THE UNIVERSITY of EDINBURGH	Today's Lecture
Machine Translation 10: Advanced Neural Machine Translation Architectures Rico Sennrich University of Edinburgh	 so far we discussed RNNs as encoder and decoder we discussed some architecture variants: RNN vs. GRU vs. LSTM attention mechanisms today some important components of neural MT architectures: dropout layer normalization deep networks non-recurrent architectures: convolutional networks self-attentional networks
R. Sennrich MT – 2018 – 10 1/26	R. Sennrich MT – 2018 – 10 1/26
 1 General Architecture Variants 2 NMT with Convolutional Neural Networks 	 Dropour Image: A standard Neural Net Image: A standard Neural Net
3 NMT with Self-Attention R. Sennrich MT - 2018 - 10 2/26	[Sivestere et al., 2014] R. Sennrich MT – 2018 – 10 3/26

Dropout

Deep Networks	Deep Networks
• increasing model depth often increases model performance • example: stack RNN: $ \begin{array}{c} h_{i,1} = g(U_1h_{i-1,1} + W_1x_i) \\ h_{i,2} = g(U_2h_{i-1,2} + W_2h_{i,1}) \\ h_{i,3} = g(U_3h_{i-1,3} + W_3h_{i,2}) \\ \hline \end{array} $ R. Senarich MT - 2018 - 10 7/26 Layer Normalization and Deep Models: Results from UEDIN@WMT17	• often necessary to combat vanishing gradient: residual connections between layers: $h_{i,1} = g(U_1h_{i-1,1} + W_1x_i)$ $h_{i,2} = g(U_2h_{i-1,2} + W_2h_{i,1}) + \mathbf{h_{i,1}}$ $h_{i,3} = g(U_3h_{i-1,3} + W_3h_{i,2}) + \mathbf{h_{i,2}}$ B. Sennich MT - 2018 - 10 8/26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	General Architecture Variants
 layer normalization and deep models generally improve quality layer normalization also speeds up convergence when training (fewer updates needed) dropout used for low-resource system (TR→EN) 	 2 NMT with Convolutional Neural Networks 3 NMT with Self-Attention
R. Sennrich MT – 2018 – 10 9/26	R. Sennrich MT – 2018 – 10 10/26

Convolutional Networks

core idea: rather than using fully connected matrix between two layers, repeatedly compute dot product with small *filter* (or *kernel*)

Convolutional Networks

1d convolution with width-3 kernel

when working with sequences, we often use 1d convolutions

Comparison	Comparison
 empirical comparison difficult some components could be mix-and-matched choice of attention mechanism choice of positional encoding hyperparameters and training tricks different test sets and/or evaluation scripts 	SOCKEYE [Hieber et al., 2017] (EN-DE; newstest2017) system BLEU deep LSTM 25.6 Convolutional 24.6 Transformer 27.5 Marian (EN-DE; newstest2016) System BLEU deep LSTM 32.6 Transformer 33.4
R. Sennrich MT - 2018 - 10	23/26 R. Sennrich MT - 2018 - 10 24/20
 our theoretical understanding of neural networks lags behind empirical progress there are some theoretical arguments why architectures work well (e.g. self-attention reduces distance in network between words) but these are very speculative 	 required reading: Koehn, 13.7 consider original literature cited on relevant slides
R. Sennrich MT – 2018 – 10	25/26 R. Sennrich MT – 2018 – 10 26/2

Bibliography I		Bibliography II			
	 Gal, Y. (2015). A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. <u>ArXiv e-prints</u>. Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional Sequence to Sequence Learning. <u>CoFR</u>, abs/1705.03122. Hieber, F., Domhan, T., Denkowski, M., Vilar, D., Sokolov, A., Clifton, A., and Post, M. (2017). Sockeye: A Toolkit for Neural Machine Translation. <u>ArXiv e-prints</u>. Kalchbrenner, N. and Blunsom, P. (2013). Recurrent Continuous Translation Models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle. Association for Computational Linguistics. Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A., Graves, A., and Kavukcuoglu, K. (2016). Neural Machine Translation in Linear Time. <u>ArXiv e-prints</u>. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15:1929–1958. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention Is All You Need. <u>CoFR</u>, abs/1706.03762. 		 Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with Large-Scale Neural Language Models Improves Translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013, pages 1387–1392, Seattle, Washington, USA. Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent Neural Network Regularization. <u>CoRR</u>, abs/1409.2329. 		
	R. Sennrich	MT – 2018 – 10	27/26	R. Sennrich MT – 2018 – 10 28	8/26