped to
another copy of the sensor field. Similarly, with a regular shape, previously pro-
posed double rulings scheme can be applied to irregular network with almost zero
modification. Thus our network regulation technique provides a generic solution for
data storage problems in an irregular network, and greatly extends the application
scope of existing schemes. See Figure 7.3 for an example of the original sensor field
and the covering space.

We achieve this by using Ricci flow and reflections in boundary circles. We first
extract a triangulation of the sensor network. And then apply Ricci flow to make all
holes circular. The new idea in this chapter is to use the embedding obtained from
the Ricci flow algorithm and fill up the holes. Suppose the network has k (circular)
holes. For each interior hole Ci, we take a Möbius transform that essentially ‘re-
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flects’ the network inward with respect to Ci. This Möbius transform is conformal
and maps circles to circles. Thus, Ci becomes the outer boundary of the reflected
network with all the nodes mapped inside it. This partially fills up the hole Ci, ex-
cept that there are k smaller circular holes. Now we can continue such transforms so
that all the holes are eventually filled up, with infinitely many transformed copies
of the original sensor field. The collection of Möbius transforms used to generate
these mappings is captured in the Schottky group. Thus, one does not need to precal-
culate any of these mapping and is able to generate the reflections on the fly when
necessary.

The generation of the covering space as described above asks for infinitely many
transformed copies to completely cover the space. We show that for any practical
applications only O(log 1/ε) copies are necessary, where ε is the threshold of the
size of a hole. Indeed, we prove that the total area of the holes shrinks by a fraction
after each Möbius transform, and is reduced exponentially fast. When the holes
are tiny, the chance that data is hashed to be inside a hole is very small and can be
omitted. Similarly, the chance that a double ruling curve hits the boundary of a tiny
hole is negligible. When it does happen, we can get around the hole by following
the greedy routes along the circular hole boundaries. In our simulations only 5
reflections are necessary and for some applications 2 levels of reflections give the
best result.

With the regulation of the network shape by conformal Möbius transforms, we
can improve the performance of various data storage schemes.

• GHT. When a piece of data is hashed to a geographical location p inside a hole,
in the original GHT scheme, it is allocated to the sensor node whose Voronoi
cell contains p. Nodes on the boundary have larger Voronoi cells and share
higher load. With the covering space, the area inside the hole is shared by the
entire network, eliminating fundamentally the storage and traffic overhead on
the holes boundaries.

• Double rulings. Double rulings design can be directly applied on the covering
space. When a curve hits a hole boundary Ci, it then enters another copy of the
network mapped to the interior of Ci. Equivalently, in the original embedding,
the curve ‘reflects’ on the hole boundary. The intersection properties are still
maintained with the conformal Möbius transforms.

• Load balanced greedy routing. The embedding generated by the Ricci flow al-
gorithm allows greedy routing to work with delivery guarantee, as greedy
routing can not get stuck at circular holes. However, such greedy routes still
tend to hug the hole tightly causing high traffic load on the boundary nodes.
Instead, we can execute the greedy routing in the covering space. Instead of
getting around the hole by following the circular hole boundary, one can ‘en-
ter’ the hole to route in another copy of the network, effectively reflect on the
hole boundary. Thus the boundary nodes are not used as often, improving the
load balancing. The greedy routing can be used in combination with the GHT
scheme to deliver and retrieve data from the hashed location.
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In summary, the covering space universally improves the load imbalance in data
storage and routing in an irregular network. Essentially, in the covering space the
holes are filled up so there are no ‘boundaries’. The nodes on the boundary are now
treated in the same way as the other nodes with respect to data storage or relay
routing.

In the following of the chapter we first present the mathematics of the conformal
Möbius transform, the Scottky group, and the covering space. We then present the
use of the covering space in applications such as GHT, double rulings and greedy
routing with simulation results.

7.2 Theoretical background

This section focuses on the theoretic background of Möbius transformation and re-
flections to generate the covering space. We refer readers to [34] and [126] for further
details.

7.2.1 Conformal mapping for multiply connected domain

Let (S1, g1) and (S2, g2) be two surfaces with Riemannian metrics g1, g2. A mapping
φ : S1 → S2 is called a conformal map (angle preserving map), if the intersection angle
of any two curves are preserved.

A planar domain D of connectivity n is called a circular domain, if all its n bound-
aries are circles. It is known from conformal geometry that any genus zero multiply
connected planar domain can be mapped to a circular domain by conformal maps.
The different circular mappings of a given planar domain differ by Möbius trans-
forms [31, 126].

One way to compute the conformal mapping from a surface to a circular domain
is to use Ricci flow, as introduced in [74, 130]. Given a multiply connected domain
Ω with m interior holes, denoted as ∂Ω = {γ1, γ2 · · · , γm}, by Ricci flow, we can
construct a conformal map φ : Ω → C ∪ {∞} to a circle domain, such that each
φ(γj) is a circle,

∂[φ(Ω)] = {C1, C2, . . . , Cm}, Cj = {z : |z− cj| = rj}.

where j = 1, 2 · · · , m. Examples can be found in Figure 7.3, 7.8 and 7.9.

7.2.2 Möbius transform and circular reflection

A Möbius transformation is a map that maps a complex plane to itself, represented

by f (z) = az+b
cz+d , where a, b, c, d are four complex numbers satisfying ad − bc = 1.

A Möbius transformation is a conformal map and maps circles to circles. A special
case of Möbius transformation

ρC(z) := c +
r2

z̄− c̄
. (7.1)
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Ω
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Cω

ω = ω1ω2 · · ·ωn−1ωn

Cωωn−1
Cωj

Cω1···ωn−1

Cω1···ωn−1j

(a) Circular reflection (b) Naming convention

Figure 7.1. Circular Reflection and naming convention.

is a circular reflection that maps the points inside a circle C with center c and radius r
to the points outside C, and vice versa. For a circular domain Ω with interior circular
holes C1, C2, · · · , Cm, we denote ρCj

by ρj for C = Cj. ρj essentially fills up the hole

Cj by reflecting the points out of Cj. We use such circular reflections to fill up the
holes in a sensor network.

An example. Figure 7.1 (a) shows an example of a triply connected circular domain
Ω with boundary ∂Ω = {C1, C2, C3}. Reflect Ω through Ck to get

Ωk = ρk(Ω).

The circle Cj is reflected by ρi to be circle Cij,

Cij = ρi(Cj), i 6= j.

Ωk is a bounded domain with outer boundary Ck and 2 circular inner bound-
aries. The boundary of Ωk’s in Figure 7.1 (a) are ∂Ω1 = {C1, C12, C13}, ∂Ω2 =
{C2, C21, C23}, ∂Ω3 = {C3, C31, C32}.

Now Ω1 has two small holes C12 and C13. We reflect Ω1 with respect to each of
the interior hole. Thus we have the reflected domains in the next level. In general,

Ωij = ρij(Ωi), 1 ≤ i, j ≤ 3, i 6= j.

The new boundary circles are

C121 = ρ12(C1), C123 = ρ12(C13), ∂Ω12 = {C12, C121, C123}

C131 = ρ13(C1), C132 = ρ13(C12), ∂Ω13 = {C13, C131, C132}
The boundaries of Ω21, Ω23, Ω31 and Ω32 are similar.

In general, for a circular domain with m interior holes, the reflected regions and
circles are labeled with multi-indices

ω = ω1ω2 · · ·ωq, 1 ≤ ωj ≤ m, ωk 6= ωk+1, 1 ≤ k ≤ q− 1.

A reflected domain is defined by the reflections following the indices.
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Figure 7.2. Schottky Group generators.

Definition 7.2.1. The set of multi-indices of length q (q > 0) is denoted

σq = {ω1ω2 · · ·ωq : 1 ≤ ωj ≤ m, ωk 6= ωk+1, 1 ≤ k ≤ q− 1},

and ω0 = ∅.

As shown in Figure 7.1 (b), if ω ∈ σq, q > 1, the circular domain

Ωω = ρω(Ωω1ω2···ωq−1
)

has exterior boundary Cω and m− 1 interior boundary circles

Cωωq−1
= ρω(Cω1ω2···ωq−1

),

and
Cω j = ρω(Cω1ω2···ωq−1 j), j 6= ωq−1, ωq.

There are m(m− 1)q−1 elements in σq, at the level q, and m(m− 1)q−1 circles.

7.2.3 Schottky groups

Taking reflections of a circular domain with respect to the circular holes to the limit
will eventually have all the holes ‘filled up’. This is shown by using the Schottky
groups, as described below.

Suppose Cj is the circle |z− cj| = r2
j , C0 is the unit circle |z| = 1, denote ρ0(Cj) as

C′j (see Figure 7.2). The Möbius map

θj(z) = cj +
r2

j z

1− c̄jz

maps the exterior of C′j to the interior of Cj (and C′j to Cj).

The Schottky group Θ is defined to be the infinite free group of Möbius mappings
generated by compositions of the 2m basic Möbius maps {θj|j = 1, · · · , m} and their
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inverses {θ−1
j |j = 1, · · · , m}. Consider the unbounded region Ω of the plane exterior

to the 2m circles {Cj|j = 1, · · · , m} and {C′j|j = 1, · · · , m}. The union of copies of Ω

generated by the θ ∈ Θ is denoted as

Θ(Ω) :=
⋃

θ∈Θ

θ(Ω).

This work is based on the following fundamental theorem of Schottky groups.

Theorem 7.2.2. The complement set of Θ(Ω)

Θ(Ω)c := C−Θ(Ω)

is a Cantor set of zero measure.

The detailed discussion can be found in [34], [126] and [31].

θj can be generated by two circular reflections: first the exterior of C′j is reflected

through the unit circle C0, then the interior of C0 is reflected through Cj. The compo-
sition of these two reflections is θj. In this work, we use circular reflections instead
of explicitly using Schottky group.

7.2.4 Shrinkage estimation

Asymptotically the whole plane can be covered by the copies of the network using
Schottky transformation. But in practice, only a finite number of reflections can be
used. Therefore, we need a precise estimation of the size of holes after n levels of
reflections. In the following, we give the estimation of the area shrinkage of the
holes. We follow the method in [126] and [31].

As shown in figure 7.4, Ω is a bounded double connected domain on the complex
plane C, with exterior boundary Γ0 and interior boundary Γ1, ∂Ω = Γ0 − Γ1. There
exists a conformal map φ : Ω→ D, where D is a circular domain, with inner radius
µ01 and outer radius 1,

D = {z ∈ C : µ01 < |z| < 1, }.

We call µ01 the conformal modulus of the original domain Ω.

Definition 7.2.3. The separation modulus for two circles Cj, Ck is defined as

µ̃jk :=
γj + γk

djk
< 1, j 6= k, 1 ≤ j, k ≤ m, (7.2)

where γj and γk are the radii of Cj, Ck respectively, and djk is the distance between
the centers of Cj, Ck.
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(a) original network (b) circular domain

(c) level 1 reflection (d) level 2 reflection

(e) level 3 reflection (f) level n ≥ 4 reflection

Figure 7.3. 4-level circular reflections for a 3-hole sensor network with 5492 nodes. The initial net-
work (a) is conformally mapped to the circular domain (b). The level 1 reflection is in red color in (c),
level 2 reflection is in green in (d), level 3 reflection is in blue in (e), level 4 reflection is in yellow in
(e).

Γ0

Γ1 µ01
1

Figure 7.4. Conformal modulus µ01 of a doubly connected domain.
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Figure 7.5. Separation modulus of a doubly connected circular domain.

The separation modulus of the region is given by

∆ := max
i,j,i 6=j

µ̃ij.

As shown in Figure 7.5, suppose C̃j is the circle with the center cj and radius
γj

∆
, then

1
∆

is the smallest magnification of the m circles, such that at least two C̃j’s just touch.
The following lemma shows that the separation modulus is bounded by confor-

mal modulus, the proof can be found in the Appendix.

Lemma 7.2.4. The conformal modulus is the lower bound of the separation modu-
lus:

µjk < (µ̃jk)
2 ≤ ∆2.

Proof: Let µ denote µjk and µ̃ denote µ̃jk. The conformal module can be calculated
directly for circular domain as

µ =
d2

jk − γ2
j − γ2

k −
√

[(djk − γj)2 − γ2
k ][(djk + γj)2 − γ2

k ]

2γjγk
.

Then

α =
1

2
(µ +

1

µ
) =

d2 − (γ2
j + γ2

k)

2γjγk

(µ̃d)2 = (γj + γk)
2,

It follows

αµ̃2 − 1 = (1− µ̃2)
γ2

j + γ2
k

2γjγk
≥ 1− µ̃2.

Then
1

µ̃2
≤ α + 1

2
= [

1

2
(
√

µ +
1√
µ
)]2.
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Figure 7.6. Area Shrinkage.

Because µ < 1,
√

µ <
2
√

µ

µ + 1
≤ µ̃ ≤ ∆.

�

Theorem 7.2.5. At level q + 1, the total area of holes is

∑
ω∈σq+1

S(C̃ω) ≤ ∆4q
m

∑
i=1

S(C̃i), (7.3)

where S(Ci) is the area inside the circle Ci.

The proof depends on the following lemma. As shown in Figure 7.4, Ω is a
bounded double connected domain on the complex plane C, with exterior boundary
Γ0 and interior boundary Γ1, µ01 is the conformal modulus.

Lemma 7.2.6. Suppose S(Γk) is the area bounded by Γk, k = 0, 1, then

S(Γ1) ≤ µ2
01S(Γ0).

Detailed proof can be found in [126], Lemma 17.7c(a), P.503. The proof for theo-
rem 7.2.5 is as follows:

Proof: As shown in Figure 7.6. Ω has three boundary circles C1, C2, C3. Magnify
each circle by factor 1

∆
, we get (dashed) circles C̃1, C̃2, C̃3. By definition of separation

modulus, C̃1, C̃2, C̃3 may touch, but have no overlaps. Then C̃2, C̃3 are in the exterior
of C̃1.

Reflect C̃j through circle C1 (the red circle). Denote

C̃ij := ρi(C̃j), i 6= j, 1 ≤ i, j ≤ 3.

Then C̃12 and C̃13 are contained in ρ1(C̃1),

S(C̃12) + S(C̃13) < S(ρ1(C̃1)).

101



The annulus bounded by C1 and C̃1 has conformal modulus ∆. After reflection,
the image is the annulus bounded by C1 and ρ1(C̃1). By Lemma 7.2.6,

S(ρ1(C̃1)) ≤ ∆2S(C1) ≤ ∆4S(C̃1).

Similarly

S(C̃23) + S(C̃21) < ∆4S(C̃2),

S(C̃32) + S(C̃31) < ∆4S(C̃3).

By induction, we can prove Equation 7.3. �

This theorem shows that the total area of the holes is reduced exponentially fast.
Thus, after− log ε number of levels, each hole has a maximum area of ε. This shows
that only a small number of levels is needed in practice. The proof of the theorem is
put in the Appendix.

7.3 Algorithms

For a sensor network, we compute the covering space up to level q (for a constant q
typically) in the following steps.

1. Extract a triangulation of the network.

2. Apply a distributed Ricci flow algorithm from the previous chapter to embed
the triangulation T such that T is a circular domain — it is embedded in the
plane with each hole (a non-triangular face) embedded on a circle.

3. With the circular domain T we apply circular reflections to compute the cov-
ering space.

Figure 7.3, 7.8 and 7.9 demonstrate the pipeline of the algorithm.

7.3.1 Circle estimation

For a circular domain T, for each boundary γk, we need to estimate the circle
Ck(ck, rk). We take three consecutive nodes {z1, z2, z3} on the hole boundary to form
a triangle, the circle Ck(ck, rk) is the circumcircle of the triangle. Its center is

c =
|z1|2(z2 − z3) + |z2|2(z3 − z1) + |z3|2(z1 − z2)

z1(z3 − z2) + z2(z1 − z3) + z3(z2 − z1)
(7.4)

and its radius is r = |z1 − c|. The derivation of the equation above can be found
in [34].

Since the circle can be computed by any three adjacent boundary nodes, the com-
putation of the circular hole equation can be done locally at each boundary node.
The computation only involves a constant number of algebraic operations.

102



(a) Original mapping; (b) Optimized mapping

Figure 7.7. Improve separation modulus by Möbius transformation.

