@ THE UNIVERSITY of EDINBURGH Today’s Lectu re

@ we discussed RNNs as encoder and decoder
@ we discussed some architecture variants:

@ RNN vs. GRU vs. LSTM
e attention mechanisms

@ some important components of neural MT architectures:
10: Advanced Neural Machine Translation Architectures o dropout

Machine Translation

@ layer normalization
o deep networks

@ non-recurrent architectures:

University of Edinburgh @ convolutional networks
o self-attentional networks
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0 General Architecture Variants

(a) Standard Neural Net (b) After applying dropout.

@ wacky idea: randomly set hidden states to 0 during training

@ motivation: prevent "co-adaptation” of hidden units
— better generalization, less overfitting

[Srivastava et al, 2014]
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Dropout Dropout and RNNs

for recurrent connections, applying dropout at every time step blocks
information flow J

solution 1: only apply dropoput to feedforward connections

a) Standard Neural Net (b) After applying dropout. Y2 Y1 Yt Yir1  Yey2
i " i i "

@ implementation: W

e for training, multiply layer with "dropout mask" N I R
e randomly sample new mask for each layer and training example —D—D—D—D—D—
e hyperparameter p: probability that state is retained Poob oo r
(some tools use p as probability that state is dropped)
at test time, don’t apply dropout, ppled and e So14 nes Incicats cornections wherpabs ot appted. T
but re-scale layer with p to ensure expected output is the same
(you can also re-scale by % at training time instead)

Te-2 -1 Tt Te41  Tri2

[zaremba et al., 2014]

[Srivastava et al, 2014]
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Dropout and RNNs Layer Normalization

@ if input distribution to NN layer changes, parameters need to adapt to

for recurrent connections, applying dropout at every time step blocks this covariate shift
information flow J @ especially bad: RNN state grows/shrinks as we go through sequence
solution 2: variational dropout: use same dropout mask at each time step @ normalization of layers reduces shift, and improves training stability
Y-t ffr et bt o i @ re-center and re-scale each layer a (with H units)
I ] I T T T @ two bias parameters, g and b, restore original representation power
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[Gal, 2015]
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Deep Networks

@ increasing model depth often increases model performance

@ example: stack RNN:

hii = g(Urhi—1,1 + Wix;)
hi 9 = g(Ushi—1,2 + Wah; 1)
i3 = g(Ushi—13 + W3h;2)

1
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Layer Normalization and Deep Models:

Results from UEDIN@WMT17

CS—EN DE—EN LV—EN RU—EN TR—EN ZH—EN

system 2017 2017 2017 2017 2017 2017
baseline 27.5 32.0 16.4 31.3 19.7 21.7
+layer normalization 28.2 32.1 17.0 32.3 18.8 225
+deep model 28.9 33.5 16.6 32.7 20.6 229

@ layer normalization and deep models generally improve quality

@ layer normalization also speeds up convergence when training
(fewer updates needed)

@ dropout used for low-resource system (TR—EN)
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Deep Networks

@ often necessary to combat vanishing gradient:
residual connections between layers:

hii = g(Uthi—1,1 + Wix;)
hio = g(Ushi—1,2 + Wah;1)+hi 1
hiz = g(Ushi—13 + W3h;2)+hj 2
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© NMT with Convolutional Neural Networks
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Convolutional Networks Convolutional Networks

when working with sequences, we often use 1d convolutions

core idea: rather than using fully connected matrix between two layers, 1d convolution with width-3 kernel

repeatedly compute dot product with small filter (or kernel)
, , 1D Convolutions
2d convolution with 3x3 kernel i R " .
Keep in mind we are working with 100 dimensions although here we depict just one for simplicity
01111 111640 0 - — [1]2]a]«]s5]e]7[¢]
e L ]ﬂ Q Uy L1413 4L The length result of the convolution is
olofolxfilt[o 1]0]1 1]274]3[3 The lefigh rasiit
olo|o|1]+]0o]07 1{o] = |1]|2]|3]4]1 seqlength - kwidth+ 1= &-3+1=6
oflo{1|1]{o|0]|0 110]1 1133|111 m So the output matrix will be (6, 100}
ol1]1{ololo]o 33111110 m.m because there was no padding
1[z]o]ofoo]o = =
I K I+K -
1(2|3|4([5]6
hetpa//canbetdgaspark can/cantent /sutoriala/
=
nhttps://uus.5lideshare. net/xavigiro/
N v
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Convolutional Networks Convolutional Neural Machine Translation

