
Machine Translation
02: Neural Network Basics

Rico Sennrich

University of Edinburgh

R. Sennrich MT – 2018 – 02 1 / 21

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

R. Sennrich MT – 2018 – 02 1 / 21

Today’s Lecture

linear regression

stochastic gradient descent (SGD)

backpropagation

a simple neural network

R. Sennrich MT – 2018 – 02 2 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

Data

R. Sennrich MT – 2018 – 02 3 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

Data

R. Sennrich MT – 2018 – 02 3 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 5. 00 + 1. 50x

Data

R. Sennrich MT – 2018 – 02 3 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 6. 00 + 2. 00x

Data

R. Sennrich MT – 2018 – 02 3 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 2. 50 + 1. 00x

Data

R. Sennrich MT – 2018 – 02 3 / 21

Linear Regression

Parameters: θ =

[
θ0
θ1

]
Model: hθ(x) = θ0 + θ1x

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 3. 90 + 1. 19x

Data

R. Sennrich MT – 2018 – 02 3 / 21

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = argmin
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑
i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

R. Sennrich MT – 2018 – 02 4 / 21

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = argmin
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑
i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

R. Sennrich MT – 2018 – 02 4 / 21

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = argmin
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑
i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

R. Sennrich MT – 2018 – 02 4 / 21

The cost (or loss) function

We try to find parameters θ̂ ∈ R2 such that the cost function J(θ) is
minimal:

J : R2 → R

θ̂ = argmin
θ∈R2

J(θ)

Mean Square Error:

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=
1

2m

m∑
i=1

(
θ0 + θ1x

(i) − y(i)
)2

where m is the number of data points in the training set.

R. Sennrich MT – 2018 – 02 4 / 21

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 5. 00 + 1. 50x

Data

J(

[
−5.00
1.50

]
) = 6.1561

R. Sennrich MT – 2018 – 02 5 / 21

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 6. 00 + 2. 00x

Data

J(

[
−6.00
2.00

]
) = 19.3401

R. Sennrich MT – 2018 – 02 5 / 21

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 2. 50 + 1. 00x

Data

J(

[
−2.50
1.00

]
) = 4.7692

R. Sennrich MT – 2018 – 02 5 / 21

The cost (or loss) function

5 10 15 20

Population

0

5

10

15

20

25

P
ro

fi
t

y= − 3. 90 + 1. 19x

Data

J(

[
−3.90
1.19

]
) = 4.4775

R. Sennrich MT – 2018 – 02 5 / 21

The cost (or loss) function

So, how do we find θ̂ = argmin
θ∈R2

J(θ) computationally?

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 6 / 21

The cost (or loss) function

So, how do we find θ̂ = argmin
θ∈R2

J(θ) computationally?

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 6 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 0, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 0, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 1, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 20, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 200, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.01

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.005

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10000, α = 0.02

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

(Stochastic) gradient descent

θj := θj − α
∂

∂θj
J(θ) for each j

Step 10, α = 0.025

θ 0

10

5

0

5

10

θ1
1

0
1

2
3

4

J
(θ)

100

0

100

200

300

400

500

600

700

800

R. Sennrich MT – 2018 – 02 7 / 21

Backpropagation

How do we calculate
∂

∂θj
J(θ)?

In other words:
how sensitive is the loss function to the change of a parameter θj?

why backpropagation?
we could do this by hand for linear regression...
but what about complex functions?
→ propagate error backward
(special case of automatic differentiation)

R. Sennrich MT – 2018 – 02 8 / 21

Backpropagation

applying chain rule:

∂e

∂b
=
∂e

∂c
· ∂c
∂b

+
∂e

∂d
· ∂d
∂b

= 1 · 2 + 1 · 3 = 5

next, let’s use dynamic programming
to avoid re-computing intermediate results...

