
$\frac{\text{decoding strategies covered so far}}{\text{egeedy search}}$ $\frac{\text{Machine Translation}}{\text{14' Advanced Decoding Techniques}}$ $\frac{\text{Rico Sennrich}}{\text{University of Edinburgh}}$ $\frac{\text{Rico Sennrich}}{\text{University of Edinburgh}}$ $\frac{\text{Refresher}}{\text{Refresher}}$ $\frac{\text{Vertexes}}{\text{Refresher}}$ $\frac{\text{Refresher}}{\text{Refresher}}$ $\frac{\text{Refresher}}{$	THE UNIVERSITY of EDINBURGH	Overview
Rico Sennrich • reranking (right-to-left and reconstruction) University of Edinburgh • constrained decoding • simultaneous translation • senrich MT-2018-14 MT-2018-14 1/19 • Refresher MT-2018-14 • Refresher Refresher • maintain list of K hypotheses (beam) • at each time step, expand each hypothesis k: p(y _k ⁱ S, y _k ⁱ) • select K hypotheses with highest total probability: • • • • • • • • • • • • • • • • • • •		 greedy search sampling beam search ensemble decoding
Deam searchRefresher• maintain list of K hypotheses (beam)• at each time step, expand each hypothesis $k: p(y_i^k S, y_{< i}^k)$ • select K hypotheses with highest total probability:• $f(y_i^k S, y_{< i}^k)$ • $f(y_i^k S, y_{< i}^k)$	University of Edinburgh	 reranking (right-to-left and reconstruction) constrained decoding simultaneous translation
beam search • maintain list of <i>K</i> hypotheses (beam) • at each time step, expand each hypothesis $k: p(y_i^k S, y_{• select K hypotheses withhighest total probability:\prod v(y_i^k S, y_{$		
	beam search • maintain list of <i>K</i> hypotheses (beam) • at each time step, expand each hypothesis $k: p(y_i^k S, y_{< i}^k)$ • select <i>K</i> hypotheses with highest total probability: $\prod n(y_i^k S, y_{< i}^k)$	time complexity of beam search O(V kt) • $ V $: network vocabulary size • k : beam size

Better Greedy Decoding

sequence-level knowledge distillation [Kim and Rush, 2016]

- experimental settings:
 - English→German WMT 2014 data
 - large teacher network (4 layers; hidden layer size 1000)
 - small student network (2 layers; hidden layer size 500)

model	BLEU (K=1)	BLEU (K=5)
teacher baseline (4x1000)	17.7	19.5
sequence-level interpolation	19.6	19.8
student baseline (2x500)	14.7	17.6
word-level KD	15.4	17.7
sequence-level KD	18.9	19.0
sequence-level interpolation	18.5	18.7

Reranking

phrase-based SMT

- common in phrase-based SMT with linear framework
- compute expensive features only for *k*-best translations

neural MT

- if previous predictions are incorrect, predictions may be less reliable \rightarrow rerank with model trained to decode right-to-left [Liu et al., 2016, Sennrich et al., 2016]
- without coverage model, we may delete or repeat parts of source text \rightarrow rerank with reconstruction cost (p(S|T)) [Li and Jurafsky, 2016, Tu et al., 2016]

	R. Sennrich	MT – 2018 – 14	8/19			R. Sennrich	MT – 2018 – 14	
Reconstruction				Reconstr	uction			
	Example 1 (under- translation) Reranking Example 1		1					
					Icost rcost	Th	anslation	Rank'
Source	eine transitorische isch	vier bis fünf Mal das Risiko, dass nämische Attacke (TIA) oder			4.85 2.20	this condition increas ischaemic attack (TI	ses the risk of transient A) or stroke .	7
	Schlaganfall vorkommi	a. The second se				this condition increas ischaemic attacks (ses the risk of transient TIA) or stroke .	6
					5 36 2 28		ses the risk of a transient	9
Translation		es the risk of transient ischaemic			6.67 0.44	risk that transient isc	ses four to five times the haemic attack (TIA) or	1

lide credit: Phil William:

10/19

R. Sennrich

6.95 0.44 this situation increases **four to five times** the risk that transient ischaemic attack (TIA) or stroke 2