7.3.2 Separation modulus optimization

From the theoretical result, we can see that the total area of circular holes shrink to
zero exponentially fast. The convergence rate is governed by the separation mod-
ulus ∆. In order to make the holes as small as possible, we can find an optimal
Möbius transformation, that minimizes the separation modulus. In some sense, this
transformation will map the holes to be as ‘well-separated’ as possible. We remark
that this optimization step is optional.

A Möbius transformation preserving the unit disk is given by

φθ,z0
(z) = eiθ z− z0

1− z̄0z
, |z0| < 1,

which maps circles to circles. φθ,z0
(Ck) is still a circle, whose center and radius can

be computed from

{φθ,z0
(A), φθ,z0

(B), φθ,z0
(C)}

using formula 7.4, where A, B and C are three points on the original circle. The
rotation part eiθ doesn’t affect the separation modulus, in practice, we always set
the rotation angle θ to 0. Let µ(Cj, Ck) = µ̃jk be the separation modulus between
circles Cj, Ck as in formula 7.2. Define

∆(z0) := max
j 6=k

µ(φ0,z0
(Cj), φ0,z0

(Ck)).

The optimization problem is formulated as:

min|z0|<1∆(z0).

In practice, we use gradient descent method to solve this non-linear optimization.
See Figure 7.7 for an example.

To run this optimization step in a sensor network, we only need the knowledge
of the center and radii of the circular holes. One node can pull the information of all
circular holes together and run the optimization to get the Möbius transformation,
which is then disseminated to all nodes in the network. The nodes apply the Möbius
transformation to obtain the new mapping.
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7.3.3 Circular reflection

In a circular domain we perform circular reflection of the network. In our imple-
mentation, we use a Hermitian matrix H, HT = H and det H < 0 to represent a
circle with center c and radius r. Suppose

H(c, r) =

[

a b
b̄ c

]

Then the circle equation represented by H(c, r) is given by

0 = [ z̄ 1 ]

[

a b
b̄ c

] [

z
1

]

, (7.5)

where the center is c = − b
a and the radius r =

√
|b|2−ac

|a| . For a circle |z− c| = r, the

corresponding Hermitian matrix format is

0 = [ z̄ 1 ]

[

1 −c
−c̄ |c|2 − r2

] [

z
1

]

. (7.6)

Orientation preserving Möbius transformation on C ∪ {∞}

m(z) =
αz + β

γz + δ

is represented as a matrix

M =

[

α β
γ δ

]

, α, β, γ, δ ∈ C, (7.7)

its inverse is given by

M−1 =

[

δ −β
−γ α

]

.

The reflection through a circle C is represented as

(ρC) =

[

c r2 − |c|2
1 −c̄

]

. (7.8)

Thus, the composition of Möbius transformations are represented as matrix mul-
tiplications. A Möbius transformation m maps a circle H to a circle. The Hermitian
matrix representation of the image circle is given directly by

M−1
T

HM−1.

For orientation reverse Möbius transformation

m(z) =
αz̄ + β

γz̄ + δ
,
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Figure 7.8. 3-level circular reflections for a 4-hole network with 4764 nodes.

the matrix representation of the transformed circle is

M−T HM−1.

Therefore, all the computations are carried out using complex matrix multiplica-
tion. Notice that the matrices H and M are only two by two matrices. So the matric
multiplication and the Möbius transformation can both be done with a constant
number of algebraic operations.

The reflection ρC through a circle C is given by the analytic formula 7.1.

The reflection process is recursive. The naming conventions for all the circles Cω

and all the reflections Cω have been explained in details in subsection 7.2.2, where
ω is a a word in the multi-index set σn in definition 7.2.1. Suppose we are given
a multi-index word ω = ω1ω2 · · ·ωn, the recursive algorithms for computing the
reflection ρω and the circle Cω (represented as matrices) are as follows.

Algorithm 4 Matrix circle(word ω)

if(|ω| = 1) then
return H(Cω1

); (Eqn.7.6)
end if
Matrix M = reflection(ω1ω2 · · ·ωn−1);
if(ωn = ωn−2)then
Matrix H = circle( ω1ω2 · · ·ωn−2);
else
Matrix H = circle( ω1 · · ·ωn−2ωn );
end if
return m−T Hm−1;

Algorithm 5 Matrix reflection(word ω)

Matrix H = circle( ω );
Compute center and radius (c, r) from H;
(Eqn.7.5)
return M(ρ(c, r) ); (Eqn.7.8)
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Figure 7.9. 3-level circular reflections for a 3-hole network with 1376 nodes.

7.3.4 Computation and communication costs

The communication cost of the scheme is analyzed for each component. In the first
step of triangulation extraction, the algorithms used to extract a triangulation are
localized algorithms. Each node only requires the knowledge of nodes in a constant
size neighborhood. For most practical networks with constant average node de-
gree, the total number of messages required is O(n). The Ricci flow algorithm is an
iterative algorithm with all nodes adjusting local metrics and local curvatures. The
curvature error decreases exponentially fast. Therefore, the number of steps to reach

the desired error bound is given by O(− log ǫ
δ ), where δ is the step size in the Ricci

flow algorithm. The total communication cost is thus O(−n log ǫ
δ ). The computation

of network reflections are done locally in an on-demand manner. When a message
hits a node on the boundary, depending on the number of levels of reflections re-
quired, the node can locally compute the reflection transform. The indices of the
reflections are attached to the message. No additional communication is needed.
Thus the communication cost in theory is linear in the number of nodes. In practice,
the Ricci flow algorithm is the dominating factor of the communication cost.

7.4 Applications

7.4.1 Geographic hash tables

We apply the covering space with geographical hash table (GHT) [129] for storing
data in the network. Data is indexed with a key. Each data item x is hashed to a
geographical location by using a random hash function h(x) = g′. The producer of
the data item delivers the data towards the location g′ using geographical routing
(GPSR [77] in particular). If GPSR can not find a node right at the hashed location,
it will eventually enter the face routing mode, by following the edges of a planar
face f enclosing g′. Such face routing will necessarily fail to find the destination g′

and return to the first node when the message enters this face. At this point the
algorithm stops. The node on the face f closest to g′ is denoted as the home node.
The face f is denoted as the home perimeter. A perimeter refresh protocol is used to
maintain the home perimeter when there are node or link failures. Except the home
node, the other nodes on the home perimeter are called replica nodes. The home
node stores the data. The replica nodes may also hold data, to improve the system
robustness to failures. GHT also has a hierarchically structured replication scheme
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Figure 7.10. Voronoi diagram for the network in Figure 7.9 .

where multiple hash images are used. In our case as we examine the influence of
the network irregularity to the storage balancing, we use the basic scheme only.

A node p is the home node for all the hashed locations inside its Voronoi cell
(which contains all the points closest to p than all other nodes). Thus the storage
load of a node is directly proportional to the area of its Voronoi cell. It can be seen
that the nodes near a hole has a large Voronoi cell and thus are allocated more data
compared with the average load. An example is shown in Figure 7.10. When the
replica nodes also store data, the storage load on boundary nodes is even higher, as
the hole creates a large perimeter face such that all the data on the nodes of this face
are shared.

One way to deal with the high concentration of data on the nodes in sparse re-
gion or near network holes is to use rejection sampling [154]. In particular, we select
a random geographical location g′ and round to the closest sensor node g. But we
only accept the node g with probability A/(cnA(g)), where A(g) is the Voronoi
cell area of node g, A is the total area of the domain from which g′ is selected, n
is the number of sensors, and c is a sufficiently large universal constant to make
sure A/(cnA(g)) ≤ 1. In the case of a sample g being rejected, another random
location is selected and so on, until a sample node is accepted. This procedure will
produce a sensor node uniformly randomly chosen from the network after about c
trials. With the presence of holes, the smallest area of a Voronoi cell might be far
smaller than A/n. Thus c needs to be large, leading to the waste of communication
messages. To ensure a data-centric query eventually finds the data, we assume a
source of randomness common to all nodes. Thus, if a node g rejects a data, the
data-centric query for this piece of data will be re-directed to the same node and
eventually either finds the data or claims failure (when the data is not rejected and
the current node is not holding the data). With rejection sampling the storage load
can be made uniform, but the rejections can increase the network traffic and energy
consumption.

With the reflections and the covering space, the holes are filled by transformed
copies of the network. If we use k levels of reflections for a m-hole circular domain,
each node has mk−1 + 1 images (including itself) in the covering space. We calcu-
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late the Voronoi diagram of the sensor nodes and their images in the covering space.
The chance that a random location is rounded to a sensor node is proportional to the
total sum of the area of the Voronoi cell of p and all its images. Since the holes are
now covered up, the area of the holes are then distributed to the entire network. All
nodes are then selected with similar probability. Thus the maximum storage load of
any node is substantially reduced. When rejection sampling is used, the maximum
traffic load caused by delivering data to the hashed locations is reduced dramati-
cally, as not only the number of rejections is smaller but also the traffic of the greedy
routes are also spread more evenly in the network. For the improvement of traffic
load balancing for greedy routing with the covering space, please see Section 7.4.3.

7.4.2 Double rulings

We also apply double rulings, or quorum-based data storage and retrieval scheme,
with the covering space. In a double rulings scheme, the producer stores data or
data pointers along a storage curve and the consumer (the user who would retrieve
the data) routes the request along a retrieval curve. As long as any storage curve
intersects with any retrieval curve, it is guaranteed for successful discovery of data.
In fact, any retrieval curve can discover all the data stored in the network making
it more efficient to retrieval data. These curves are often designed as some nice
geometric curves. When we route data or request packets, we use greedy routing
to select the next hope as the one near the geometric curve and making progress
along the curve (e.g., the projection onto the geometric curve is further away) [116].
This leads to routing paths that approximate the geometric double ruling curves.
For example, when a network has a rectangular shape, one can use the horizontal
lines as storage curves and vertical lines as retrieval curves [104, 145, 159], denoted
as rectilinear double rulings. The data packets are routed to the neighbor furthest in
the vertical directions, and the retrieval packets are routed to the neighbor furthest
in the horizontal directions.

Existing double rulings schemes all assume some nice regular shape (rectangular
or circular). When there are holes, many geometric curves may hit a hole. Thus
the greedy routing paths approximating the double ruling curves may either get
stuck at a local minimum, or, when advanced hole bypassing techniques [42, 77]
are used, cause high traffic load on the hole boundaries. Another problem with an
irregular shape is that it is not easy to design the geometric double ruling curves
that guarantee intersection without using perimeter mode face routing. One can
easily construct examples such that rectilinear double rulings, or many other elegant
geometric curves fail to intersect inside the sensor domain.

With the covering space, the network is turned into a circular disk D with radius
R. Designing geometric double ruling curves is trivial. For example, one can use
co-centric circles and rays emitting from an origin as storage and retrieval curves
respectively. In our simulation, we use spherical double rulings [132]. We map the
covering space to the bottom hemisphere tangent to the center of D with the stereo-
graphic projection [29]. We put a sphere with radius r < R/2 tangent to the plane at
the origin. Denote this tangent point as the south pole and its antipodal point as the
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Figure 7.11. Stereographic projection.

north pole. A point h∗ in the plane is mapped to the intersection of the line through
h∗ and the north pole with the sphere. See Figure 7.11 for a cross intersection. We
choose r < R/2. Thus the bottom hemisphere is covered by image of the disk into
which the network is embedded. For a data item x, we use a hash function f to select
a random hash location g∗ in the plane and store the data along the storage curves,
defined as the great circle through the producer and g. The use of hashing is to al-
low multiple data items of the same type to be possibly stored and aggregated at
the hashed node. The retrieval curve is any great circle through the consumer. It can
be shown that any storage curve and retrieval curve have a common intersection in
the bottom hemisphere. In the implementation, we find the routing path traversing
through the triangles that intersect with a storage (or retrieval) curve. With a suf-
ficiently high k (the number of levels of reflections), the holes are mostly filled up
with only tiny holes left in the domain. Thus the chance that a double ruling curve
hits a tiny hole is very small. For a retrieval curve to discover the data, we only need
the intersection of the retrieval curve and the storage curve to be not in a tiny hole.
The chance for this to happen is small as well.

7.4.3 Load balanced greedy routing

Greedy routing selects the next hop as the neighbor whose distance to the desti-
nation is minimum, with the distance defined in some coordinate system. It is an
extremely simple and completely local algorithm but may not always work if all the
neighbors have greater distances to the destination. In our previous work [130], we
embed a sensor network in the plane such that all the holes are circular. Thus greedy
routing can not get stuck at any hole boundaries. This leads to guaranteed delivery
of greedy routing in the generated virtual coordinates. Nevertheless, greedy routes
that hit a node on the boundary of a hole C will lead to a path that follows the hole
boundary until the tangent point of the line through the destination and C (i.e, when
the packet is able to ‘see’ the destination). This effect causes higher traffic load on
the hole boundary.

By using the covering space, we can mitigate the imbalance of traffic load caused
by the greedy routing method. When a packet reaches a node on the hole bound-
ary, greedy routing directs it to enter another copy (Figure 7.12), effectively reflect
on the hole boundary and take a detour to get around the hole in the real network
(Figure 7.13). Therefore, not all the packets that arrive at a hole boundary will nec-
essarily route along the hole. The detours they take are spread out in the network,
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Figure 7.12. Path in covering space.

Figure 7.13. Path in real network.
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reducing the traffic pressure on the hole boundaries.
The routes, reflected on the holes, are possibly longer than before. But this is

in some sense necessary in order to improve load balancing. Minimizing the path
length and minimizing the maximum traffic load are two contradicting objectives
that cannot be achieved at the same time [58]. There is also an interesting trade-off
as longer paths increase the total message cost and the average traffic load. In our
simulations we demonstrate that a small number of reflections suffice to strike a
good balance of path stretch and load balancing.

7.5 Simulations

We carried out extensive simulation tests on several different networks to verify the
utility of this method. The data presented in this section are based on the network
represented in figure 7.9. This network has about 1400 nodes in a perturbed grid
distribution, spread over a 200× 200 region, and a maximum communication radius

of 12 units. The graph is a quasi-unit disk graph of inner radius 12/
√

2.
The following are the important observations we obtained from this set of simu-

lations:

1. The reflection based covering space reduces the maximum storage load at any
sensor to almost half, compared with the original embedding, if we uniformly
sample geographical locations and then round to the closest sensors.

2. Greedy routing on the covering space has better load distribution than GPSR
on the original network.

3. Using the reflections, double ruling schemes can be extended to networks of
non-trivial topology. The storage cost is higher but the retrieval cost is much
lower.

7.5.1 In-network storage and sampling

As described in the previous section, when using a GHT type storage scheme, the
storage load at any node is proportional to the area of its Voronoi cell. The nodes at
the boundary of a hole tend to get higher load because their voronoi cells together
cover the area of the entire hole. We compared the maximum Voronoi areas of the
original embedding with those of covering spaces obtained by one or more reflec-
tions. Reflections create multiple images of points for each node, the load on the
node is taken to be the sum of the Voronoi cell area of all images.

The results are shown in Figure 7.14 and Table 7.1. The total load is normalized
to be 1. It is shown that the covering space reduces the max load to almost half that
of the original embedding. This is achieved with only 2 or 3 reflections, after which
the load does not change too much. This can be understood as follows. The uneven
loads are caused by big Voronoi cells, which can be created by the presence of holes,
and/or by distortions introduced by the conformal map. After a few reflections the

111



area of the holes are shared by nodes of the entire network and do not contribute
large areas to any node in particular. Thus the larger cells created by the distortion
of the conformal map are the major reason for the uneven load. This does not get
smaller with more reflections.

We carried out rejection sampling on these embeddings, and found that the cov-
ering spaces created by 2 or more reflections require about 15% fewer trials on av-
erage. Further, when the communication costs are considered, the communication
loads are much better balanced in the covering space scheme. This is essentially be-
cause greedy routing in generally is better load balanced on the covering space than
GPSR on the original network. We describe the routing results in the next subsec-
tion.
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Figure 7.14. The largest fraction of the storage load at any sensor.

Table 7.1. Maximum storage load for GHT.