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/R. Sennrich MT – 2018 – 02 9 / 21

http://colah.github.io/posts/2015-08-Backprop/

Backpropagation

applying chain rule:

∂e

∂b
=
∂e

∂c
· ∂c
∂b

+
∂e

∂d
· ∂d
∂b

= 1 · 2 + 1 · 3 = 5

next, let’s use dynamic programming
to avoid re-computing intermediate results...

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/R. Sennrich MT – 2018 – 02 9 / 21

http://colah.github.io/posts/2015-08-Backprop/

Backpropagation

applying chain rule:

∂e

∂b
=
∂e

∂c
· ∂c
∂b

+
∂e

∂d
· ∂d
∂b

= 1 · 2 + 1 · 3 = 5

next, let’s use dynamic programming
to avoid re-computing intermediate results...

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/R. Sennrich MT – 2018 – 02 9 / 21

http://colah.github.io/posts/2015-08-Backprop/

Backpropagation

applying chain rule:

∂e

∂b
=
∂e

∂c
· ∂c
∂b

+
∂e

∂d
· ∂d
∂b

= 1 · 2 + 1 · 3 = 5

next, let’s use dynamic programming
to avoid re-computing intermediate results...

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/R. Sennrich MT – 2018 – 02 9 / 21

http://colah.github.io/posts/2015-08-Backprop/

Backpropagation

forward-mode differentiation lets us compute partial derivatives
∂x

∂b
for all

nodes x
→ still inefficient if you have many inputs

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/

R. Sennrich MT – 2018 – 02 10 / 21

http://colah.github.io/posts/2015-08-Backprop/

Backpropagation

backward-mode differentiation lets us efficiently compute
∂e

∂x
for all inputs

x in one pass
→ also known as error backpropagation

Christopher Olah http://colah.github.io/posts/2015-08-Backprop/

R. Sennrich MT – 2018 – 02 10 / 21

http://colah.github.io/posts/2015-08-Backprop/

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model;

(here: a linear model)

a suitable cost (or loss) function;

(here: mean square error)

an optimization algorithm;

(here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

To summarize what we have learned

When approaching a machine learning problem, we need:

a suitable model; (here: a linear model)

a suitable cost (or loss) function; (here: mean square error)

an optimization algorithm; (here: a variant of SGD)

the gradient(s) of the cost function (if required by the optimization
algorithm).

R. Sennrich MT – 2018 – 02 11 / 21

What is a Neural Network?

A complex non-linear function which:
is built from simpler units (neurons, nodes, gates, . . .)
maps vectors/matrices to vectors/matrices
is parameterised by vectors/matrices

Why is this useful?

very expressive
can represent (e.g.) parameterised probability distributions
evaluation and parameter estimation can be built up from components

relationship to linear regression
more complex architectures with hidden units
(neither input nor output)

neural networks typically use non-linear activation functions

R. Sennrich MT – 2018 – 02 12 / 21

What is a Neural Network?

A complex non-linear function which:
is built from simpler units (neurons, nodes, gates, . . .)
maps vectors/matrices to vectors/matrices
is parameterised by vectors/matrices

Why is this useful?
very expressive
can represent (e.g.) parameterised probability distributions
evaluation and parameter estimation can be built up from components

relationship to linear regression
more complex architectures with hidden units
(neither input nor output)

neural networks typically use non-linear activation functions

R. Sennrich MT – 2018 – 02 12 / 21

What is a Neural Network?

A complex non-linear function which:
is built from simpler units (neurons, nodes, gates, . . .)
maps vectors/matrices to vectors/matrices
is parameterised by vectors/matrices

Why is this useful?
very expressive
can represent (e.g.) parameterised probability distributions
evaluation and parameter estimation can be built up from components

relationship to linear regression
more complex architectures with hidden units
(neither input nor output)

neural networks typically use non-linear activation functions

R. Sennrich MT – 2018 – 02 12 / 21

An Artificial Neuron

x1

x2

x3

...

xn

g(w · x+ b) y

x is a vector input, y is a scalar output

w and b are the parameters (b is a bias term)

g is a (non-linear) activation function

R. Sennrich MT – 2018 – 02 13 / 21

Why Non-linearity?