5.13 2.22 this condition increases the risk of transient

ischemic attack (TIA) or stroke

10

 combersome in phrase-based MT very natural in neural MT standard decoding: p(T S) = ⁿ p(T S) = ⁿ p(T S, PRE) = ⁿ p(T S, PRE) = ⁿ	Constrained Decoding	Prefix-Constrained Decoding
Constrained Decoding Constrained Decoding arbitrary constraints Grid Beam Search [Hokamp and Liu, 2017] • core idea: eliminate competition between hypotheses that fulfill different number of constraints • how can we decode with more general constraints? • keep track of how many constraints hypothesis fulfills • finished hypothesis is only valid if all constraints are fulfilled • challenge: hypotheses that fulfill constraints must survive pruning	why? • force translation of terminology • interactive machine translation 3 Donate link: http://example.com/ Spenden Link:	• very natural in neural MT • standard decoding: $p(T S) = \prod_{i=1}^{n} p(y_i y_1, \dots, y_{i-1}, x_1, \dots, x_m)$ • prefix-constrained decoding: $PRE = y_1, \dots, y_j$ $p(T S, PRE) = \prod_{i=j+1}^{n} p(y_i y_1, \dots, y_{i-1}, x_1, \dots, x_m)$
 arbitrary constraints how can we decode with more general constraints? keep track of how many constraints hypothesis fulfills finished hypothesis is only valid if all constraints are fulfilled challenge: hypotheses that fulfill constraints must survive pruning 		
R. Sennrich MT – 2018 – 14 13 / 19 R. Sennrich MT – 2018 – 14 14 / 19	 arbitrary constraints how can we decode with more general constraints? keep track of how many constraints hypothesis fulfills finished hypothesis is only valid if all constraints are fulfilled 	 Grid Beam Search [Hokamp and Liu, 2017] core idea: eliminate competition between hypotheses that fulfill different number of constraints 2d grid (each box is one beam): x axis: number of time steps y axis: number of constraint tokens matched

Constrained Decoding	Simultaneous Translation
 Grid Beam Search [Hokamp and Liu, 2017] • very general: agnostic to model architecture requires no source-side information requires no retraining • constraints must be in-vocabulary: use subword-level model • problem: high computational complexity: O(V ktc) (k: beam size; t: length; c: # constraint tokens) 	 objectives in simultaneous translation: maximize translation quality minimize latency to minimize latency, system may start translating before full input has been seen
Don't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation [Grissom II et al., 2014]	Don't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation [Grissom II et al., 2014]
 actions: commit partial translation wait for more words predict the next or final source word goal: learn a policy that maximizes latency-bleu: Q(x, y) = 1/T ∑t BLEU(yt, r) + T ⋅ BLEU(yT, r) 	<figure><figure><equation-block><equation-block></equation-block></equation-block></figure></figure>

Simultaneous Neural Machin	e Translation	Bibliography I
<figure><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></figure>	tre	 Grissom II, A., He, H., Boyd-Graber, J., Morgan, J., and Daumé III, H. (2014). Don't Until the Final Verb Wat: Reinforcement Learning for Simultaneous Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1342–1352, Doha, Catar. Association for Computational Linguistics. Gu, J., Neubig, G., Cho, K., and Li, V. O. (2017). Learning to Translate in Real-time with Neural Machine Translation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Pape pages 1053–1062, Valencia, Spain. Association for Computational Linguistics. Hokamp, C. and Liu, O. (2017). Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - A pages 1355–1546. Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary for Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of pages 10, Beijing, China. Association for Computational Linguistics and the 7th International Joint Conference of pages 10, Beijing, China. Association for Computational Linguistics. Kim, Y. and Rush, A. M. (2016). Sequence-Level Knowledge Distillation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1317–1327, Austin, Texas. Association for Computational Linguistics.
 L'Hostis, G., Grangier, D., and Auli, M. (2016). Vocabulary Selection Strategies for Neural Machine Translati <u>ArXiv e-prints</u>. Li, J. and Jurafsky, D. (2016). Mutual Information and Diverse Decoding Improve Neural Ma <u>CoRR</u>, abs/1601.00372. Liu, L., Utiyama, M., Finch, A., and Sumita, E. (2016). Agreement on Target-bidirectional Neural Machine Translatio In NAACL HLT 16, San Diego, CA. Sennrich, R., Haddow, B., and Birch, A. (2016). Edinburgh Neural Machine Translation Systems for WMT 16. In Proceedings of the First Conference on Machine Translatio Germany. Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2016). Neural Machine Translation with Reconstruction. CoRR, abs/1611.01874. 	on. achine Translation. ın .	
R. Sennrich	MT – 2018 – 14 21 / 19	