Scheme 1-ref 2-ref 3-ref 4-ref 5-ref

Covering Space 0.0092 0.0065 0.0062 0.0062 0.0062
Regular GHT 0.0106 0.0106 0.0106 0.0106 0.0106

+n-ref - n depth reflection

7.5.2 Load balanced routing

We selected 2000 random source-destination pairs and computed routes. On the
original network we used GPSR. On the covering spaces we used simple greedy
routing, since greedy routing guarantees delivery in these networks. The number of
reflections only shows the maximum number of reflections we permit. The covering
space is not pre-computed to that depth, reflections are computed locally as a route
progresses and the relevant data is attached to the message.

The results are shown in Table 7.2. Clearly, 2-3 reflections give the best results.
Beyond this point, the route lengths tend to increase as some paths go through sev-
eral reflections. However, the load balancing is always good, since the covering
space method does not hug the boundary when going past a hole. The path bounces
off the boundary and spreads the load more evenly (see the plot in Figure 7.15).
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Table 7.2. Traffic load and path length for greedy routing.

Scheme Avg. load Max load Avg. length Max length

GPSR 33.6840 620.0 24.1915 92
1-ref 24.0682 319.0 17.571 42
2-ref 35.4960 190.0 25.439 117
3-ref 39.1742 241.0 27.9715 159
4-ref 43.9143 199.0 31.235 196
5-ref 46.3129 216.0 32.8865 228

+n-ref - n depth reflection
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Figure 7.15. Cumulative distribution of load. Showing that the covering space method has fewer
nodes with high load, and also fewer nodes with very low load. GPSR on the other hand has 5% to
10% nodes with substantially high load.

Node lifetime experiments We carried out experiments on how the load balanc-
ing properties affect the longevity of nodes. Each node is assumed to have the en-
ergy to transmit 200 messages, after which it is considered dead. We count how
many nodes die in the process of delivering 4000 messages. As nodes die, the net-
work loses the property of circular holes and guaranteed delivery. We count the
number of messages that are delivered successfully under these conditions. GPSR
guarantees delivery, but with dying nodes, the network eventually gets partitioned
and then some messages fail. The results are shown in 7.3.

Table 7.3. Death and message delivery rates for 4000 routing attempts.

Scheme GPSR 0-ref 1-ref 2-ref 3-ref 4-ref

Deaths 286 33 29 50 122 154
Deliveries 3164 3361 3790 3849 3886 3842

+n-ref - n depth reflection

Double rulings Double ruling is a general method that extends GHT. The intuition
being that storing data on a path makes it easier for consumers to find that data.
Existing double ruling schemes such as [132] design the storage and retrieval paths
with simple networks in mind. The covering space, by almost eliminating the holes
in the network can be expected to make double ruling applicable to more general
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networks. In particular, as the holes get smaller in size, it can be expected that
fewer of the storage and retrieval paths hit them. We carried out experiments to
test this and other properties on covering spaces of different depths. The radius of
the sphere was taken to be one-third the radius of the embedded network in virtual
coordinates. The results below are for 2000 random producer, consumer and hash
location triples.
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Figure 7.16. Percentage of successful double ruling retrievals for different depths of covering space.

Figure 7.16 shows the success rate of double ruling with increasing depth of cov-
ering space. For no reflections, the percentage of successes are very small, about
10%, but as holes get smaller, success rate climbs to 86% for 5 reflections. In the
following, We ugmented the process at the final level by perimeter mode traversal
of boundaries to obtain full success rate.

We carried out path length and load measurements. The results are shown in fig-
ures 7.17 and 7.18 respectively. The storage costs can be seen to be relatively high, as
producers may sometime select a curve that goes through many reflections. In com-
parison, consumer retrieval costs are lower. This is because the consumer path stops
as soon as it intersects a producer path. While this is also true for double ruling in
the original embedding, the covering space introduces additional properties. there
are many copies of a node x in the covering space. Imagine that the storage path
passes through a copy x′. Now it is possible that the retrieval path hits a different
copy x′′ before it intersects the storage curve in the coring space. In such a case, the
consumer has hit a storage node in the real network, and can stop searching. This
possibility reduces retrieval costs even further. In a sense, the higher storage costs
are compensated by a smaller retrieval cost.

7.5.3 Network dynamics

Finally, we tested some effects of network dynamics. In a general sensor network
nodes may fail, and occasionally some nodes added. These cause changes in the
triangulation. For example, failure of a node creates a ‘hole’ in the triangulation.
Many of these changes can be handled by simple adjustments. Failure of a node in
a dense network can be handled by adding edges between its neighbors to fill up

114



0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

Reflection Depth
P

ro
d

u
ce

r 
S

to
ra

g
e

 C
o

st
s

 

 

Avg Load
Max Load
Avg Length

Figure 7.17. Producer storage costs.
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Figure 7.18. Consumer retrieval costs.

the hole. In certain cases, say after several failures, such simple local adjustments
may no longer suffice and then the embedding needs to be recomputed. However,
instead of computing the embedding from scratch, we can use the existing configu-
ration as a starting point to speed up the process. We found that for small changes
to the triangulation, the reconvergence is quite fast.

Table 7.4. Reconvergence Time.

Error bound 1e-1 1e-2 1e-3 1e-4 1e-5
Iterations 129 274 697 1392 2221

We made some small changes to the triangulation, such as edge swaps, and mea-
sured the time taken for the ricci flow to converge to some desired error. The results
are shown in table 7.4.

7.6 Conclusion

The network metric and embedding are crucial to sensor network operations. In this
chapter we presented ideas of using Möbius transforms and Ricci Flow algorithms
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to regulate a sensor network. All networks can be made to be circular with the
interior holes filled up. The created covering space embedding is universally useful
to even out sensor storage and traffic load for in-network data storage schemes. We
plan to investigate further applications of the embedding in sensor network and
sensor data management.
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Part III

Geometry and Topology of
Information
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Chapter 8

Introduction

Geometry and topology can be applied to analyze functions, and therefore to un-
derstand and summarize data. Suitable geometric structures associated with data
can reflect fundamental properties hidden in the raw information. In our goal of
information processing in sensor networks, recovering structural properties of data
is essential. The approach in this chapter will be to construct geometric abstrac-
tions that represent attributes of data that is not evident from the direct sensor read-
ings. These abstractions help us intelligently answer queries about the data in a
distributed manner from within the network.

The next chapter is based on a structure from differential topology called the con-
tour tree. This tree represents the nesting relations between contours of a function.
We present an algorithm to compute the contour tree and the various applications
it has in sensor networks. The computation and representation of the tree are both
distributed, and do not rely on availability of locations. A contour tree can be con-
structed as long as the domain is simply connected. Accordingly, the our algorithm
is for dense sensor networks that do not have holes.

Contours are fundamental aspects of real valued functions, and their analysis
enables us to answer questions related to ranges of values occurring in different
regions of the network. In particular, we concentrate on the following problems:

• Iso-contour query: from a query node q, find the iso-contours at value x, or
count/report iso-contour components at given value/range.

• Value-restricted routing: find a path from a source node s to a destination node t
with all values on the path within a user-specified range. This can be used for
navigation of packets in the network (e.g., avoiding sensor nodes with low en-
ergy level), or navigation of objects in the physical environment (e.g., avoiding
traffic jam).

The second functionality can be modified to answer queries of the type “Find a
path on which the maximum value is minimized.” We show a labeling scheme that
makes it possible to perform the value restricted routing with distributed informa-
tion at the nodes, so that nodes do not need to know the complete contour tree, and
can operate with local information about the tree.
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The last chapter relies on a very basic geometric construct called a differential
form. It is used here to compute aggregate information about data. In particular,
given a region R in the network, we compute the sum of sensor values inside it by
simply summing the differential form along the boundary of R. This is the sensor
network application of Stokes theorem.

The differential forms approach works for any function, but our main focus will
be on a function that tracks mobile targets detected by the network. This is because
in the case of mobile targets that move along continuous paths, the form can be
updated very efficiently to adjust to target movement. The method has enormous
flexibility – it adjusts automatically and naturally to node failures, network holes,
rapid movements of targets, even addition and mobility of the sensor nodes them-
selves.

Differential forms are fundamental constructs in geometry and analysis, and the
ability to compute general sums in arbitrary regions opens up many other possi-
bility. For example, in a network where a planar graph can be computed, contour
trees can be computed distributedly, with an algorithm that is different from the
sweep paradigm of existing methods. Further, this approach can handle domains
with holes, unlike the direct computation of contour tree. This method is described
briefly in chapter 10.

8.1 Research review

There are a lot of previous works on tracking mobile targets and on queries of sensor
data. We briefly review these work.

Range queries. For a typical range query, we are given a query sensor region plus
possibly a range of the sensor data, and then ask for all the the sensors in the query
region whether any sensor data is within the data range. This is a problem that has
been studied a lot in computational geometry. Centralized data structures for geo-
metric range query on static points [5] or motion data [?], have been developed. But
they are obviously not a good fit for a distributed sensor network setting. Various
distributed schemes have been proposed. In the case of a scalar field, one solution is
to partition the information about large geographic regions into subsets according
to smaller ranges of the field value, and store these subsets in different nodes. This
is the approach taken in the DIFS system [62], where each node in a quad-tree has
multiple parents, according to a finer partition based on smaller field ranges. Thus
the wider the spatial extent an index node knows about, the more constrained the
value range it covers. In the DIM system [99] a locality preserving hash function
is used to map portions of a multidimensional attribute space to sensors so that all
data needed to answer a range searching query can be located conveniently. In the
fractional cascading approach [56], information is stored so that more detailed infor-
mation is available about data obtained in the spatio-temporal locality of the sensor
where the query is injected—but without sacrificing the ability to query distant re-
gions or times as well. All of these schemes are designed to support range queries
for static sensor data. For mobile data such as a swarm of mobile targets, constant
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updates in a global manner make these schemes too costly. In addition, these prior
schemes are mainly for rectangular ranges only. Ranges of other shape must be first
partitioned into smaller rectangular ranges, which are queried separately.

Location services. Existing solutions for tracking and searching for mobile targets,
termed as location services, focus on the tracking and searching of a single target. The
earliest work is by Awerbuch and Peleg [9] and followed up in [2,46,98] to fine tune
the system. The location of a mobile target is updated to a carefully selected set of
nodes, called the location servers, whose spatial density cascades exponentially as
we move away from the target. This allows ‘locality-sensitive’ queries, i.e., the cost
of a query is proportional to the distance to the target. When a target moves, infor-
mation is updated on a location server, with the frequency inversely proportional to
the distance to the target. Note that this method requires tracking data to be sent and
stored at far away nodes. Thus, even if targets are concentrated only one region of
the network, other nodes have to stay awake for storage and communication of the
tracking data. Thus the information of a nearby location server is more up-to-date.
Forwarding pointers are left at the old position pointing to the current position of
the target. A query far away from the target may first obtain outdated information
pointing to a past location, from where the query can be delivered to the current po-
sition by following the forwarding pointers. This family of schemes focused on the
tracking and searching of an individual, identifiable target. Location services have
amortized update cost of O(d log d) when a target moves a distance d, and a query
cost of O(d′) if the query node is of distance d′ away from the target’s current loca-
tion. In comparison, we have better asymptotic bounds. Our update cost is worst
case O(d) and query cost is no more than O(d′). In addition, location services do not
support range queries very well. If there are multiple targets, they are handled sep-
arately. For range queries or aggregated queries (such as density) one has to search
for location servers for all potential targets within the range, which can be highly
inefficient. In this chapter we evaluate the performance of using location services
and using our method for range queries in the simulation section. We show that for
both update cost and the query cost, our method is substantially better.

Information gradients. The third approach is to define a potential field centered at
the target. Such information potential fields can be either the natural gradients of
physical phenomena, since the spatial distribution of many physical quantities, e.g.,
temperature measurements for heat, follows a natural diffusion law [25, 44, 45, 103],
or built explicitly on a mobile target. One scheme in this family uses harmonic
function to build such information strength field [100], which satisfies the Laplace’s
equation ∇2Φ(x) = 0 with proper Dirichlet boundary condition (1 at the target lo-
cation and 0 at the network boundary). Such an information field is guaranteed to
be free from local minima. Thus every node can follow the local information gradi-
ent to arrive at the target. This works for both identifiable (information fields are
maintained separately) and non-identifiable targets (a single information field is
maintained for all targets). In addition, the divergence-free property of harmonic
gradients and Faraday’s law of induction imply an easy solution for counting range
queries — touring the boundary of a given range and summing up the difference of
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the potential values on the edges across the region boundary provide the number
of targets in the interior of the range. When a target moves, the information field
needs to be updated to ensure the harmonic function property. The limitation of the
scheme is that updating the potential field for mobile target is costly by the global
nature – nodes far away from the target have to update their information strength,
while ideally we hope to restrict the updates to be within a small neighborhood of
the target. If we ‘rotate’ the gradient vectors by 90◦, the result is a differential har-
monic one-form. In our scheme we do not require the differential one-form to be
harmonic – thus one can not easily navigate towards the target as in the scheme
in [100]. However, the benefit of using a relaxation as simply a differential one-form
is to allow quick maintenance of the one-form under target motion. As we have
shown, the update is completely restricted to the target neighborhood.
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Chapter 9

Topology of Data and Iso-Contour
Queries

We study the problem of data-driven routing and navigation in a distributed sensor
network over a continuous scalar field. Specifically, in this chapter we address the
problem of searching for the collection of sensors with readings within a specified
range. This is named the iso-contour query problem. We develop a gradient based
routing scheme such that from any query node, the query message follows the sig-
nal field gradient or derived quantities and successfully discovers all iso-contours
of interest. Due to the existence of local maxima and minima, the guaranteed deliv-
ery requires preprocessing of the signal field and the construction of a contour tree
in a distributed fashion. Our approach has the following properties: (i) the gradient
routing uses only local node information and its message complexity is close to op-
timal, as shown by simulations; (ii) the preprocessing message complexity is linear
in the number of nodes and the storage requirement for each node is a small con-
stant. The same preprocessing also facilitates route computation between any pair
of nodes where the the route lies within any user supplied range of values.

9.1 Introduction

Wireless sensor networks have shown great potential for providing dense moni-
toring and sensing capabilities with modest cost and management effort. In many
typical sensor network applications, sensors are densely deployed in a physical en-
vironment to provide good coverage at fine sensing resolutions. Existing work has
established many fundamental mechanisms for sensor deployment to ensure cov-
erage [10, 94, 108, 164] as well as energy efficient networking functions to collect data
from these nodes.

There are two fundamental aspects of sensor networks that differentiate them
from other types of wireless networks. First, it is the data from the sensor nodes,
rather than the network nodes themselves, that is of most interest to the users. While
many wireless networks, such as wireless LANs, cellular networks, and ad hoc mo-
bile networks, focus on supporting low-latency end-to-end communications and
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maximizing the system throughput, sensor network designs are often tailored to-
wards their target application and are bound tightly to the physical environment
that they are supposed to monitor/sense. In the most prevailing applications of
environmental monitoring, sensors measure readings of the physical space, such
as temperature, pressure, chemical concentration, and many others. Such physi-
cal quantities often exhibit continuity properties over space and/or time. Thus the
smoothness of the physical signal field, and the spatial correlation of discrete sen-
sor data, naturally suggest possibilities for data compression and exploitation for
efficient system design.

A second unique property of sensor networks resides in their great potential
in allowing seamless interaction between users and the physical world. In many
civilian and military applications, the users operate in the same space in which the
sensors are embedded. This allows novel applications in which real-time sensor
data is quickly delivered to users of interest for appropriate response and actions.
All of this eventually leads to a smart environment that could revolutionize the way
we observe, interact with and influence the physical world.

In this chapter we look at the iso-contours of a scalar signal field represented by
sensor data, together with a local gradient descent routing scheme, with which the
users can navigate in this signal field with guaranteed success.

Iso-contour related queries. For a continuous field, an iso-contour at an isovalue
x is the collection of points with value equal to x. In a discrete sensor network, this
is often approximated by the collection of sensors with readings sufficiently close to
x. The iso-contours encode spatial structures of the signal field, such as boundaries
of the ‘hot’ regions that indicate overheating or a fire, or pollution dissemination
that may require special treatment. The signal field can also be the energy map or
traffic load on the networked sensors, and thus the iso-contours are related closely
and provide information about the general health of the network or its traffic bottle-
necks.