(this is similar to how we obtained hidden state for n-gram LM) convolutional encoder actually predates RNN encoder J

output
Input Word
Embeddings
hidden Kz Encoding Layer
Kz Encoding Layer
input Transfer Layer
embeddings
Ka Decoding Layer
Input Ka Decoding Layer
words

Selected Word

L 2
Output Word
Embedding

[Vaswani et al,, 2013]

architecture of [Kalchbrenner and Blunsom, 2013], as illustrated in P. Koehn, Neural Machine
Translati

R. Sennrich MT - 2018 - 10 13/26 R. Sennrich MT - 2018 - 10 14/26




Convolutional Neural Machine Translation with Attention

Convolutional Neural Machine Translation with Attention

@ to keep representation size constant, use padding
— similar variable-size representation as RNN encoder

@ kernel can be applied to all windows in parallel

Input Word
Embeddings

Convolution
Layer 1

Convolution
Layer 2

Convolution
Layer 3

architecture of [Gehring et al., 2017], as illustrated in P. Koehn, Neural Machine Translation
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Convolutional Neural Machine Translation (ByteNet)

@ use your favourite attention mechanism to obtain input context
@ in decoder, information from future tokens is masked during training
@ effective context window depends on network depth and kernel size

Input Context

Output Word
Predictions

Decoder
Convolution 2

Decoder
Convolution 1

Output Word
Embedding

Selected
Word

architecture of [Gehring et al, 2017], as illustrated in P. Koehn, Neural Machine Transiation
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- causal convld
kernel size=3,
rate=1, 2, 4, 8, 16
repeat=3, dim=892

concat merge —————p

<— zeropad

target ty t2 t3 tg s
embedding

< convld dilated(=atrous convld)
kernel size=5,
rate=1, 2, 4, 8, 16
repeat=3, dim=892

source T
embedding

S0 S1 S2 S3 S4 S5 Se¢ ST S8 S9 S10 S11 S12 S13 S14 S15 S16

architecture of [Kalchbrenner et al., 2016]
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© NMT with Self-Attention
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Attention Is All You Need [Vaswani et al., 2017]

@ same criticisms of recurrent architecture:
recurrent computations cannot be parallelized

@ core idea: instead of fixed-width convolutional filter, use attention

@ there are different flavours of self-attention
here: attend over previous layer of deep network

Self-Attention

AR

Convolution

N —

nttps://nlp stanford.edu/seninar/details/lkaiser . paf
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Multi-Head Attention

Attention Is All You Need [Vaswani et al., 2017]

Transformer architecture

@ stack of N self-attention layers
@ self-attention in decoder is masked
@ decoder also attends to encoder states

@ Add & Norm: residual connection and
layer normalization
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Multi-Head Attention

Output
Probabiities

Positional
Encoding

Positional
Encoding

Input Output
Embedding Embedding

Inputs

Figure 1: The Transformer

Outputs
(shifted right)

- model architecture.

[Vaswani et al., 2017]
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@ basic attention mechanism in AIAYN: Scaled Dot-Product Attention

. Q T
Attention(Q, K, V') = softmax(
Vdy

@ query (Q is decoder/encoder state (for attention/self-attention)
@ key K and value V' are encoder hidden states

1%

@ multi-head attention: use h parallel attention mechanisms with
low-dimensional, learned projections of @, K, and V'

Scaled Dot-Product Attention

Multi-Head Attention
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motivation for multi-head attention:
different heads can attend to different states
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Comparison Comparison

SOCKEYE [Hieber et al., 2017] (EN-DE; newstest2017)

system | BLEU
empirical comparison difficult deep LSTM 25.6
Convolutional | 24.6
Transformer | 27.5

@ some components could be mix-and-matched

e choice of attention mechanism
e choice of positional encoding

e hyperparameters and training tricks Marian (EN-DE; newstest2016)

@ different test sets and/or evaluation scripts

system | BLEU
deep LSTM 32.6
Transformer | 33.4
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Empiricism vs. Theory Further Reading

@ our theoretical understanding of neural networks lags behind

empirical progress @ required reading: Koehn, 13.7
@ there are some theoretical arguments why architectures work well... e consider original literature cited on relevant slides
(e.g. self-attention reduces distance in network between words)

@ ...but these are very speculative
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