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Today’s Lecture

so far
we discussed RNNs as encoder and decoder
we discussed some architecture variants:

RNN vs. GRU vs. LSTM
attention mechanisms

today
some important components of neural MT architectures:

dropout
layer normalization
deep networks

non-recurrent architectures:
convolutional networks
self-attentional networks
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Dropout
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are different from each other and in order to make
neural net models different, they should either have different architectures or be trained
on different data. Training many different architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

wacky idea: randomly set hidden states to 0 during training

motivation: prevent "co-adaptation" of hidden units
→ better generalization, less overfitting

[Srivastava et al., 2014]
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Dropout Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
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would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.
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requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train different networks on
different subsets of the data. Even if one was able to train many different large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many different neural network
architectures efficiently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

implementation:
for training, multiply layer with "dropout mask"
randomly sample new mask for each layer and training example
hyperparameter p: probability that state is retained
(some tools use p as probability that state is dropped)
at test time, don’t apply dropout,
but re-scale layer with p to ensure expected output is the same
(you can also re-scale by 1

p at training time instead)

[Srivastava et al., 2014]
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Dropout and RNNs

for recurrent connections, applying dropout at every time step blocks
information flow

solution 1: only apply dropoput to feedforward connections

Under review as a conference paper at ICLR 2015
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Figure 1: A graphical representation of LSTM memory cells used in this paper (there are minor
differences in comparison to Graves (2013)).
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Figure 2: Regularized multilayer RNN. The dashed arrows indicate connections where dropout is
applied, and the solid lines indicate connections where dropout is not applied.

connections (Figure 2). The following equation describes it more precisely, whereD is the dropout
operator that sets a random subset of its argument to zero:
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Our method works as follows. The dropout operator corrupts the information carried by the units,
forcing them to perform their intermediate computations more robustly. At the same time, we do not
want to erase all the information from the units. It is especially important that the units remember
events that occurred many timesteps in the past. Figure 3 shows how information could flow from
an event that occurred at timestept− 2 to the prediction in timestept+ 2 in our implementation of
dropout. We can see that the information is corrupted by the dropout operator exactlyL + 1 times,

3

[Zaremba et al., 2014]
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Dropout and RNNs

for recurrent connections, applying dropout at every time step blocks
information flow

solution 2: variational dropout: use same dropout mask at each time step

[Gal, 2015]
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Layer Normalization

if input distribution to NN layer changes, parameters need to adapt to
this covariate shift

especially bad: RNN state grows/shrinks as we go through sequence

normalization of layers reduces shift, and improves training stability

re-center and re-scale each layer a (with H units)

two bias parameters, g and b, restore original representation power

µ =
1

H

H∑

i=1

ai

σ =

√√√√ 1

H

H∑

i=1

(ai − µ)2

h =
[g
σ
� (a− µ) + b

]
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Deep Networks

increasing model depth often increases model performance

example: stack RNN:

hi,1 = g(U1hi−1,1 +W1xi)

hi,2 = g(U2hi−1,2 +W2hi,1)

hi,3 = g(U3hi−1,3 +W3hi,2)

. . .

. . .

. . .
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Deep Networks

often necessary to combat vanishing gradient:
residual connections between layers:

hi,1 = g(U1hi−1,1 +W1xi)

hi,2 = g(U2hi−1,2 +W2hi,1)+hi,1

hi,3 = g(U3hi−1,3 +W3hi,2)+hi,2
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Layer Normalization and Deep Models:
Results from UEDIN@WMT17

CS→EN DE→EN LV→EN RU→EN TR→EN ZH→EN
system 2017 2017 2017 2017 2017 2017
baseline 27.5 32.0 16.4 31.3 19.7 21.7
+layer normalization 28.2 32.1 17.0 32.3 18.8 22.5
+deep model 28.9 33.5 16.6 32.7 20.6 22.9

layer normalization and deep models generally improve quality

layer normalization also speeds up convergence when training
(fewer updates needed)

dropout used for low-resource system (TR→EN)

R. Sennrich MT – 2018 – 10 9 / 26

MT – 2018 – 10

1 General Architecture Variants

2 NMT with Convolutional Neural Networks

3 NMT with Self-Attention

R. Sennrich MT – 2018 – 10 10 / 26



Convolutional Networks

core idea: rather than using fully connected matrix between two layers,
repeatedly compute dot product with small filter (or kernel)