A few papers have studied compression, approximation and aggregation of iso-
contours with space-efficient data structures, when sensors report their data along
an aggregation structure to the base station [51, 70, 109]. In this chapter we are inter-
ested in in-network data processing and the usage of iso-contours for navigation in
the signal field. Consider a scenario in which sensors and users (such as rescuers
or patrol officers) are embedded in the same physical space. Users with hand-held
devices communicate with nearby sensors to obtain directions to places that require
attention or service, indicated by the sensor data being within a specified range. We
consider the following two routing and navigation functions:

• Iso-contour query: from a query node q, find the iso-contours at value x, or
count/report iso-contour components at given value/range.

• Value-restricted routing: find a path from a source node s to a destination node t
with all values on the path within a user-specified range. This can be used for
navigation of packets in the network (e.g., avoiding sensor nodes with low en-
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ergy level), or navigation of objects in the physical environment (e.g., avoiding
traffic jam).

For both problems, we are looking for efficient solutions without flooding all the
nodes. The chapter is tailored to the iso-contour query as it best demonstrates the
basic idea, with which the value-restricted routing can be answered easily.

Gradient descent routing. The most intuitive solution for iso-contour queries is to
use gradient descent, by exploiting the natural continuity of the signal field. Starting
from the query node q, the query message can be greedily guided either downhill
or uphill, depending on the comparison of the value at q and the target value x.
This greedy descent routing is simple and requires only local knowledge. Thus it
has been explored in a number of settings for low-cost data-centric routing [25,44,45,

103,160]. Greedy descending/ascending can typically lead the query message to one
iso-contour, unless the query message reaches a local minimum or local maximum,
in which case the query gets stuck. Indeed, using simple gradient descent for an
iso-contour query has a serious defect: the signal field may have multiple peaks
and valleys, and greedy descending discovers at most one iso-contour, and is not
able to discover all of the iso-contours due to the existence of local optima.

local maximum local minimum saddle point
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Figure 9.1. The level sets of a signal field and the contour tree spanning all the critical points
(in the right). The figure also shows some descending paths connecting the critical points.

Figure 9.1 shows an example of a potential field by drawing its level sets. Red
colors mean hot and blue colors mean cold. We also show all the local maxima,
minima and saddle points. A greedy gradient routing from a query node q looking
for a desired level contour will follow the local gradient and climb up the mountain.
Once the query reaches the desired level it can locally trace out one contour, e.g,
the contour on the left peak in the figure. However with only local information the
query does not know whether there are other peaks and if so where they are.

The difficulty here is that the greedy gradient routing is completely local, while
iso-contours reflect the global topology of the signal field. This is a general problem
in navigation with a potential field, as has also been studied in robotics: with only
information about the local potential one lacks the big picture of the signal field
which is important for guaranteed success. In particular, the collection of critical
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points (local maxima, minima and saddle points) represents the global topology of
the signal field. Thus, in order to make the local greedy descend algorithm always
work, one needs to augment it with a compact representation of the critical points
and their relationships.

Our contribution. We propose to investigate distributed algorithms to pre-process
the iso-contour structures of the signal field by what is called the contour tree [153],
using which a gradient routing scheme can successfully discover all iso-contours.
In short, a contour tree is a tree on all the critical points of the signal filed and cap-
tures the topology of the iso-contours. It is a special case of the Reeb graph in Morse
theory [111]. Take Figure 9.1 as an example, the right figure shows the topological
contour tree consisting of eight vertices, corresponding to two local maxima, three
local minima, and three saddle points. A contour tree captures how the connected
components of the iso-contours merge/split as we increase/decrease the isovalue.

We propose an algorithm for the construction of the contour tree in a fully dis-
tributed manner. The basic idea is similar to the centralized construction [18, 30, 146,

153]. But we need to account for numerous robustness issues due to local noise and
degeneracies, and lack of global coordination. We use distributed sweeps [143], ini-
tiated at local maxima and minima to identify the saddle points and nodes on the
saddle contour. Next an information dissemination phase following the contour tree
structure distributes necessary information for gradient descent routing. The pre-
processing involves all together four rounds of sweeps of the signal field and has a
linear message complexity.

The invariant we maintain on a node p is the max/min value in the interior
and exterior of the iso-contour component through each point p. This represents
only a small constant storage requirement at each node. For iso-contour queries, the
gradient descent routing alternates between two operations (i) at a node on some
saddle contour, it checks the split/merged contours and send one or two (if nec-
essary) messages to the new connected components. (ii) at other nodes, the query
message either follows an iso-level or follows gradient ascending/descending path
to reach the desired contour. The gradient routing only uses information stored at a
node itself and every routing step is justified, in the sense that there will definitely
be a contour discovered for each query message. Thus no effort is wasted. Our sim-
ulations show that the gradient routing achieves comparable message complexity,
when compared with the minimum spanning tree covering the iso-contour compo-
nents, which is at most twice the length of the minimum Steiner tree, the optimal
solution if the global knowledge about the entire signal field were available.

At the same time, the same contour tree permits a scheme for restricted value
routing, and a labeling scheme such that validity of a restricted value route request
can be determined simply from the labels of the source and destination nodes. Intu-
itively, the spatial structures of the signal field are entirely captured by the contour
tree, and low values paths in the field can be mapped to a low value path on the
tree.

Lastly we note here that in this chapter we only consider a static signal field, be-
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cause the problem for a static signal field is already quite challenging. In practice, as
the signal evolves over time we can periodically execute the contour tree construc-
tion phase. The maintenance of the contour tree for a time-varying signal field will
be future work.

9.2 Contour trees and gradient routing

Given a continuous signal field F , the iso-contour (aka. level sets) at an isovalue x is
the collection of points p with value F (p) = x, and may have multiple connected
components. We denote by C one connected component of an iso-contour and by
C(p) the connected component containing node p.

As we decrease the isovalues from the global maximum to the global minimum,
the connected components on the iso-contours may merge together, split, emerge,
or disappear. These changes happen at critical points, such as local minima, local max-
ima and saddle points. The contour tree captures such topological changes of the iso-
contours. In a contour tree, each node corresponds to a critical point, and an arc in
the contour tree connects two critical points. In particular, as we start from +∞ and
decrease the isovalue,

• at a local maximum, a contour component emerges;

• at a local minimum, a contour component vanishes;

• at a saddle point, two contour components merge into one or one contour com-
ponent splits into two (see Figure 9.2). In the first case, there are two branches
of the iso-contour eminating from the saddle point, representing the two com-
ponents. Such a saddle point is called a merge saddle (with respect to decreas-
ing isovalues). The second case with respect to decreasing isovalues is called
a split saddle. (For increasing isovalues, split saddles and merge saddles are
interchanged.)

p

p

(i) (ii)

Figure 9.2. ⊕ indicates a local maximum. ⊖ indicates a local minimum. ⊙ indicates a
saddle point. Dark colors mean larger values. When we start from ∞ and decrease the
isovalue, at a saddle point, (i) two contour components merge into one; (ii) one contour
component splits into two.

It has been proved that the merging and splitting of contour components are
indeed represented by a tree. Further, without degeneracy (no two saddle points
have the same values), a local maximum or a local minimum has degree 1; a critical
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point has degree 3. To visualize, we place the vertices of a contour tree, i.e., the
critical points, at the height levels of their values. A merge saddle has a ‘Y’ shape
and a split saddle has an inverted ‘Y’ shape. Then we can map contour components
in an iso-contour at value x to the points obtained by cutting the tree at level x.
The contour component through a saddle is mapped to the saddle vertex on the
tree. Thus, at a point p in the signal field, if its contour component C(p) is mapped
to a point on arc α in the contour tree, then we say p is on arc α. In Figure 9.1,
the iso-contour at the query value x has two components, the left contour stays on
the arc AC and the right one stays on the arc BC. If we embed the contour tree
in the domain by representing each edge with a monotonic path connecting the
corresponding critical points, it can be verified that this mapping is continuous and
the contour tree is a retract of the original domain under this mapping.

In a sensor network the continuous signal field is sampled by discrete sensors. To
compute the contour tree in the discrete setting, we have the following challenges:

Local identification of critical points. In a continuous signal field, a critical point
p is a point with all partial derivatives vanishing at p. In a sensor network we can
easily identify the local maxima and local minima. A local maximum (minimum)
has all the neighboring values no greater (smaller) than itself. However, it is not easy
to identify saddle points, which have larger and smaller values in its neighborhood
in an alternating way. When we do not have sensor locations or do not have accu-
rate locations (say, the neighbors may switch their angular ordering), identifying a
saddle point robustly is not straight-forward. In our algorithm, the saddle points
are discovered along with the construction of the contour tree, as the nodes where
the contour components merge.

Distributed construction of the contour tree. The construction of the contour tree
of a piecewise linear mesh has been studied before [18, 22, 30, 146, 153]. The best al-
gorithm achieves a running time of O(n log n) on a piece-wise linear surface with n
vertices and can even be made to be output sensitive [18, 22]. However, these algo-
rithms are centralized and are not appropriate for low-cost in-network processing
in a distributed sensor network. We propose a distributed algorithm that involves
four passes of sweeps, to be explained in details in subsection 9.2.2. Thus the con-
struction costs roughly 4n message transmissions. After the preprocessing phase
gradient-based routing with guaranteed success for iso-contour queries can be per-
formed at any node in the network.

Handling noises and plateau regions. An important practical issue regarding
contour trees for a sensor network is that the sensor data is a noisy approximation
of the underlying smooth signal field, due to sensor inaccuracy, hardware noise,
etc. Thus there could be many more local maxima and minima in the sensor data
than the the original (unknown, smooth) signal field. We propose two methods to
handle this. First, we will locally simplify a contour tree by using topological per-
sistence [19]. Small bumps will be chopped off. Second, we will not keep the entire
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contour tree at each node but rather only keep enough information for gradient
routing. Thus, local optima due to noises in the measurement only influence a small
neighborhood and are ‘invisible’ to queries from far away regions.

9.2.1 Notations

Before we describe the algorithm, we first state conceptually what we want to
achieve with the contour tree construction and what we want to store at each node.
An example of a contour tree is given in Figure 9.3 (i). A node w on an arc AB has a
contour component C(w) in between C(A) and C(B). The contour component C(w)
decomposes the entire signal field into two components, the interior and the exterior,
corresponding to the two subtrees when w is removed. The interior contains the
critical point A, which is reachable from C(w) via a gradient ascending path. We
call A the ascending saddle. The exterior contains the critical point B, which is reach-
able by a gradient descending path. B is called the descending saddle. Not every node
has both ascending/descending saddles. Now we will state what is needed to store

B
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P2

p

P1

P2

P1 S

(i) (ii) (iii)
Figure 9.3. (i) A contour tree and the interior of C(w) shown in the bounded region; (ii) merge
tree; (iii) split tree.

at each node for gradient descent routing with success.
At a node w (not on the contour component of a saddle), we will store four

values:

• I+(w), I−(w) correspond to the maximum and minimum value in the interior
of C(w);

• E+(w), E−(w) correspond to the maximum and minimum value in the exterior
of C(w).

This information is to guarantee that when we send a query message either uphill
or downhill, we know for certain that there exist some contours for which we are
looking.

For the consideration of easy navigation with the contour tree, each node also
keeps information about the contours that split off/merge together at their ascending
merge saddle or descending split saddle. Take point p on the arc P2A and its descending
split saddle A in Figure 9.3 (i) as an example. The contour component C(A) is the
union of two contours C1(A) and C2(A) splitting up soon. Thus we keep at each
node u ∈ C(p),

• the maximum/minimum values of the interior/exterior of both C1(A) and
C2(A);
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• gradient descending pointers leading to C1(A) and C2(A).

This information helps us decide before we reach a saddle contour, whether it is
worth visiting one or two of the contour components that split off of it and if so,
how to get there.

To summarize, each node only keeps a small constant amount of information.
Next we will explain how to get this information. In the rest of this chapter we
assume a dense deployment of sensors in which each node u has an value F (u).
The nodes have a communication graph G that models the pairs of nodes who can
directly communicate with each other. We assume no two sensors have the same
values, if they do, ties are broken by their IDs (the one with higher ID is considered
larger).

9.2.2 Sweep to identify saddle points

The construction of the contour tree and the spread of information about the
peaks/valleys of the signal field are conducted by a sweep algorithm, similar to
the one in [143]. Without loss of generality, we explain the details with the sweep
top down. A node has its higher (lower) neighbors as the subset of neighbors with
value strictly higher (lower) than itself.

Each sweep is initiated and labeled by a critical node (a maximum, minimum or
a saddle node). A node identifies itself as a local maximum if it discovers that all
its 1-hop neighbors have value no greater than itself. It then initiates a sweep top
down. The sweep algorithm runs in a distributed fashion on all the nodes. A node
has two possible states, swept and not swept. Each local maximum node initializes
itself as a swept node. When a node has all of its higher neighbors in the swept state,
it changes itself to be swept. The nodes who participate in the sweep do not need to
be synchronized and advance the sweep frontier with their local knowledge.

In the sweep initiated by a local maximum p, the sweep message carries the tuple
(p,F (p)), i.e., the node ID and value of p. Each node being swept will keep this in-
formation, as well as from which nodes it received this information. We define a de-
scending path as a path in which each node has a value no greater than its precedent.
During the sweep the information about a local maximum p is propagated along
descending paths from p. In addition, each node swept learns ascending pointers
which eventually lead to the local maximum.

If a node gets two sweep messages from different local maxima, this indicates
that two contour components start to merge. Thus a saddle should be identified.
Since the nodes advance the sweep frontier in a distributed fashion, it may happen
that two nodes at the same time both receive the sweep messages from two peaks.
Thus we will need to define a saddle rigorously and resolve the ambiguity.

Definition 9.2.1. We define a node to be a merge saddle node if it is the one with
highest iso-value with two descending paths from different critical points (other
merge saddles or local maxima), i.e., it receives two sweep messages from different
critical points.
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Notice that this definition is recursive in nature. A merge saddle is precisely the first
node when two contour components merge, as shown below.

Lemma 9.2.2. For a merge saddle q of two critical nodes p1, p2, if we remove the
sensors with values strictly smaller than F (q), and obtain a subgraph G′, then q is
the cut node of G′ (removing q will result in two or more disconnected components.).

Proof: First, define L1 (L2) as the set of nodes in G′ with ascending paths to p1 (p2).
We claim that L1 and L2 has only node q in common. If otherwise, q 6= q′ ∈ L1 ∩ L2.
Since q′ is a node in G′, q′ has a higher value than q. Now this contradicts with the
definition that q is the saddle node.

Now we argue that once q is removed from G′, then the set of nodes L1 is discon-
nected from L2. Suppose otherwise, that there are two nodes x1 ∈ L1, x2 ∈ L2 and
a path P connecting them that does not go through q. This path P must use nodes
other than those in L1 ∪ L2. Now take the first node on P coming out of x1 that is
not in L1 ∪ L2, denoted by y1. Without loss of generality we can also assume that y1

is just next to x1 (otherwise take x1 to be the preceding node of y1). Now we must
have F (y1) > F (x1), since y1 is not in L1. Now take an ascending path from y1, it
will lead eventually to either a local maximum or a saddle, denoted by p3. Thus the
node q cannot be a merge saddle with p1, p2, since there will be another saddle of p1

and p3, which is at least higher than node y1 and q. This shows a contradiction. �

We also remark that with a top-down sweep we do not identify the saddle when
one contour component splits into two – the split saddles will be discovered when
we do a bottom-up sweep from local minima, in a completely symmetric fashion.

Now we show how the merge saddle node is identified in a robust and efficient
way. A node who is not a local minimum and first receives two sweep messages
from different peaks P1, P2 will promote itself to be a potential merge saddle S(P1, P2).
In a distributed setting we need to worry about two issues: (i) two nodes u, v (or
more) may become potential merge saddles S(P1, P2) for the same two peaks. In
this case only the real saddle node (the one with highest isovalue) should survive.
(ii) it may happen, if the sweep frontier does not proceed in the same speed, that the
lower saddle may be discovered before the higher saddle, as shown in Figure 9.4.

sweep frontier

P3

C(S2)

P2

P1

S1

S2

C(S1)

Figure 9.4. If the sweep from P2 proceeds faster and reaches S1 before it reaches S2, then S1

will notice it is a potential saddle for S(P1, P2). The correct contour tree should have the
saddle S1 to be the merge saddle for P1, S2.