Functions like XOR cannot be separated by a linear function

XOR
Truth table

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

A

B

C

D

x1

x2

y

1

1

1

-2

1

0.5

0.5

(neurons arranged in layers, and fire if input is ≥ 1)

R. Sennrich MT – 2018 – 02 14 / 21

Why Non-linearity?

Functions like XOR cannot be separated by a linear function

XOR
Truth table

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

A

B

C

D

x1

x2

y

1

1

1

-2

1

0.5

0.5

(neurons arranged in layers, and fire if input is ≥ 1)

R. Sennrich MT – 2018 – 02 14 / 21

Why Non-linearity?

Functions like XOR cannot be separated by a linear function

XOR
Truth table

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

A

B

C

D

x1

x2

y

1

1

1

-2

1

0.5

0.5

(neurons arranged in layers, and fire if input is ≥ 1)

R. Sennrich MT – 2018 – 02 14 / 21

Why Non-linearity?

Functions like XOR cannot be separated by a linear function

XOR
Truth table

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

A

B

C

D

x1

x2

y

1

1

1

-2

1

0.5

0.5

(neurons arranged in layers, and fire if input is ≥ 1)

R. Sennrich MT – 2018 – 02 14 / 21

Activation functions

desirable:
differentiable (for gradient-based training)
monotonic (for better training stability)
non-linear (for better expressivity)

−3.0 −2.0 −1.0 1.0 2.0 3.0

−1.0

1.0

2.0

3.0

x

y

identity (linear)
sigmoid

tanh
rectified linear unit (ReLU)

R. Sennrich MT – 2018 – 02 15 / 21

A Simple Neural Network: Maths

we can use linear algebra to formalize our neural network:

the network

A

B

C

D

x1

x2

y

1

0

0

1

1

-2

1

0.5

0.5

w1 =

 1 0
0.5 0.5
0 1

 h1 =

AB
C

 x =

[
x1
x2

]
w2 =

[
1 −2 1

]
y =

[
D
]

calculation of x 7→ y

h1 = ϕ(xw1)

y = ϕ(h1w2)

R. Sennrich MT – 2018 – 02 16 / 21

A Simple Neural Network: Python Code

import numpy as np

#activation function

def phi(x):

return np.greater_equal(x,1).astype(int)

def nn(x, w1, w2):

h1 = phi(np.dot(x, w1))

y = phi(np.dot(h1, w2))

return y

w1 = np.array([[1, 0.5, 0], [0, 0.5, 1]])

w2 = np.array([[1], [-2], [1]])

x = np.array([1, 0])

print nn(x, w1, w2)

R. Sennrich MT – 2018 – 02 17 / 21

More Complex Architectures
Convolutional

tor wi ∈ Rd of a word in the sentence:

s =

w1 . . . ws

 (2)

To address the problem of varying sentence
lengths, the Max-TDNN takes the maximum of
each row in the resulting matrix c yielding a vector
of d values:

cmax =

max(c1,:)
...

max(cd,:)

 (3)

The aim is to capture the most relevant feature, i.e.
the one with the highest value, for each of the d
rows of the resulting matrix c. The fixed-sized
vector cmax is then used as input to a fully con-
nected layer for classification.

