Shape Segmentation and Applications
in Sensor Networks
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Motivation

Common assumption: sensors are deployed
uniformly randomly inside a simple region
(e.g., square).

In practice, can be complex.

— Obstacles (lakes, buildings)|® <

— Terrain variation Jo te
— Degradation over time R N




Sensor Distribution in Practice

* Nodes are distributed in a geometric
region with possible complex shape,
with holes.




With holes or a complex shape...

« Some protocols may fail:
— Greedy forwarding: packets are

Dense uniform | Sparse, non-uniform

Works well May get stuck




With holes or a complex shape...

« Some protocols have degraded performance
— Quad-tree type data storage hierarchy
» Data is hashed uniformly to the quads
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Quad-Tree Type Hierarchy
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| esson Learned

» Global geometric features affect many
aspects of sensor networks.

— Affect system performance.
— Affect network design.

Place base stations and
avoid traffic bottleneck A




How to Handle Complex Shape?

* Previous work
— Build problem specific virtual coordinate system
(e.g., for routing)
— Redevelop every algorithm on virtual coordinate system

« Qur approach: shape segmentation
— A unified approach to handle complex geometry
— Make existing protocols reusable



Sensor Field with Arbitrary Shape

- Density ranges from 7-12 neighbors/node



Simulation Results on Segmentation

- Density ranges from 7-12 neighbors/node
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Our Approach: Shape Segmentation

« Segment the irregular field into “nice” pieces.

— Each piece has no holes, and has a relatively nice
shape

* Apply existing algorithms inside each piece.

— Existing protocols are reusable e
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The rest of the talk ...

« Segmentation algorithm
* Implementation issues

12



Segmentation with Flow Complex

* Flow Complex in continuous domain
— Distance function h(x)=min{||x-p||%: p on boundary}

— Medial axis: a set of points with at least two closest
points on the boundary
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Reference: flow complex [Dey, Giesen, Goswami, WADS’03] 13



Segmentation with Flow Complex

* Flow Complex in Continuous domain
— Flow direction: the direction that h(x) increases fastest
— Sinks: local maximum, no flow direction (s1 & s3 here)

Local max

Reference: flow complex [Dey, Giesen, Goswami, WADS’03] 14
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Segmentation with Flow Complex

* Flow Complex in Continuous domain
— Flow direction: the direction that h(x) increases fastest
— Sinks: local maximum, no flow direction (s1 & s3 here)
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Segmentation with Flow Complex

* Flow Complex in Continuous domain
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Segmentation with Flow Complex

* Flow Complex in Continuous domain
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Segmentation with Flow Complex

* Flow Complex in Continuous domain

— Flow direction: the direction that h(x) increases fastest
— Sinks: local maximum, no flow direction (s1 & s3 here)
— Segments: set of points flow to the same sink
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Implementation Challenges

* No global view, no centralized authority

* No location, only connectivity information
— Distances are approximated by hop count
* Robust to inaccuracy, packet loss, etc.

» Goal: a distributed and robust segmentation
algorithm.
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Algorithm Qutline

1. Compute the medial axis 2. Compute the flow
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Step 1: Compute the medial axis

» Boundary nodes flood inward simultaneously.
* Nodes record: minimum hop count &

closest intervals on the boundary
« Medial axis: more than two closest intervals
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Step2: Compute the flow

- Flow direction: a pointerto | 4
a neighbor with a higher A
hop count from the same

boundary

— Prefer neighbor with the most [3.5]
symmetric interval _ . [

 Sinks must be on the
medial axis.

* Network is organized into
forests, sinks are roots

 Nodes are classified into
segments by their sinks.

Too many segments!
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Example of Heavy Fragmentation

« Fragmentation problem becomes severe with
parallel boundaries.
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Step3: Merge nearby sinks

* Nearby sinks with similar hop count to the
boundaries are merged (together with their
segments).
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Step3: Merge nearby sinks

* Nearby sinks with similar hop count to the

boundaries are merged (together with their
segments).

— Segmentation granularity: |H, ,,-Hminl<
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Step4: Final clean-up

* Merge orphan nodes with nearby segments

* Orphan nodes: local maximum and nodes that
flow into them

Noise, orphan nodes
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Final Result
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Properties of Segmentation

* A few “fat” segments
» Further merging only hurts fatness

max inscribing ball radius
fatness =
T min enclosing ball radius
r
\ - R

/ The bigger the fatter.
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Conclusion

* A unified approach handling complex
shape Iin sensor networks.

* A good example to extract high-level
geometry from connectivity information.

* Network self-organizes by local operations.
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Thank you!

oy '-:_'.' -

ek

iy
my .
-I‘-.E‘

= L] . -
e
A
15
=
g

W . .
i

et

e Questions ?

L
m_mf

% '-:&=--l'

l.‘l‘.‘..

]
n
i

I.;; l-' ]
I [ |
oL
-

L o

{xjzhu, rik, jgao}@cs.sunysb.edu

Email
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