The two problems will be resolved by the traversal of contour component, de-
scribed below. Once a node u becomes a potential saddle for two peaks p1, p2, it
starts to traverse the contour component C(u), defined as,
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Definition 9.2.3. The contour component C(u) for a node u is defined as the set of
nodes that have values above F (u) and have a lower neighbor lower than F (u). If
u is a merge saddle for two critical points p1, p2, then C(u) is partitioned into two
components C1(u), C2(u) (sharing only node u) that have ascending paths to p1, p2

respectively.

Figure 9.5. A merge saddle (shown as the triangle) and its contour component (in red).

Thus a potential saddle node u sends the tuple (p1, p2) to the nodes in C(u). To re-
solve the first issue that several potential saddle nodes compete for the real saddle,
the traversal message from u is suppressed if it hits a node x with a traversal mes-
sage from a winning potential saddle u′ (with higher value) for the same two peaks.
x stops forwarding the message from u. Thus the traversal from u will stop because
it either visits all the nodes in C(u) or if u loses to some other potential saddle.

During the message dissemination, a backward pointer is cached at each node in
the traversal. Thus a tree rooted at u, named T(u), is established and used for infor-
mation aggregation and for u to learn about whether it wins and becomes the real
saddle, or whether it loses the competition. In particular, a leaf w in this aggrega-
tion tree will return to its parent ‘loser’ if w has another winning traversal message,
otherwise return the sweep message it has received. If a node is not yet swept, it
waits for its sweep message before it reports back. An interior node in the aggrega-
tion tree returns to its parent the union of the messages from its children. Now the
potential saddle node u becomes the real saddle for p1, p2, if (i) it does not get the
‘loser’ message from its aggregation tree; (ii) all nodes in C(u) are swept by p1 or p2.

The new saddle q will start with a new top-down sweep and they propagate the
tuple (q,F (q), M(p1 , p2)), where M(p1, p2) indicates that q is the merge saddle of
two critical points p1, p2. All the nodes in C(q) are considered swept by q and the
new sweep moves forward.

Notice that the sweep from a merge saddle q is distinct from the sweeps from
p1, p2. In fact, the merge saddle q and all the nodes who receive the traversal mes-
sage from q do not forward the sweep from p1 or p2 anymore. In the case when a
node w has already forwarded the sweep from p1 or p2 by the time it gets the traver-
sal message, it simply participates in the new sweep of q. Notice that again we
do not require synchronization. The old sweeps from p1 and p2 cannot propagate
very far from C(q), since q stopped participating; thus, q’s lower neighbors cannot
possibly be swept, and so on and so forth.

If the merge saddle q also happens to be a local minimum (in a setting with low
discrete resolution), q is in fact a merge saddle, a split saddle, and a local minimum
all by itself. One trouble this may potentially cause is that the old sweeps from p1
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and p2 may propagate without being dragged behind by q, since q does not have
lower neighbors. The system however, will eventually arrive at the correct state,
since the sweep from saddle q will overwrite the old sweeps from p1, p2.

The traversal also resolves the second issue mentioned above. In particular, S1

cannot win before the saddle S2 successfully identifies itself and proceeds with its
sweep — this is because S1 will only get its aggregated message when all the nodes
in C(S1) have been swept, and S2 and its descendants cannot be possibly swept
before the saddle S2 is done. During the aggregation phase for S1, S1 will learn
about the sweep messages on C(S1). A subtle issue is that some nodes in C(S1) may
considered them swept by P2 and report P2 back to S1. Thus S1 learns that some of
the nodes are swept by S2 = M(P2, P3) and some nodes are swept by P2 or P3 alone.
Now S1 un-sweeps the nodes only swept by P2 or P3 and will only proceed to be
the real saddle for P1, S2 when all the nodes are swept by P1, S2. In this case S1 is
initially proposed to be a saddle for P1, P2 but eventually becomes a saddle of P1, S2

when it wins.

To summarize, If there are two nodes both identifying themselves as a merge
saddle, then the one with lower value will be swept and corrected (i.e., removed)
eventually.

Lemma 9.2.4. With the algorithm above, there cannot be two nodes both identifying
themselves as the merge saddle of two critical nodes. Thus the algorithm defines a
unique contour tree structure.

After the top-down sweep, we have identified all merge saddles. By symmetry,
we perform another sweep bottom-up initiated by local minima. Thus, after both
sweeps we identify all saddle points and all nodes on the contour components of
these saddles, thereby obtaining inherently the entire contour tree structure.

9.2.3 Construction of the contour tree

In this section we will extract the combinatorial contour tree after the saddles are
identified. Notice that during top-down and bottom-up sweeps we have identified
the merge tree (on all local maxima/minima and merge saddles) and the split tree
(on all local minima/minima and split saddles). We will combine them to the con-
tour tree such that each critical node learns its parent/child on the tree. Figure 9.3
(ii) (iii) shows the merge tree and split tree, respectively.

We use descending and ascending paths to discover the contour tree. Starting
from a merge saddle p = M(P1, P2), we follow ascending paths towards P1, P2 re-
spectively. If the ascending path towards P1 reaches P1 before it hits any other critical
contour level, then p will consider P1 its parent in the contour tree. If the ascend-
ing path towards P2 hits a split saddle contour S, then p will consider S as its other
parent in the contour tree. Similarly p also sends a descending path and identify its
child in the contour tree. The operations for a split saddle, maximum/minimum are
very similar and not repeated.
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The operations require that an ascending path does not cross a split saddle con-
tour without noticing it. This is guaranteed by the definition of a contour compo-
nent. Suppose that in an ascending path x has value F (x) < F (q), with q as a
split saddle node, and the next node on the path y has value F (y) ≥ F (q). Thus x
must be on the saddle component C(q), because x has a value below F (q) and has a
neighbor y above it. This guarantees that the contour tree will be detected precisely
as the combination of the merge tree and the split tree.

9.2.4 Information dissemination

With the contour tree constructed, we will need to disseminate information such
that each node w learns

1. the maximum/minimum value, I+(w), I−(w), inside the interior of its contour
component C(w);

2. the maximum/minimum value, E+(w), E−(w), inside the exterior of C(w).

This is done by information dissemination along the contour tree. By symmetry,
we first explain how a node w learns about the maximum value inside the inte-
rior/exterior of its contour component. Suppose that w is on an arc AB. Recall that
the interior of C(w) corresponds to the subtree containing the ascending neighbor
A, when C(w) is removed. Thus the maximum of the exterior (interior) of C(p) for
a local minimum (maximum) p is its own value.

We explain the basic operation by using the contour tree. For an arc e, the re-
moval of w ∈ e leaves two subtrees T1 and T2, the maximum value in T1 is sent
through the arc, by a sweep, to T2, and vice versa. In particular, we specify the dis-
semination rules at saddle points. See Figure 9.6. First, examine a merge saddle p
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Figure 9.6. Information dissemination on (i) merge saddle; (ii) split saddle.

with two incoming arcs e1, e2 and one outgoing arc e3. Suppose by induction that
the maximum is already learned and propagated along the arcs e1, e2, e3 to saddle p,
as shown by I+1 , I+2 , E+

3 in the figure. The contour component C(p) has two compo-
nents C1(p), C2(p), corresponding to the nodes with ascending paths along e1 and
e2 respectively. Now for a node w,

• if w ∈ C1(p), w sends E+
1 = max(I+2 , E+

3 ,F (w)) along the bottom-up sweep of
e1;

• if w ∈ C2(p), w sends E+
2 = max(I+1 , E+

3 ,F (w)) along the bottom-up sweep of
e2;

• if w ∈ C(p), w sends I+3 = max(I+1 , I+2 ) along the top-down sweep of e3.
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This says that the nodes on C(q) will initiate a sweep bottom-up along e1 and e2,
and a top-down sweep along e3 and propagate information as shown in Figure 9.6(i)
accordingly. At a split saddle, information propagates in a similar way as shown in
Figure 9.6(ii). We do not repeat here.

Notice that we do not need close synchronization among these sweeps. In par-
ticular, the bottom-up sweep on e2 in Figure 9.6(i) can start when both I+1 and E+

3
are done, even if the sweep I+2 is not finished yet.

The information dissemination phase is initiated by the local minima and local
maxima. A local minimum p initiates a bottom-up sweep with value E+(p) = F (p).
A local maximum p initiates a top-down sweep with value I+(p) = F (p). Along
each arc there are at most two sweeps in different directions. In addition, the dis-
semination of both the minimum and the maximum can be integrated in the same
sweep so that the total cost for this phase is roughly 2n.

For navigation purposes, we will also disseminate information such that a node
traveling in a gradient ascend path can easily find ways to each of the two peaks
that will split up on the upcoming merge saddle p (so that we do not need to reach
the saddle to decide). Specifically, each node on C1(p) records its hop count within
C1(p) from the saddle p. This is called its index. For a node w with p as its ascending
merge saddle, if w has higher neighbors with ascending pointers to p1, then w has
an ascending pointer to p1 and its index is the minimum of the indices of those
higher neighbors. A node may have ascending pointers to both p1, p2, for example,
the saddle node p itself and all the nodes with ascending paths to p. Similarly we
disseminate the descending pointers along the ascending paths from a split saddle
until the next critical contour. This information sweep can be combined with the
previous sweep thus it does not incur extra cost.

To summarize, the total communication cost is bounded by the cost of sweeps,
and the cost of traversing the saddle contours. In the ideal case when the saddle
contours do not severely overlap and the sweeps are stopped in time by the saddle
contour traversal, both the sweep cost and the saddle contour traversal cost are a
constant factor of the network size. The construction cost in practice is evaluated in
simulations.

9.2.5 Handing noises

With real sensor data, the signal field may have noises, causing lots of local optima.
In practice we will de-noise the signal field by simplifying the contour tree during
construction, to improve the construction efficiency. At a saddle node q, we will
check the values of the two peaks p1, p2. Say F (p1) > F (p2). If F (p2)− F (q) < ε
and q is at least γ hops away from p2, with ε and γ as upper bounds on the height
and size of a bump to be considered as noises, we consider p2 insignificant and chop
it off. See Figure 9.7 (i). At the saddle q, q will detect that p2 is too small, thus it will
be chopped at the value of F (q) and the sweep of p1 will take over.

The above operations effectively ‘smooth out’ the signal field, guided by local
geometric measures. This can substantially simplify the contour tree in a noisy data
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Figure 9.7. (i) a bump considered as noise and flattened; (ii) too high to be a noisy bump; (iii)
too wide to be a noisy bump;

field. The gradient routing for iso-contour queries will miss at most some small
components, whose sizes are controlled by ε and γ.

9.3 Iso-contour queries

9.3.1 Gradient descent routing for iso-contour queries

The invariant we constructed so far enables an efficient gradient routing for iso-
contour queries with guaranteed success. The gradient descent algorithm uses only
the information stored at a node and its immediate neighbors.

Starting at q we first check whether x is beyond the range of the signal field, in
which case we do not travel even one step and immediately return ∅. Effectively,
this is by checking whether I+(q) < x and E+(q) < x, or I−(q) > x and E−(q) > x.
If not, we know that there must be some non-empty iso-contours at level x and we
use a greedy gradient algorithm to find them. The main idea is to send the query
message along the contour tree, possibly splitting at internal branches, and discover
all components of the iso-contour of interest. At the query node q,

• If I+(q) ≥ x ≥ I−(q), then q initiates a query message to follow the gradient
uphill.

• If E+(q) ≥ x ≥ E−(q), then q initiates a query message to follow the gradient
downhill.

We first explain the ascending query message from q. If a query message hits a node
w with isovalue x, it will then start a traversal along the contour component C(w).
This is done by the same algorithm as explained earlier. At the same time, we also
need to check at w whether it is worth getting even higher up — it is possible that at
the interior of C(w) there are still contours of value x. Again this is done by checking
a higher neighbor of w, say v, whether I+(v) ≥ x ≥ I−(v).

For an ascending query message at a node w, suppose w stays on an arc with p
being an ascending merge saddle. Then we will check for two parents of p, denoted
by p1, p2, whether we will need to ascend on one peak or both of them. Luckily this
information has been disseminated for all the nodes on this arc. Thus w will check
the value range within the interior of C1(p), C2(p) respectively. If the query value
x falls in the range, w will initiate an ascending query message for it. See the red
query in Figure 9.8 as an example of two query messages, one for each peak.

For an ascending query message towards say peak p2, if w has ascending point-
ers to p2, this query message is simply delivered by gradient ascent routing, as the
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Figure 9.8. Examples of two queries.

query from q′ shown in Figure 9.8. If not, then the query message will follow a
contour at a random value (below F (p) and above F (w)) and follow the index-
decreasing path, in order to cross the ridge and discover some ascending paths to
p1. The descending query message is delivered in a symmetric manner looking for
contour components at x. We may go a random number of hops further after as-
cending pointers are discovered, in order to avoid always using the nodes on the
ridge. To summarize,

• The gradient routing algorithm is completely local and distributed and suc-
cessfully finds all contour components at a given query level.

• Every step of the routing algorithm is justified, we send a query message only
when we are sure there is something to be found. So no message will end up
in vain.

• The routing scheme does not have to go through the saddles or follow critical
contours, thus does not overload those nodes.

We note that this iso-contour query is the most basic query of a family of queries
on iso-contours. Other iso-contour queries include: reporting the number of con-
tours at value x, in particular, is there a single contour component? Range-limited
queries (count/report contours within a value range)? These can be handled with
either the iso-contour query as a subroutine, or by using a similar gradient routing
algorithm. We omit the details here as the extension is relatively straight-forward.

9.3.2 Value restricted routing

The contour tree can be used for value restricted routing: given a source s and desti-
nation t, find a path P from s to t such that at every node x on P , a ≤ F (x) ≤ b,
abbreviated as a ≤ F (P) ≤ b. Recall that the contour tree is produced by a retrac-
tion R which maps every point on a contour component to a point on the arc in the
contour tree. Thus we have:

Lemma 9.3.1. For any path P between points s and t, the image R(P) in the tree
contains the unique path P ′ in the tree betweenR(s) andR(t).

Theorem 9.3.2. A value restricted path exists in the network if and only if a value
restricted path exists in the contour tree.
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Proof: In the following, we assume F (s),F (t) ∈ [a, b], since otherwise the request
is clearly invalid. First, a path P ′ in the contour tree implies a path in the network.
Since the tree is a retract of the domain, a path P ′ in the tree is also a path in the
network. Also it is possible to traverse from s toR(s) and from t toR(t) along C(s)
and C(t) respectively. Appending these to P ′ gives the required path.

For the other direction, a path P in the network implies a path in the tree. Let P ′
be the unique path betweenR(s) andR(t). Then by lemma 9.3.1,P ′ ⊆ R(P). Since
∀p,F (R(p)) = F (p), we have max(P′) ≤ max(R(P)) = max(P) and min(P′) ≥
min(R(P)) = min(P). �

The results have a number of implications. The contour components on path P ′
on the contour tree are ones that any path from s to t in the network must intersect.
In moving from s to t along any path, we can keep record of number of times each
component appears, or simply push and pop them on a stack. The ones remaining
in the stack at the end constitute the path P ′. Thus, a value restricted path can be
obtained by deforming any path connecting source and destination.

To answer the value restricted routing problem in a sensor network, if we dis-
seminate the entire contour tree to every node, the a route in the network can be
found in a greedy manner by following the contour components connecting the
source and destination. If we do not store the entire tree at every sensor, we can de-
velop a node labeling scheme, such that by using the labels of source and destination
we can tell whether a path exists or not.

Given a contour tree with m vertices, we first do a balanced decomposition of
the tree. For any tree there is a cut node, whose removal will leave subtrees each
of size no more than 2/3 of the total vertices. Repeatedly partition each subtree
to get a balanced decomposition of depth log m. The label of a node u will be the
concatenation of the IDs of all the cut nodes along the path from u to the root of the
decomposition tree, as well as the max/min value of the paths from u to these cut
nodes. Thus the size of the label is O(log m). For any two nodes s and t, by their
labels, we can immediately find the lowest level cut node w shared by them. The
path between them will necessarily go through w. Thus by taking the union of the
range of the paths from s, t to w, we get the value range of the path connecting s, t in
the contour tree.