2d convolution with 3x3 kernel

https://cambridgespark.com/content/tutorials/

convolutional-neural-networks-with-keras/index.html
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Convolutional Networks

when working with sequences, we often use 1d convolutions

1d convolution with width-3 kernel

https://www.slideshare.net/xavigiro/

recurrent-neural-networks-2-d2l3-deep-learning-for-speech-and-language-upc-2017

R. Sennrich MT – 2018 – 10 12 / 26

Convolutional Networks

(this is similar to how we obtained hidden state for n-gram LM)

[Vaswani et al., 2013]
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Convolutional Neural Machine Translation

convolutional encoder actually predates RNN encoder
84 CHAPTER 13. NEURAL MACHINE TRANSLATION

Input Word
Embeddings

K2 Encoding Layer

K2 Encoding Layer

Transfer Layer

K3 Decoding Layer

K2 Decoding Layer

Selected Word

Output Word
Embedding

Figure 13.42: Refinement of the convolutional neural network model. Convolutions do not result in a
single sentence embedding but a sequence. The encoder is also informed by a recurrent neural network
(connections from output word embeddings to final decoding layer.

awful lot from the resulting sentence embedding to represents the meaning of an entire sen-
tence of arbitrary length.

Generating the output sentence translation reverses the bottom-up process. One problem
for the decoder is to decide the length of the output sentence. One option to address this
problem is to add a model that predicts output length from input length. This then leads to the
selection of the size of the reverse convolution matrices.

See Figure 13.42 for an illustration of a variation of this idea. The shown architecture always
uses a K2 and a K3 convolutional layer, resulting in a sequence of phrasal representations, not
a single sentence embedding. There is an explicit mapping step from phrasal representations
of input words to phrasal representations of output words, called transfer layer.

The decoder of the model includes a recurrent neural network on the output side. Sneaking
in a recurrent neural network here does undermine a bit the argument about better paralleliza-
tion. However, the claim still holds true for encoding the input, and a sequential language
model is just a too powerful tool to disregard.

While the just-described convolutional neural machine translation model helped to set the
scene for neural network approaches for machine translation, it could not be demonstrated to
achieve competitive results compared to traditional approaches. The compression of the sen-
tence representation into a single vector is especially a problem for long sentences. However,
the model was used successfully in reranking candidate translations generated by traditional
statistical machine translation systems.

architecture of [Kalchbrenner and Blunsom, 2013], as illustrated in P. Koehn, Neural Machine
Translation
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Convolutional Neural Machine Translation with Attention

to keep representation size constant, use padding
→ similar variable-size representation as RNN encoder

kernel can be applied to all windows in parallel
13.7. ALTERNATE ARCHITECTURES 85
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Figure 13.43: Encoder using stacked convolutional layers. Any number of layers may be used.

13.7.2 Convolutional Neural Networks With Attention

Gehring et al. (2017) propose an architecture for neural networks that combines the ideas of
convolutional neural networks and the attention mechanism. It is essentially the sequence-to-
sequence attention that we described as the canonical neural machine translation approach, but
with the recurrent neural networks replaced by convolutional layers.

We introduced convolutions in the previous section. The idea is to combine a short sequence
of neighboring words into a single representation. To look at it in another way, a convolution
encodes a word with its left and right context, in a limited window. Let us now describe in
more detail what this means for the encoder and the decoder in the neural model.

Encoder See Figure 13.43 for an illustration of the convolutional layers used in the encoder.
For each input word, the state at each layer is informed by the corresponding state in the pre-
vious layer and its two neighbors. Note that these convolutional layers do not shorten the
sequence, because we have a convolution centered around each word, using padding (vectors
with zero values) for word positions that are out of bounds.

Mathematically, we start with the input word embeddings Exj and progress through a
sequence of layer encodings hd,j at different depth d until a maximum depth D.

h0,j = E xj

hd,j = f(hd−1,j−k, ..., hd−1,j+k) for d > 0, d ≤ D
(13.94)

The function f is a feed-forward layer, with a residual connection from the corresponding
previous layer state hd−1,j .

Note that even with a few convolutional layers, the final representation of a word hD,j may
only be informed by partial sentence context — in contrast to the bi-directional recurrent neural
networks in the canonical model. However, relevant context words in the input sentence that
help with disambiguation may be outside this window.