The Max-TDNN model has many desirable
properties. It is sensitive to the order of the words
in the sentence and it does not depend on external
language-specific features such as dependency or
constituency parse trees. It also gives largely uni-
form importance to the signal coming from each
of the words in the sentence, with the exception
of words at the margins that are considered fewer
times in the computation of the narrow convolu-
tion. But the model also has some limiting as-
pects. The range of the feature detectors is lim-
ited to the span m of the weights. Increasing m or
stacking multiple convolutional layers of the nar-
row type makes the range of the feature detectors
larger; at the same time it also exacerbates the ne-
glect of the margins of the sentence and increases
the minimum size s of the input sentence required
by the convolution. For this reason higher-order
and long-range feature detectors cannot be easily
incorporated into the model. The max pooling op-
eration has some disadvantages too. It cannot dis-
tinguish whether a relevant feature in one of the
rows occurs just one or multiple times and it for-
gets the order in which the features occur. More
generally, the pooling factor by which the signal
of the matrix is reduced at once corresponds to
s−m+1; even for moderate values of s the pool-
ing factor can be excessive. The aim of the next
section is to address these limitations while pre-
serving the advantages.

3 Convolutional Neural Networks with
Dynamic k-Max Pooling

We model sentences using a convolutional archi-
tecture that alternates wide convolutional layers

K-Max pooling
(k=3)

Fully connected
layer

Folding

Wide
convolution

(m=2)

Dynamic
k-max pooling
 (k= f(s) =5)

 Projected
sentence

matrix
(s=7)

Wide
convolution

(m=3)

 The cat sat on the red mat

Figure 3: A DCNN for the seven word input sen-
tence. Word embeddings have size d = 4. The
network has two convolutional layers with two
feature maps each. The widths of the filters at the
two layers are respectively 3 and 2. The (dynamic)
k-max pooling layers have values k of 5 and 3.

with dynamic pooling layers given by dynamic k-
max pooling. In the network the width of a feature
map at an intermediate layer varies depending on
the length of the input sentence; the resulting ar-
chitecture is the Dynamic Convolutional Neural
Network. Figure 3 represents a DCNN. We pro-
ceed to describe the network in detail.

3.1 Wide Convolution

Given an input sentence, to obtain the first layer of
the DCNN we take the embedding wi ∈ Rd for
each word in the sentence and construct the sen-
tence matrix s ∈ Rd×s as in Eq. 2. The values
in the embeddings wi are parameters that are op-
timised during training. A convolutional layer in
the network is obtained by convolving a matrix of
weights m ∈ Rd×m with the matrix of activations
at the layer below. For example, the second layer
is obtained by applying a convolution to the sen-
tence matrix s itself. Dimension d and filter width
m are hyper-parameters of the network. We let the
operations be wide one-dimensional convolutions
as described in Sect. 2.2. The resulting matrix c
has dimensions d× (s + m− 1).

658

[Kalchbrenner et al., 2014]

Recurrent

Andrej Karpathy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

R. Sennrich MT – 2018 – 02 18 / 21

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Practical Considerations

efficiency:
GPU acceleration of BLAS operations
perform SGD in mini-batches

hyperparameters:
number and size of layers
minibatch size
learning rate
...

initialisation of weight matrices

stopping criterion

regularization (dropout)

bias units (always-on input)

R. Sennrich MT – 2018 – 02 19 / 21

Toolkits for Neural Networks

What does a Toolkit Provide
Multi-dimensional matrices (tensors)

Automatic differentiation

Efficient GPU routines for tensor operations

Torch http://torch.ch/

TensorFlow https://www.tensorflow.org/

Theano http://deeplearning.net/software/theano/

There are many more!
R. Sennrich MT – 2018 – 02 20 / 21

http://torch.ch/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/

Further Reading

required reading: Koehn (2017), chapter 13.2-3.

further reading on backpropagation:
http://colah.github.io/posts/2015-08-Backprop/

R. Sennrich MT – 2018 – 02 21 / 21

http://colah.github.io/posts/2015-08-Backprop/

Slide Credits

some slides borrowed from:

Sennrich, Birch, and Junczys-Dowmunt (2016): Advances in Neural
Machine Translation

Sennrich and Haddow (2017): Practical Neural Machine Translation

R. Sennrich MT – 2018 – 02 22 / 21

Bibliography I

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).
A Convolutional Neural Network for Modelling Sentences.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

R. Sennrich MT – 2018 – 02 23 / 21