With the labels pre-computed, each node p in the contour component will store
the labels of its ascending and descending critical points. Thus one can use the labels
of source and destinations to answer the value restricted routing requests.

9.4 Simulations

We implemented the algorithm for constructing contour tree and for answering iso-
contour queries with gradient routing. Our simulations do not take into consider-
ation many important networking details, e.g., packet loss, delay and channel con-
tention. This set of simulations is a proof of concept and aims to verify the correct-
ness of the algorithm and evaluate the feasibility of the approach on the algorithmic
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Figure 9.9. (i) Elevation map of West Reno (obtained from usgs.gov). (ii) The critical points
discovered by our contour tree algorithm with a 2500 node sampling.

Unless specified otherwise, the simulation setup consists of 1600 nodes, de-
ployed in a 16 units by 16 units square region with unit disk graph as the commu-
nication model. Nodes are deployed in a perturbed-grid distribution, where each
node is assigned a random position within its grid square. The average number of
neighbors per node is about 21. The sensors sample from a continuous signal field
shown as in Figure 9.10 (i).

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Nodes

T
ot

al
 C

om
m

un
ic

at
io

n 
C

os
t

0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Ratio of Cost with MST

P
er

ce
nt

ag
e 

of
 Q

ue
rie

s

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Number of Messages

P
er

ce
nt

ag
e 

of
 n

od
es

(i) (ii) (iii) (iv)
Figure 9.10. (i) The continuous signal field sampled by the distributed sensors; (ii) The mes-
sage complexity of contour tree construction; (iii) The CDF of the ratio of our query cost v.s.
the cost of MST; (iii) The CDF of the node load distribution.

9.4.1 Preprocessing cost for contour tree construction

We first evaluate the cost of contour tree construction. We vary the number of nodes
with the same signal field and count the total number of messages, assuming a
broadcast medium. In our implementation, a random node on the sweep frontier is
selected to become swept. The number of messages grows linearly in the number of
nodes as shown in Figure 9.10 (ii). The constant factor is about 6 ∼ 7.

9.4.2 Cost of iso-contour queries

We compare the cost of gradient routing versus a global solution of using the mini-
mum spanning tree to connect the query node q and all the nodes on the iso-contour
at value x, which is a 2-approximation of the minimum Steiner tree, the optimal
(minimum cost) solution if the full knowledge of the signal field is available. We
take 300 random queries with q randomly selected within the field of deployment
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and the query value x randomly chosen between the global minimum and global
maximum values. For each query, we take the ratio of our query cost versus the cost
of MST (both in terms of number of hops). We calculated the cumulative distribu-
tion, i.e., the percentage of queries for which the ratio is below x, in Figure 9.10 (iii).
Roughly all cases have a ratio below 2 and 80% of the queries have a ratio below 1.4.

9.4.3 Load balancing

In the same setup as the previous section, we plot the load on every node involved
in the query procedure. A node is involved if it is on the routing path or is on the iso-
contour to be queried. The maximum message load on any node is 148, the average
message load is about 48.7. The load distribution is shown in Figure 9.10 (iv), in
which 90% of the nodes have a message load of below 70.

9.5 Conclusion and future work

In this chapter we presented the distributed construction of a contour tree and its ap-
plication in iso-contour queries by gradient routing with guaranteed delivery. Our
future work is to update and maintain the contour tree for a time-varying signal
field [36].
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Chapter 10

Differential Forms for Tracking and
Searching

Consider a static sensor field used to track and monitor a swarm of mobile targets,
we develop distributed algorithms for in-network storage and range queries for ag-
gregated data. For example, to return the number of targets within any user given
region. Our scheme stores the target detection information locally in the network,
and answers a query by examining the perimeter of the given range R. The cost of
updating data about mobile targets is proportional to the target displacement. The
key insight is to maintain in the sensor network a function with respect to the target
detection data on the graph edges that is a co-vector field, also called a differential
one-form. The integral of this one-form along any closed curve C gives the integral
within the region bounded by C.

The differential one-form has great flexibility. The basic range query can be used
to find a closest target or any given identifiable target with cost O(d) where d is
the distance to the target in question. Dynamic insertion, deletion, coverage holes
and mobility of sensor nodes can be handled with only local operations, making the
scheme suitable for a highly dynamic network. Although we illustrate the major
application of the differential forms for tracking swarms of targets, the same routine
can be applied for organizing streaming scalar sensor data (such as temperature
data field), to support efficient range queries. We demonstrate through analysis
and simulations that this scheme compares favorably with existing schemes using
location services for answering aggregated range queries of target detection data.

10.1 Introduction

Tracking of mobile targets is a major motivating application for sensor networks [63,
81, 142, 165]. Target tracking algorithms and architectures have been extensively in-
vestigated in the past few years. A few tracking systems have also been deployed
and evaluated on real testbeds (such as [8, 67, 141]). A closely related problem is the
design of the interface with which the target trajectories are accessed by the users.
Arguably, the most adopted approach so far has the sensors that detect a target
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record the detection event in the data logger or report it to a base station, where the
target trajectories are assembled from the individual detections for post-experiment
analysis. As sensor networks mature and become large scale, they intrude into the
space where people live and work, the detection data needs to be processed in a
timely manner, and accessed by users residing in the same physical space, some-
times with stringent delay requirements.

Consider the following scenario of wide-area deployment of sensors along ma-
jor roads to track and monitor moving vehicles. A sensor can detect the position
and velocity of a target within its sensing range [95]. A target may either have a
distinct signal signature (e.g., a visual signature), or, for privacy protection, a non-
identifiable signature (e.g., acoustic ones). The moving vehicles come in swarm as in
the typical case of medium to heavy traffic situation. A user may use hand-held de-
vices (smartphones, PDAs, etc) to communicate with nearby sensors or other portals
and inquire for the target distribution. Of particular interest to us are range queries
for aggregated data, for example, the level of traffic congestion in a specified neigh-
borhood and its evolution over time. Formally, we ask a counting range query: what
is the number of targets in any user-specified region R? The topic for this chapter is
to develop an efficient data processing and query scheme for such applications. A
desirable solution should have low query delay, low communication costs, as well
as low maintenance cost as the targets move.

In many practical scenarios, movements of targets are relevant only in the local
region and for a short period of time. For example, some cars turning on a particu-
lar by-road is a relevant traffic information only while they are in the neighborhood.
The communication and storage costs of updating a remote server are hard to jus-
tify for such fleeting pieces of data. A centralized solution also represents a single
point of failure, is not resilient to attacks and is not efficient when handling many
such updates. Very often, users might be in a neighborhood of where the data is
generated. A centralized solution would require both the data and query from the
users to be delivered to a (possibly) remote server. This leads to unacceptable delay
and unnecessary network traffic.

Alternatively, the sensor in the proximity of a target can detect the target and
can locally cache the detection event. This scheme has low maintenance cost as
data is stored locally and only local updates are needed when target moves. But
with such raw detection data stored directly in the network it is not easy to answer
range queries. One has to flood all the nodes inside the range R to find out the total
number, the communication cost of which is proportional to the area of R, A(R).

Both central and local data storage methods suffer from issues with sensing
holes. Targets may enter and leave these holes at arbitrary times. It becomes difficult
to track possible presence of targets in a hole unless entry and exit data are stored
for long durations and carefully matched. This is even harder in the local caching
scheme since the entry and exit may happen at different points on the boundary of
the hole.

The solution we propose in this chapter uses local maintenance, but instead of
storing raw detection data, stores target movements implicitly. It has a query cost
proportional to the perimeter of R, P(R) ≪ A(R). For this we use a novel notion
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of differential one-form on the network. The key insight is to maintain in the sensor
network a function on the edges that is the co-vector field with respect to target de-
tection data. Thus integral along any closed curve C gives the integral of the region
bounded by C. The details are introduced below.

Differential one-form. The tangent bundle on a manifold is the collection of all
tangent vectors, along with the information of the point to which they are tangent.
The co-tangent bundle is the dual of the tangent bundle, i.e., the vector space of
linear functions on the tangent vectors. A co-vector field or differential one form
that we consider is a section of the co-tangent bundle, that is, a co-vector defined at
every point. In the discrete case as in the sensor network setting, a differential form
can be defined on a cell complex, for example, a decomposition of the plane into
non-overlapping faces by a planar graph. This particular idea of differential forms,
while not common, can be found in mathematics literature [48,66,114]. The vertices,
edges, and faces are called 0, 1, 2-cells respectively. Consider the simplest case, one
target is located within a face f0 and has a weight of w. The differential one-form
is to define a value ξ for each directed edge. The value for ab is the negation of the
value for ba. We maintain the property that for the face f0, the summation of all the
values of the edges on its boundary, in clockwise order, is w, and the summation
of all the values of the boundary edges of all other faces is 0. This ensures that any
cycle containing the face f0 will have a total summation of w, and any cycle not
containing f0 will have a sum of 0. In other words, one is able to answer range
queries by simply integrating the differential one-forms along the range boundary.
The basic definition for one target can be generalized to multiple non-identifiable
targets – such that the integral of a face is the total weight of the targets within the
face. This way range query can be done for a swarm of targets with the same query
cost. Using range queries we can implement the query for locating a closest target or
a given identifiable target. The idea is to use exponentially enlarging range around
the query node and once the range includes the target, reduce the range by using
divide and conquer. The cost for such is bounded by O(d), where d is the distance
to the target in question, representing locality sensitivity.

The differential one-form has great flexibility that allows low maintenance cost
under both network dynamics and target movements. When a target moves from
one face f0 to an adjacent face f1, we only need to update the differential one-form
on the edge ab common to f0, f1. In particular, f (ab) ← f (ab) − w, for a target of
weight w. This ensures that the property of the one-form is maintained. The cost
for the update is a constant and can be done locally. Network dynamics such as link
addition and removal, or node insertion and removal, can be handled in constant
time. We also show that the differential one-form can be initialized in linear commu-
nication cost, i.e., constant cost per node. Further, this aids in energy management.
Sensors only need to be active if there are targets nearby. A region of the network
where there are no targets need not perform any communications to maintain track-
ing data, and can sleep or go to low power mode for extended periods.

Further, the method automatically handles sensing holes. A target’s movement
in and out of a hole are recorded implicitly and gets processed automatically at the
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time of query at no additional computation or storage. In fact, the network need not
even be aware of the hole.

Although we present as the major application of the differential forms the track-
ing of targets in swarm, the same routine can be applied for organizing stream-
ing scalar sensor data (such as temperature data field), to support efficient range
queries.

10.2 Differential one-form on cell complexes

The network we consider consists of the nodes embedded in a region in the plane,
and has an associated communication graph G. As a first step, we obtain a planar
subgraph P ⊆ G that contains all the nodes, but is drawn in the plane without
crossing edges. We can apply planarization techniques to extract a planar graph
from the network connectivity graph. Such methods have been developed in the
past [50, 57, 130, 162]. Note that any such algorithm can be used for our purpose.

The vertices, edges and faces of the planar graph are the 0, 1 and 2 dimensional
elements created by the planar graph. We refer to these as the 0-cells, 1-cells and
2-cells respectively. See Figure 10.1 for examples. The composition of the different
dimensional cells covering the deployment region is called a cell complex. A more
detailed treatment of cell complexes can be found in [66].

Figure 10.1. 0, 1, 2-cells.

Our goal is to track targets in the plane that move from face to face of the pla-
nar graph. We assume that all nodes know their locations and a sensor node can
detect and locate a target in its sensing range. Various target detection schemes and
signal processing primitives have been developed in the literature [95]. Our strat-
egy assigns values to edges of the planar graph, and changes these values as the
target moves. We introduce the following definitions and notations to represent the
related faces, edges and values.

10.2.1 Boundaries and boundary chains

A face is demarcated by the edges or 1-cells that surround it. Such a set of edges
form the boundary of the cell. For an edge pq, we use the ordered pair (p, q) to
represent a directed edge whose direction or orientation is from p to q. Further, we
use −(p, q) to represent the same edge with orientation (q, p). For brevity, we can
represent (p, q) and (q, p) as e and −e respectively. In a diagram, when an edge is
labeled simply as e, an arrowhead is used to represent the intended orientation. The
opposite orientation will naturally correspond to −e.
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Definition 10.2.1. Edge chain or 1-chain. Suppose a, b, c . . . are oriented edges or
1-cells, then a chain on these edges is a formal sum λ1a + λ2b + λ3c + . . . , where
each λi is an integer.

This chain simply signifies λ1 occurrences of a, λ2 occurrences of b etc. The advan-
tage of the summation notation will be clear in a short while. Note that in many
cases we consider, the edges will be adjacent to each other and form a connected
path. But this is not necessary in general, and the edges in an edge chain can in fact
be any set of edges from the complex.

We can also associate orientations with 2-cells or faces. These correspond to
traversing the boundary cycle of a face in some direction, clockwise or counter-
clockwise. In this chapter we assume that all faces are oriented in the clockwise
direction. Such a consistent orientation of cells is made possible by the fact that
the 2-dimensional plane is orientable [84]. Thus, given a cell σ represented as an
ordered tuple σ = (p, q, r, s, t), as shown in Figure 10.2, we understand that the
order corresponds to a clockwise traversal of edges (p, q), (q, r), (r, s), (s, t) and
(t, p). Correspondingly, −σ is the same cell with the opposite orientation, −σ =
(t, s, r, q, p). Observe that the orientation of a cell implies a specific orientation for
each edge on its boundary.

p

σ

s

tt r r

∂

p

s

q q

Figure 10.2. Action of boundary operator on a face σ will give a chain of its boundary edges with
orientations inherited from the orientation σ.

Definition 10.2.2. Boundary operator ∂. The boundary operator ∂ acts on a 2-cell or
a face σ to produce a chain ∂(σ) = a + b + c . . . where a, b, c . . . are the edges on the
boundary of σ, with orientations inherited from the clockwise orientation of σ. For
a set of faces U = {σ, τ . . . }, we extend ∂ to operate on it as ∂U = ∑

σ∈U

∂σ.

The idea behind this definition is shown in Figure 10.3. The two neighboring
faces σ and τ have boundaries ∂σ = a + b + c and ∂τ = d + e + (−c), respec-
tively. Note that a shared edge like c must always appear with opposite orientation,
and therefore have opposite signs for the two faces. Thus the resultant boundary
∂{σ, τ} = a + b + d + e is exactly the boundary of the union of two faces. This ap-
plies more generally to any set of faces. We refer the reader to [84] for more details
on the algebra of chains.

10.2.2 One-forms and tracking forms

In this subsection we define functions over edge chains and show how they help in
tracking a target.
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Figure 10.3. Action of the boundary operator ∂ on faces σ and τ produces the boundary of the union
of the two.

We consider a function f that assigns a value to each directed edge in the planar
graph P. The function is defined to have the property that f (−e) = − f (e). We
extend this function to edge chains by making it distributive over summation: f (a+
b + c + . . . ) = f (a) + f (b) + f (c) + . . . . Let us refer to such functions as one-forms or
edge forms. A one-form can also make sense on the faces of the planar graph, if we
let it take the value on the boundary of that face, that is, f (σ) = f (∂σ).

Now suppose there is a single target T of weight w in the domain. Then at any
given time this target resides in single unique face of the planar graph P 1. Then we
define a one-form on the faces and edges such that it is non-zero on this face and is
zero on every other face:

Definition 10.2.3. Tracking form ξ. A tracking form ξ for a target T of weight w is
a one-form such that

ξ(σ) =

{

w if σ contains T
0 otherwise

Remember that on the face σ the form is defined to take a value equal to its sum on
the boundary edges, ξ(σ) = ξ(∂σ). We can extend the form to a set U of faces by
simple summation : ξ(U) = ∑

σ∈U

ξ(σ).

As a direct consequence of this definition, we know that to evaluate the presence
of the target within a subset U of faces, it suffices to add the tracking-form ξ on the
faces in U. If a face in U contains the target T, then ξ(U) sums to w, else it sums to
zero. The following lemma implies that it is sufficient to sum the form ξ only on the
edges that form the boundary of the set U to obtain ξ(U).

Lemma 10.2.4. The sum of the form on the faces in a set U equals its sum applied
only to the boundary of U, that is: ξ(U) = ξ(∂U).