On the other hand, there are significant computational advantages to this idea. All words at
one depth can be processed in parallel, even combined into one massive tensor operation that
can be efficiently parallelized on a GPU.

architecture of [Gehring et al., 2017], as illustrated in P. Koehn, Neural Machine Translation
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Convolutional Neural Machine Translation with Attention

use your favourite attention mechanism to obtain input context

in decoder, information from future tokens is masked during training

effective context window depends on network depth and kernel size
86 CHAPTER 13. NEURAL MACHINE TRANSLATION
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Figure 13.44: Decoder in convolutional neural network with attention. The decoder state is computed
as a sequence of convolutional layers (here: 2) over the already predicted output words. Each convolu-
tional state is also informed by the input context computed from the input sentence and attention.

Decoder The decoder in the canonical model also has at its core a recurrent neural network.
Recall its state progression defined in Equation 13.75 on page 49:

si = f(si−1, Eyi−1, ci) (13.95)

where si is the encoder state, Eyi−1 the embedding of the previous output word, and ci the
input context.

The convolutional version of this does not have recurrent decoder states, i.e., the compu-
tation does not depend on the previous state si−1, but is conditioned on the sequence of the κ
most recent previous words.

si = f(Eyi−κ, ..., Eyi−1, ci) (13.96)

Furthermore, these decoder convolutions may be stacked, just as the encoder convolutional
layers.

s1,i = f(Eyi−κ, ..., Eyi−1, ci)

sd,i = f(sd−1,i−κ−1, ..., sd−1,i, ci) for d > 0, d ≤ D̂
(13.97)

See Figure 13.44 for an illustration of these equations. The main difference between the
canonical neural machine translation model and this architecture is the conditioning of the
states of the decoder. They are computed in a sequence of convolutional layers, and also always
the input context.

Attention The attention mechanism is essentially unchanged from the canonical neural trans-
lation model. Recall that is is based on an association a(si−1, hj) between the word represen-
tations computed by the encoder hj and the previous state of the decoder si−1 (refer back to
Equation 13.78 on page 51).

architecture of [Gehring et al., 2017], as illustrated in P. Koehn, Neural Machine Translation
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Convolutional Neural Machine Translation (ByteNet)

architecture of [Kalchbrenner et al., 2016]
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Attention Is All You Need [Vaswani et al., 2017]

same criticisms of recurrent architecture:
recurrent computations cannot be parallelized

core idea: instead of fixed-width convolutional filter, use attention

there are different flavours of self-attention
here: attend over previous layer of deep network

Self-Attention

Convolution Self-Attention

https://nlp.stanford.edu/seminar/details/lkaiser.pdf
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Attention Is All You Need [Vaswani et al., 2017]

Transformer architecture
stack of N self-attention layers

self-attention in decoder is masked

decoder also attends to encoder states

Add & Norm: residual connection and
layer normalization

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

[Vaswani et al., 2017]
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Multi-Head Attention

basic attention mechanism in AIAYN: Scaled Dot-Product Attention

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

query Q is decoder/encoder state (for attention/self-attention)

key K and value V are encoder hidden states

multi-head attention: use h parallel attention mechanisms with
low-dimensional, learned projections of Q, K, and V

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

[Vaswani et al., 2017]
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Multi-Head Attention

motivation for multi-head attention:
different heads can attend to different states

Attention VisualizationsInput-Input Layer5
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Comparison

empirical comparison difficult
some components could be mix-and-matched

choice of attention mechanism
choice of positional encoding
hyperparameters and training tricks

different test sets and/or evaluation scripts
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Comparison

SOCKEYE [Hieber et al., 2017] (EN-DE; newstest2017)

system BLEU

deep LSTM 25.6
Convolutional 24.6
Transformer 27.5

Marian (EN-DE; newstest2016)

system BLEU

deep LSTM 32.6
Transformer 33.4

https://github.com/marian-nmt/marian-dev/issues/116#issuecomment-340212787
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Empiricism vs. Theory

our theoretical understanding of neural networks lags behind
empirical progress

there are some theoretical arguments why architectures work well...
(e.g. self-attention reduces distance in network between words)

...but these are very speculative
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Further Reading

required reading: Koehn, 13.7

consider original literature cited on relevant slides
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