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MotivationMotivation

• Common assumption: sensors are deployed 
uniformly randomly inside a simple region 
(e.g., square).

• In practice, can be complex.

– Obstacles (lakes, buildings)

– Terrain variation

– Degradation over time
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Sensor Distribution in PracticeSensor Distribution in Practice

• Nodes are distributed in a geometric 
region with possible complex shape, 
with holes.
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With holes or a complex shapeWith holes or a complex shape……

• Some protocols may fail:

– Greedy forwarding: packets are 

greedily forward to the neighbor 

closest to the destination

May get stuckWorks well

Sparse, non-uniformDense uniform

X

Stuck

Destination
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With holes or a complex shapeWith holes or a complex shape……

• Some protocols have degraded performance

– Quad-tree type data storage hierarchy

• Data is hashed uniformly to the quads

Empty Blocks

Storage load
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QuadQuad--Tree Type Hierarchy Tree Type Hierarchy 

Storage loadStorage load
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Lesson Learned Lesson Learned 

• Global geometric features affect many 
aspects of sensor networks.

– Affect system performance.

– Affect network design.

Place base stations and 

avoid traffic bottleneck
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How to Handle Complex Shape?How to Handle Complex Shape?

• Previous work

– Build problem specific virtual coordinate system 

(e.g., for routing)

– Redevelop every algorithm on virtual coordinate system

• Our approach: shape segmentation

– A unified approach to handle complex geometry

– Make existing protocols reusable
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Sensor Field with Arbitrary ShapeSensor Field with Arbitrary Shape

• Density ranges from 7-12 neighbors/node
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Simulation Results on SegmentationSimulation Results on Segmentation

• Density ranges from 7-12 neighbors/node
Narrow necks
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Our Approach: Shape SegmentationOur Approach: Shape Segmentation

• Segment the irregular field into “nice” pieces.

– Each piece has no holes, and has a relatively nice 

shape

• Apply existing algorithms inside each piece.

– Existing protocols are reusable

• Integrate the pieces together with 

a problem-dependent structure.
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The rest of the talk The rest of the talk ……

• Segmentation algorithm

• Implementation issues
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Segmentation with Flow ComplexSegmentation with Flow Complex

Reference: flow complex [Dey, Giesen, Goswami, WADS’03]

• Flow Complex in continuous domain
– Distance function h(x)=min{||x-p||2: p on boundary}
– Medial axis: a set of points with at least two closest 

points on the boundary
0

0

Local max
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H(s1)
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Segmentation with Flow ComplexSegmentation with Flow Complex

• Flow Complex in Continuous domain
– Flow direction: the direction that h(x) increases fastest
– Sinks: local maximum, no flow direction (s1 & s3 here)

0

0

Local max

Reference: flow complex [Dey, Giesen, Goswami, WADS’03]
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Segmentation with Flow ComplexSegmentation with Flow Complex

• Flow Complex in Continuous domain
– Flow direction: the direction that h(x) increases fastest
– Sinks: local maximum, no flow direction (s1 & s3 here)

0

0

Local max

Reference: flow complex [Dey, Giesen, Goswami, WADS’03]

s1 s2
s3



20

Segmentation with Flow ComplexSegmentation with Flow Complex

• Flow Complex in Continuous domain
– Flow direction: the direction that h(x) increases fastest
– Sinks: local maximum, no flow direction (s1 & s3 here)
– Segments: set of points flow to the same sink

0

0

Local max

Naturally 
partition 

along 

narrow 
necks

Reference: flow complex [Dey, Giesen, Goswami, WADS’03]
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• No global view, no centralized authority

• No location, only connectivity information

– Distances are approximated by hop count

• Robust to inaccuracy, packet loss, etc.

• Goal: a distributed and robust segmentation 

algorithm.

Implementation ChallengesImplementation Challenges
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Algorithm OutlineAlgorithm Outline

1. Compute the medial axis 2. Compute the flow

3. Merge nearby sinks 4. Final clean-up
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Step 1: Compute the medial axisStep 1: Compute the medial axis

• Boundary nodes flood inward simultaneously.

• Nodes record: minimum hop count &

closest intervals on the boundary

• Medial axis: more than two closest intervals

Green: medial axis
Red: sinks

Reference: Boundary Detection [Wang, Gao, Mitchell, MobiCom’06]

min_hop=2
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Step2: Compute the flowStep2: Compute the flow

• Flow direction: a pointer to 
a neighbor with a higher 
hop count from the same 
boundary
– Prefer neighbor with the most 

symmetric interval

• Sinks must be on the 
medial axis.

• Network is organized into 
forests, sinks are roots

• Nodes are classified into 
segments by their sinks.

Too many segments!

a
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Example of Heavy FragmentationExample of Heavy Fragmentation

• Fragmentation problem becomes severe with 

parallel boundaries.
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Step3: Merge nearby sinksStep3: Merge nearby sinks

• Nearby sinks with similar hop count to the 

boundaries are merged (together with their 

segments).
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Step3: Merge nearby sinksStep3: Merge nearby sinks

• Nearby sinks with similar hop count to the 

boundaries are merged (together with their 

segments).

– Segmentation  granularity: |Hmax-Hmin|< t

t=2 t=4
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Step4: Final cleanStep4: Final clean--upup

• Merge orphan nodes with nearby segments

• Orphan nodes: local maximum and nodes that 

flow into them

Noise, orphan nodes
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Final ResultFinal Result
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Properties of SegmentationProperties of Segmentation

• A few “fat” segments

• Further merging only hurts fatness

r

R

fatness = ____________________

min enclosing ball radius

max inscribing ball radius

=
r

R

__

The bigger the fatter.
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ConclusionConclusion

• A unified approach handling complex 
shape in sensor networks.

• A good example to extract high-level 
geometry from connectivity information.

• Network self-organizes by local operations.
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Thank you!Thank you!

• Questions ? 

Email: {xjzhu, rik, jgao}@cs.sunysb.edu