Proof: This follows directly from the definitions that

ξ(U) = ∑
σ∈U

ξ(σ) from definition 10.2.3

= ∑
σ∈U

ξ(∂σ) from extension of ξ to faces

= ξ

(

∑
σ∈U

(∂σ)

)

by distributivity of ξ over +

= ξ(∂U) by definition 10.2.2

1The degenerate cases of the target being on an edge or a vertex can be resolved locally by a
predetermined policy between the local nodes to assign the target to a face. Therefore, we ignore
these cases to keep our discussion simple
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The significance of this lemma becomes clear in Figure 10.4. Given any cycle L
in P, it is possible to detect if the target T is inside the loop or not, by simply adding
the tracking form along L. If T is in the interior, then ξ(L) = w, and if T is not in the
interior, then ξ(L) = 0. In either case, the query does not need to visit the nodes in

T

L

ξ(L) = w

TL

ξ(L) = 0

(a) (b)

Figure 10.4. Query for a target T inside L. (a) T is inside L, therefore ξ(L) = w. (b) T is not inside L,
therefore ξ(L) = 0.

the interior of L. A simple walk on the loop suffices to find the answer. Further, this
works exactly the same way for any arbitrary loop L and position of the target T.

Multiple Targets. This idea extends to any number of targets in the domain. Sup-
pose targets T1, T2, . . . , Tk of weights w1, w2, . . . , wk, individually give rise to tracking
forms ξ1, ξ2, . . . , ξk. Then we can construct a combined tracking form as the sum of
these ξ = ξ1 + ξ2 + · · · + ξk on each edge. Given any loop L, the sum ξ(L) will
provide the total weight of targets inside L.

The weights assigned to targets can be adjusted to suit the needs of the system.
For example, if all weights are equal, then ξ(L) provides the count of targets inside.
If each individual target Ti is given weight 2i, then from ξ(L) it is possible to deduce
exactly which ones are located inside L. This is equivalent to maintaining a form
for each individual target. It is possible to imagine other scenarios where targets are
assigned different weights according to their importance, for example, objects can
be classified according to needs and weights assigned according to their types.

Note that given the weights and target locations, it is always possible to create a
suitable tracking form. In the next section we will describe an efficient algorithm.

Updating one-form for mobile targets. When a target moves from one face to an-
other, we need to update the tracking form by changing its value on the directed
edges. Without loss of generality, we consider the example in Figure 10.5, where
T moves from face σ to an adjacent face τ. Let us say, the shared edge that was
crossed by T appears as c in ∂σ, and as −c in ∂τ. In the initial configuration, we had
ξ(σ) = w and ξ(τ) = 0. After the move, we need to have a final configuration with
ξ(σ) = 0, and ξ(τ) = w. This is achieved by the following simple modification to
the form on the shared edge:

ξ(c) := ξ(c)− w (10.1)

The same assignment can alternately be written from the point of view of τ as:

ξ(−c) := ξ(−c) + w (10.2)
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Figure 10.5. Target T of weight w moves from face σ to face τ. Modify ξ(c)← ξ(c)− w to obtain the
new form.

Evidently, these two are the same operation, since ξ(−c) = −ξ(c).
This operation works for a system with any number of targets and any preexist-

ing weights on the faces and edges. For a system with a single target, the final values
are ξ(σ) = 0 and ξ(τ) = w, as required. In general, the weight of T is removed from
the weight of σ and added to the weight of τ.

10.3 Algorithms

In this section, we describe the algorithms for constructing the one-form, and for
supporting range queries or other queries. First we compute the planar graph. The
correctness of the basic scheme does not depend on the exact graph chosen. We
only assume that the edges of the graph are short enough that they are ‘covered’ by
their end-points, so that when a target crosses the edge, the event is detected by at
least one sensor. In section 10.3.6 we remove this requirement, and in fact describe
a tracking scheme for cases where sensors only detect the presence of a target, but
do not know their locations.

10.3.1 Constructing a tracking form

In this subsection, we show how to initialize a tracking one-form in the network.
First, we describe the simple case where the network is empty of targets to start with,
and all targets enter through the outer boundary. Next we will see that the ideas
from this case provide a mechanism for initializing the more general case where
targets may be present at the time of initialization.

Starting with an empty field. In this case, we initialize all edges to zero, that is for
every edge e ∈ P, ξ(e) = 0. Now, suppose that a target T of weight w enters the
network. It crosses the edge c ∈ ∂τ to enter the face τ. Then we modify ξ(c) :=
ξ(c) + w. Clearly, after this modification, ξ(τ) = w. As T moves, we can adaptively
modify the form according to equation (10.1) or (10.2).

The process is shown in Figure 10.6(a). As the target moves from face to face,
it modifies ξ on the shared edges between adjacent faces. Creating a trail of edges
with non-zero values.

Now, let us look a complex P̄ that is the dual complex of P. A vertex (say σ̄)
in P̄ corresponds to a face (σ) in P. An edge ē between vertices in P̄ represents the
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(a) (b)

Figure 10.6. The entry of a target T into the network. (a) As it moves from face to face, it leaves a trail
of edges that it modified - shown in bold blue. (b) The trail in the dual graph. The edges of the dual
graph are shown as dotted lines, and the dual trail of the target as a solid blue path.

shared edge e between corresponding faces of P. The trail of edges in P thus results
in a dual trail, which is a path in P̄, shown in Figure 10.6(b). For a more complete
picture, we can regard the region outside of the planar graph as a face at infinity, and
then the dual trail of T is a path from this face to the current position of T.

Initializing a field with targets. The idea of the dual trail directly leads to a simple
algorithm to initialize targets in the field. We simply take a dual path to the face at
infinity and add the suitable weight to edges of P whose dual are on the path.

More formally, for a target T, we select any simple directed path α in P̄ from the
current face of T to the face at infinity. If ē = (σ̄, τ̄) is on α, and e ∈ ∂σ, then we do
the following modification:

ξ(e) := ξ(e) + w, (10.3)

where w is the weight of T. Quite clearly, any simple directed clockwise loop that
contains T passes through one such edge. In cases where the loop has more than
one such edges, the additional edges appear in oppositely oriented pairs and the
values on them cancel out each other.

The following theorem shows that the algorithm above creates a correct tracking
form.

Theorem 10.3.1. Suppose we had ξ(σ) = u, then after the algorithm above is exe-
cuted,

1. If a face σ contains target T, then ξ(σ) = u + w

2. Else ξ(σ) = u.

Proof: Suppose T ∈ σ, then σ̄ ∈ α and has an outgoing edge ē. Therefore, after the
algorithm is executed, ξ changes on e ∈ ∂σ by ξ(e) := ξ(e) + w. All other edges on
∂σ remain unchanged. Therefore, after the modification, ξ(σ) = u + w. This proves
the first claim.

Suppose T /∈ σ, if σ̄ is not on the trail α, then of course nothing changes, and
ξ(σ) = u. So, the only case we need to consider is when σ̄ is on the path α. We know
that α is a path from the current face of T to the face at infinity, and σ is neither of
these. Therefore, σ̄ has degree exactly 2 in α. Suppose the incoming and outgoing
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edges are ē1 and ē2 respectively. Then the algorithm will have made the following
modifications : ξ(−e1) = ξ(−e1) + w and ξ(e2) = ξ(e2) + w. Therefore, the original
sum ξ(σ) = a + · · ·+ ξ(e1) + ξ(e2) + · · · = u remains unchanged : ξ(σ) = a + · · ·+
(ξ(e1)−w) + (ξ(e2) + w) + · · · = u. This proves the second claim. �

Once again, the proof works for domains with multiple targets. We execute this
once for each target in the domain or for each face containing targets with the total
weight of these targets. Thus producing the correct form for initialization. The same
procedure can be executed in case a target appears in the middle of the network at
any time during the operation.

In cases where there are many targets in the field, creating a trail to the boundary
for each can be expensive. In such cases, we perform the initialization as a sweep
on the network. We discuss this further in section 10.3.7.

10.3.2 Containment queries

Given a one-form on the planar graph, we can query the number of targets inside
any loop on the planar graph. In this subsection we extend it to queries of a geo-
metric range. In the following we use the example of user specified squares. Other
geometric ranges can be handled in a similar manner.

For now, we assume that the network is sufficiently dense so that every point
within it is covered (sensed) by one or more sensors, in particular that every point
in a face is within a small constant distance δ of some vertex of the face. We also
assume that the density is bounded, that is inside any disk of radius 1 the number
of nodes is bounded by some constant k. This is not a very restrictive assumption.
In a very dense network, we can select a sample of bounded density that still covers
the region. We assume geographic face routing [77] is used to follow the faces that
intersect a given geometric curve.

Let us use the notation Sp(r) to denote the square of side length 2r, centered at
point p. We sometimes use p to denote both a node and its location. We call the
size of Sp(r) to be r. The goal is to compute the weight of targets inside this box, or
equivalently, compute the sum of the tracking form on the boundary ∂[Sp(r)].

Consider the faces of P that intersect this boundary. By the assumptions above,
there are at most a constant number of these within a unit distance of any point on
∂Sp(r). Therefore, the number of faces intersected by the boundary is O(|∂Sp(r)|) or
O(r).

Let Q represent this set of faces at the boundary. For a sufficiently large box
queried, Q is an annulus and ∂Q has 2 different connected components — say ∂Q =
β + γ where each is a connected edge chain, in fact a cycle. One of these, say γ
lies outside Sp(r) and β lies inside. We say that γ and −β respectively form the
outer and inner approximations of ∂Sp(r). The reason for taking −β is that β by
default is oriented counter clockwise, therefore we reverse the orientation to match
our conventions. ξ(−β) gives a lower bound on the weight of targets inside the box,
while ξ(γ) gives an upper bound.
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We can now find the answer to our query. First, we find ξ(−β). Next, for every
face σ ∈ Q, we manually check the total weight of targets inside σ ∩ Sp(r). The sum
of these values with ξ(−β) gives the answer.

Note that this entire computation can be done in a distributed manner by a
single walk along the cycle ∂Sp(r). The size of the sub-complex induced by Q and
therefore the cost of this computation is O(r).

10.3.3 Search queries

In this section, we build an algorithm to answer queries of the type “Find the target
nearest to node p.” The same method applies to searching for an identifiable target.

We search in two stages. First, we find the smallest box Sp(2i) that contains a

non-zero weight of targets. This is done by successively checking Sp(2i) for i =
0, 1, 2, 3, . . . . Suppose the nearest target is at a distance d, then the size of the largest

box tested in this process is 2⌈lg(d)⌉. Now suppose the cost of checking a box of
size r is bounded by ar for some constant a. Then the total cost of the test above is

a
⌈lg(d)⌉
∑
i=0

2i = O(d).

In the second step, we search this box recursively for the actual location of the
target. We partition the box Bp(r) into four quads, each of size r/2, and check each
of these for the presence of a target. Each test costs ar/2, therefore, the total test for
4 quads costs 2ar. This is done recursively until we arrive at a node that ‘sees’ the
target. Clearly, the cost of this recursive search is 4ar(1

2 +
1
4 +

1
8 + · · · ) = O(r). Since

r is at most 2⌈lg(d)⌉, we have that the total cost of finding the nearest target is O(d),
that is of the order of the distance to the target.

Our query cost is sensitive to the distance to the target. Notice that whether we
simply want to deliver a message to the nearest target or obtain the identity and
location of it, the cost is Ω(d). Thus our query cost is asymptotically optimal.

10.3.4 Update costs

The network incurs a certain cost in updating the tracking form as a target moves.
To be precise, every time the target moves from one face of P to another, the form
on that edge has to be updated. Therefore, the total cost of the update equals the
number of faces traveled by the target. By the arguments in section 10.3.2 as a target
moves along a straight line segment of length d, the system requires O(d) updates
at nodes. If updating an edge requires communication between the endpoints, then
the communication cost is also O(d). Note that in some cases this may not be nec-
essary. If both the sensors can detect a target entering a face, which can happen for
example if the sensing range covers the entire edge, then the target is sensed by both
these sensors, and each can update their view of the edge without any mutual com-
munication. In such cases, the update is carried out without any communication at
all.
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One can consider adversarial behavior, for example where a target repeatedly
crosses an edge back and forth to induce many updates in the sensors. However,
this sort of behavior is easy to detect, and can be handled simply. In such a case,
the system stops updating that edge for some time. That is, the edge is assumed
not to exist in P for that duration. Note that this ‘hole’ in the graph does not affect
anything in the rest of the network at all. Updates and queries can proceed as usual.
Later, the edge can be reinstated when appropriate.

In general, when a part of the network is very active with many and frequent
movements, it is not very useful to track all such changes. Our scheme is sufficiently
flexible and robust that tracking can be turned off in such regions without any loss
to other parts or any overhead. Alternatively, it is possible to reduce the tracking
resolution in that region by selectively removing nodes and edges so that the faces
are larger and therefore incur fewer updates.

10.3.5 Network holes, fault tolerance and network dynamics

If a network has coverage holes, that does not affect the correctness of the tracking
form. The ‘hole’ is treated as just another face, and the target entering that face does
not induce any extra storage or communication. When trying to detect the weight
of targets inside a box Sp(r), precise estimates are impossible with any method if
the boundary of the box possibly intersects an uncovered region, and it is not clear
if a target is just inside or outside. We can however get upper and lower bounds
(such as ξ(γ) and ξ(−β) in section 10.3.2) by computing the weights inside such
uncovered faces. When initializing a network with large holes, these are simply
disregarded, that is, the corresponding vertex does not exist in the dual. The dual
trail for the initialization therefore never goes through the hole.

The scheme is also fault tolerant and adaptive to network dynamics. If some
nodes fail, or all nodes in a region fail even including those near the target, that
does not affect the correctness of the tracking form. Thus, this permits dynamic
networks where nodes can be turned off without any overhead. Nodes can also
be inserted into the network. This only requires refining the planar graph and the
tracking form locally. See Figure 10.7 for an example.

s

q q

s

p

σ

tt r r

p

x

Figure 10.7. Suppose a node x is inserted inside a face {p, q, r, s, t} of total weight w and the face is
partitioned into three faces {p, q, x}, {q, r, s, x}, {p, x, s, t}, where the total weights within these faces
are w1, w2, w3 respectively, w1 + w2 + w3 = w. We simply set the values of the edges f (x, p) = 0,
f (x, q) = f (p, q)−w1, f (x, s) = f (p, q) + f (q, r) + f (r, s)−w1 −w2. One can verify easily that these
values conform to the definition of a tracking form.

The effect of sensing noise is extremely local. Suppose an edge gets updated
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incorrectly due to sensing or communication failure. This only affects the evaluation
of loops that actually pass through that edge. All other loops still produce the correct
results.

10.3.6 Tracking without target locations

Up to this point, we have assumed that the location of the target can be sensed by
the nearby sensors. We now show how to modify the tracking scheme so that it can
work without localization.

Suppose the target T is detected by exactly one sensor at a time. We initialize this
scenario as follows. Suppose s is the sensor detecting T. Remove s (and all incident
edges) from P to get a new planar graph P′. Then in P′, T is assumed to reside in the
new face with the neighbors of s on the boundary. Now, we can initialize the form
as usual on the dual of P′. When the target moves from s to a neighboring node t,
we first remove t from P′ and then reinstate s and its edges using the method for
inserting vertices.

The method naturally extends to cases where a target is detected by a set of
sensors. In this case, we just remove all the detecting nodes, and when the target
moves, we reinstate those that no longer detect it.

10.3.7 Aggregation of signal over all nodes

Beyond tracking moving targets, differential forms can also be used to compute ag-
gregates of arbitrary functions sampled by sensor network. Suppose that h is an
arbitrary function sampled by the network. Since we have a method for comput-
ing sums of values defined over faces of P, we adapt to make use of that existing
method. For any node s, we apply small perturbation to the location. That is, the
value h(s) is assumed to exist as an added weight in a face σ incident on s, that is
ξ(σ) ← ξ(σ) + h(s).

First, for every face σ, we find the initialization dual path α to the face at infinity.
We build these paths such that the reduced graph of these paths is acyclic. We
can build these paths as the shortest hop-count paths by flooding from the face at
infinity. Alternatively, these can be computed by ordering faces (dual nodes) from
west-to-east. In either case, this creates an aggregation tree T rooted at the face at
infinity. Now, starting at the leaves of T , we compute an aggregate at each interior
node by summing its value with those of its children in the the aggregation tree. Let
us denote this function on the dual nodes as µ.

Now, for every node σ̄ ∈ T , consider the outgoing edge ē and its dual e in the
original graph P. We set ξ(e) = µ(σ̄).

Note that this initialization can be executed as a single aggregation sweep on the
tree T . Therefore, it can be computed at a cost of O(n).

Note that for the function h, this can give slightly erroneous results, since we per-
turbed the function to assign it to a face. However, this is easily rectified. Observe
that for a loop not passing through s, the contribution of h(s) is estimated correctly.
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We only need to adjust carefully for nodes lying on the given loop. This we do by
means of another differential form, calculated on the fly.

Given a loop L, we compute ξ(L) in a single walk around L. Let us say e is the
first edge traveled along L, and say σ1 and σ2 are the faces adjoining e. Now, we
choose points p1 ∈ σ1 and p2 ∈ σ2 respectively. We maintain two other one-forms η1

and η2, these are the winding numbers around p1 and p2 respectively. That is, for any
edge (u, v) on L, we add the clockwise angle ∠upiv to ηi. Suppose without loss of
generality that p1 is on the exterior and p1 is on the interior of the region bounded
by L, then we have η1(L) = 0, and η2(L) will sum to 2π or −2π depending on
orientation of L. This tells us if the interior of the bounded region lies to the right
or left of the oriented cycle L. With this information, we know in which cases the
h(s) needs to be added or subtracted from the ξ(L) computed. Note that the method
allows the user to query the interior of a region as well as a region closed as a point
set.

Further, this automatically detects orientation of L so that the user does not al-
ways need to supply a clockwise loop. If η2(L) < 0 then the given L is oriented
counter clockwise, and following our convention we should take −ξ(L) as the re-
sult.

Changing values. Unlike the case of mobile targets, if an arbitrary function h
changes with time, local updates may not suffice. In particular, the local update
scheme works only when the function has certain local conservation properties,
such as when a change of δ in a face always causes a change −δ in an adjacent
face.

Instead we simply re-initialize the form at regular intervals or on sufficient
changes. With an initialization of cost O(n), we create a network-wide one-form
with which we can find the aggregate in any region of the network.

10.3.8 Completely mobile networks

Consider a network where all nodes are mobile. That is, beyond the targets, the
sensors themselves are mobile. Our method naturally extends to such scenarios. As
a sensor moves, it may cross an edge of the planar graph. Suppose that s crosses
an edge e to enter a face τ. Then we update the network simply by first discarding
all edges incident on s, then by inserting s into τ as in Figure 10.7. Many existing
planarization algorithms work for mobile networks [57]. We can use such methods
to maintain the graph. In all cases, the removal of an edge will not incur a cost, the
insertion of an edge will be made according to the idea in Figure 10.7.

Care needs to be taken in cases where we are considering forms to monitor val-
ues defined on nodes. For example, when a mobile network tracks its own nodes
to be able to answer aggregate counts and weighted sums inside regions. Suppose
in such a case s crosses an edge e ∈ ∂τ to enter τ. Then along with the usual in-
sertion, the value h(s) must be assigned to one of the new faces, for example by
ξ(e) := ξ(e) + h(s).
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Figure 10.8. cost per move of a target. (a) Average update cost per move. (b) Max update cost for
any move.

10.3.9 Contour tree computation

The contour tree described in the previous chapter can also be computed using dif-
ferential forms. The fundamental idea is that if a contour component encloses a set
of maxima, then it also encloses the corresponding merge saddles. The same holds
for the region bounded by any two contours.

To find the contour tree therefore, we need to count the number of maxima and
minima inside a contour component, then search contour levels inside it for saddles.
Also observe that given a contour component, we can as easily find the number of el-
ements outside it. What is significant for contour tree computation is that a contour
separates the plane into 2 components, and locally at the contour, one component
represents the increasing direction of signal, one represents the decreasing direction
of signal. In the following, we will refer to the increasing direction as the inside.

In the pre-processing, we create two different differential forms - for the maxima
and the minima. Then the following procedure is executed.

From an arbitrary node p, build a monotone ascending path µ, up to a maximum
m. Next, count the number of maxima inside C(p). If there is only one, then nothing
is to be done. If there are more than one, then we do the following. Pick a node
q in the middle of µ. Count the number of maxima inside C(q). If this number is
the same as the number inside C(p), that means there are no saddles in the regions
bounded by these two contours. Otherwise the region contains saddle(s) and we
repeat the procedure selecting a point in between p and q on the path.

Once we hit a saddle contour C(s) by this method, it will demarcate two in-
side components. One contains q and part of µ and can be searched continuing the
procedure as before. The other inside component can be searched by creating an
ascending path from s. These searches run independently. Further, if the region
bounded by C(p) and C(s) contains saddles, that can be searched independently as
well. Note that while searching a region for merge saddles, we can simultaneously
search it for split saddles.

At the same time, a search can be started from p with a descending path to con-
struct the contour tree outside C(p).
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10.4 Simulations

We conducted extensive simulation tests to see how the theoretical guarantees of our
algorithm translate to a network graph and compare with LLS [2] in performance,
particularly in terms of communication costs. This section describes the findings.
The simulations were done with networks that are quasi unit disk graphs2 of inner

radius 1/
√

2. This choice of parameters allows local planarization algorithms [50,
130] to be used. The underlying sensor networks have nodes in a perturbed grid
distribution, where the node is placed uniformly randomly in the grid box assigned
to it. We consider networks without any significant coverage holes. In all cases, the
average degree was about 10, and the size of the network was varied between 400
nodes and 10, 000 nodes to test the scaling properties.

To evaluate the update costs, we introduce moving targets to the network do-
main. At each step, a target selects a random direction and moves up to a unit dis-
tance in that direction. After the move, the initial and final position are compared
and updates are made.

LLS scheme. This is a locality aware location service for mobile networks. The prin-
ciple here is to use location servers at different levels. At each level i = 0, 1, 2, 3, . . .
the network region is tiled by squares of side 2i. The squares are aligned so that
a square at level i is precisely covered by exactly 4 squares of level i − 1. In each
square at each level, one node is designated to be the location server for that square,
and keeps track of more precise locations of nodes in the square.

Location updates are performed in a certain lazy manner. Suppose mobile node
p was in a square Si at level i, and moves to a neighboring square at that level. The
scheme does not update the location of p to the respective location servers. Instead,
it waits until p has left this surrounding neighborhood of Si before it actually per-
forms an update. Thus, around Si there is a ring of 8 squares moving where does
not cause an update. As a compensation, LLS keeps its location information at the
location servers of these nodes in addition to Si. The idea here is to delay updates to
avoid unnecessary communication. On average, if a node moves a distance d, then
this scheme can be shown to have update costs of O(d log d). The cost is amortized.
That is, the average cost is guaranteed to be low, but the update cost at a particular
step can be arbitrarily high compared to the movement at that step.

The location search for a particular node starts at some other node in a network,
and proceeds by searching nearby location servers at increasing levels. This goes on
until some location server at the current or neighboring square for the current level
claims to know the target location square at that level. Then the search proceeds in
that square, successively searching lower levels. Of course, it is possible that due
to the lazy update scheme, a server claiming to have the target is in fact in error.
However in such a case, the target is guaranteed to be in one of the neighboring
squares. It can be shown that this does not incur too high a cost. In fact, if the

2A quasi unit disk graph is one where nodes more than unit distance away do not have an edge,
nodes less than a distance r away always have an edge, and for other distances, the presence of an
edge is uncertain.
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Figure 10.9. Search query costs. (a) Average cost per query. (b) Max cost for any query.

distance to the target is d, then the search finds the target at a cost of O(d).
We compared costs with LLS in updates and query response. The following are

the important observations:

• Update costs. Our algorithm adapts to node movements very efficiently. It has
an average cost of about 2 messages per each small move (explained above) of
the target, as compared to a cost of 10 to 12 messages for LLS. The maximum
update cost for our scheme is about 7, while that for LLS is orders of magni-
tude higher — at 200 or 300 or more messages for a single small move. Most
importantly, the costs of our scheme are independent of the network size, mak-
ing it scalable to very large networks.

• Search queries. In answering queries where the one node searches for a spe-
cific target, our scheme performs slightly worse — consuming about 2 times
the messages compared to LLS.

• Aggregate range queries. Given a geometric region such as a rectangle or
ellipse, this query asks for the number of targets inside it. On this sort of
queries, our scheme outperforms LLS by an order of magnitude.

10.4.1 Update costs

As a target moves, the tracking system has to update its data to be consistent with
the current target position. LLS does this by suitably sending updates to it location
severs, while our scheme changes the weights on the edges crossed by the target.

The results are shown in Figure 10.8(a). Our scheme is extremely efficient, since
a small move does not cross too many edges, and the mean cost is about 2 per
move. LLS is designed so that on certain moves, it does not require any updates.
However, when the target has undergone sufficient displacement, it has to update
several nearby lower level location severs - this incurs a reasonable cost. Later on,
after further displacement, a move may require higher level servers further away
to be updated, increasing the cost for that move, as well as the mean cost. The
distance of the farthest server that may be tracking a target is proportional to the
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Figure 10.10. Aggregation query costs for random rectangle regions. (a) Average Costs. (b) Max
costs

network diameter. After a proportional displacement this server will need to be
updated as well. Thus, the update costs of LLS depend on the network size, though
the amortized cost of LLS is still quite manageable, at about 10 to 12 messages per
move.

The worst case behavior of LLS is poor. This is because the strategy of avoid-
ing updates until necessary means that the updates build up and on certain moves
servers and neighboring servers at several levels of hierarchy need to be updated.
Thus the update cost of a single move can go into several hundred messages (shown
in Figure 10.8(a)). Our scheme, on the other hand, never has to update more than 8
edges.

Note that the costs in our scheme are taken to be proportional to the number of
edge updates needed. In certain scenarios, where the target sensing does not require
any communication, and when there is agreement among nodes on monitoring dif-
ferent parts of edges, it is possible to perform the updates at zero cost.

10.4.2 Search costs.

Location service schemes are designed to answer queries that ask for the location of
a specific mobile target, or to deliver a message to the target. Our scheme of tracking
forms on the other hand was designed with aggregate queries pertaining to groups
of targets in mind. Nevertheless, we find that it is a good instrument for search of
specific targets, and has performance comparable to the location service scheme. We
can maintain a tracking form ξi for each target Ti and then use that to search for it
starting from the query node. The scheme is described in section 10.3.3.

In this experiment, we chose random query nodes, and random mobile targets.
We execute a search for the target starting at the query node. The two schemes use
analogous methods of searching exponentially growing regions for presence of the
target, and in the suitable region searching exponentially smaller subregions until
reaching the target. The asymptotic costs are the same for the two schemes. The
simulation results in Figure 10.9 show that with tracking forms it costs about twice
that of LLS to search.
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Figure 10.11. Aggregation query costs for random circular regions. Costs for random ellipses show
similar characteristics. (a) Average Costs. (b) Max costs

10.4.3 Aggregate range queries.

Given a regionR, say a rectangle or an ellipse, we wish to find the number of targets
inside the region. With tracking forms, this is easy to do by summing the form in
walk around the boundary. The details of the methods are in section 10.3.2. With a
location sever scheme, the process is a little more complicated.

LLS maintains a quad-tree hierarchy, and recursively tracks nodes inside the
quads at different levels. To find the aggregate, we need to look at quads of dif-
ferent levels that intersect withR. In particular, if a quad Q intersects the boundary
∂R, that means sub-quads of Q need to be analyzed further, to see which targets
inside Q are actually inside R. Therefore, the method boils down to finding quads
at all levels that contain targets and intersect ∂R. This turns out to be reasonably
costly.

Figure 10.10 shows the costs when R is a random rectangle inside the network
region. Figure 10.11 shows the corresponding costs when R is a random circle.
Clearly, location server based schemes incurs a substantial cost in this type of query.
Note that for target searching LLS using a different quadtree hierarchy for each tar-
get. This would be impractically expensive in this sort of query, where the presence
of each target inR will then have to be checked individually, driving the costs very
high. We therefore used a common hierarchy where a location server can provide
information about all targets in its quad region.

Even with this modification, the costs of our scheme are much lower, in principle
only proportional to the size of the boundary ofR.

Discussion. In a network with mobile entities, it can be expected that a targets
move often. Our scheme handles the movements very efficiently and locally. There
is never any need to send updates to a distant point. This is also significant from
power management point of view. If a target of interest is present in a part of the
network, nearby nodes can be expected to be awake and actively monitoring it. If
all movements are handled locally, then relatively distant nodes can sleep or go to
low power mode to save energy without fear of interruptions.
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10.5 Conclusions

In this chapter we presented the use of differential one-form in the application of
target tracking and range queries. The method is simple, has low maintenance cost
under target movement, is extremely flexible and robust to network changes and
node mobility. The performance of our method is orders of magnitude better than
previous location services schemes for tracking mobile targets. We expect that more
applications can be found by using the differential one-form for a diverse set of
queries of aggregated data, which remains as our future work.
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Chapter 11

Conclusion Chapter

. . . Our intuition is our most powerful tool. That is quite clear if you try to
explain a piece of mathematics to a student or a colleague. You have a long,
difficult argument and finally the student understands. What does the student
say? The student says, “I see!” Seeing is synonymous with understanding. . .

Michael Atiyah
Mathematics in the 20th Century

The goal in each of the chapters were to construct distributed algorithms. These
methods are more general, and effective on a wide range of platforms, as described
in the introduction. This also makes the methods more robust. No particular node is
substantially more significant than any other. The failure of a few nodes do not cause
the setup to collapse. The overall workload is also more or less evenly distributed.

The challenge in a distributed method is to compute structures with global prop-
erties. This we achieved in the cases described here. In the questions of routing, this
made it possible to route without explicitly finding routes for every other node in
the network. In the questions of information processing, this made it possible to an-
swer at a low cost, questions about aggregates, contours and individual data items
anywhere in the network.

In general it is difficult to compute such global properties. Global properties
requires global information, which is difficult to obtain and maintain without incur-
ring large communication costs. That the nodes have small storage and computa-
tion abilities makes it impractical to store and compute large quantities of data fre-
quently. The distributed computation therefore works best when nodes operate only
on information from the local neighborhood. This provides two advantages. First,
communication within the local neighborhood is efficient, therefore acquiring the
local information is economical. Second, the local neighborhood is bounded in size,
therefore the total information from this neighborhood can be stored, processed, and
results communicated easily at a small cost. The ideal distributed algorithm there-
fore is one that extracts global properties from processing of local informations.

The local to global requirement is the reason that geometric methods work in
finding distributed algorithms. Euler characteristic, Morse theory, Ricci flow, Gauss
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Bonnet theorem, Stokes theorem are all examples of local-global relations that we
used in constructing different distributed methods for networks. Spatial distribu-
tion is also in a sense a local-global relation. The distribution can be applied locally
from each-node, oblivious to other nodes and without any need for coordination,
and yet generates a structure with global properties.

The correlation with geometry makes it possible to use our visual intuition when
designing distributed algorithms for sensors. As with any design and analysis pro-
cess, the importance of pictures, diagrams and the power of the formidable visual
center of the human brain should not be underestimated. That images and geo-
metric constructs can be used to reason about distributed information makes it an
attractive model of study.

This dissertation has a limited scope, and cannot cover all apsects of sensor net-
work information processing. One important omission is perhaps the issue of com-
munication failures and noises. in general, sensor data can be expected to be noisy.
How to adapt techniques such as the contour tree method to such noises is not en-
tirely clear. In general, adapting to noisy lossy data in a graceful manner is an in-
teresting research challenge. Communication links, particularly wireless ones may
be unreliable and transient. For a dense network, our essential assumption that
to each node there is a small persistent neighborhood of low cost communincation
will hold, because it is likely that even when a link deteriorates, its end points will
be connected through a short path within the neighborhood. But this may not be the
case in a sparse network. In such a case, failure of a few links can entirely change
the the character of a network. How to adapt to such scenarios and take full advan-
tage of live links is an interesting question. It will require a suitable abstraction that
represents network topology and geometry compactly and distributedly, and can be
updated suitably to reflect changes.
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