

Machine Translation 02: Neural Network Basics

Rico Sennrich

University of Edinburgh

MT - 2018 - 02 R. Sennrich 1/21 **EPSRC** Centre for Doctoral Training in Pervasive Parallelism

- 4-year programme: MSc by Research + PhD
- Research-focused: Work on your thesis topic from the start
- Collaboration between:
- ► University of Edinburgh's School of Informatics
- * Ranked top in the UK by 2014 REF
- ► Edinburgh Parallel Computing Centre
- * UK's largest supercomputing centre

- Research topics in software, hardware, theory and application of:
- ► Parallelism
- ► Concurrency
- ► Distribution
- Full funding available

· Industrial engagement programme includes internships at leading

companies

Now accepting applications! Find out more and apply at: pervasiveparallelism.inf.ed.ac.uk

MT - 2018 - 02

1/21

Linear Regression

informatics

R. Sennrich

Parameters: $\theta = \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right]$ Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Today's Lecture

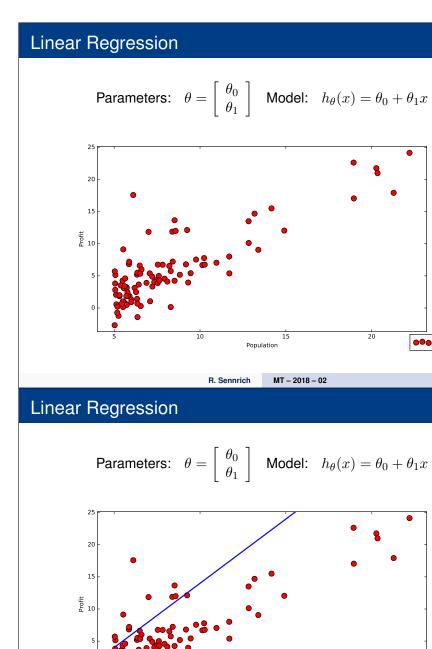
- linear regression
- stochastic gradient descent (SGD)
- backpropagation
- a simple neural network

R. Sennrich

MT - 2018 - 02

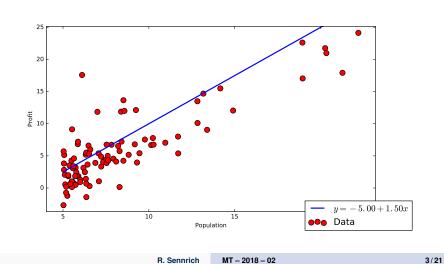
R. Sennrich

MT - 2018 - 02



Linear Regression

Parameters:
$$\theta = \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right]$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

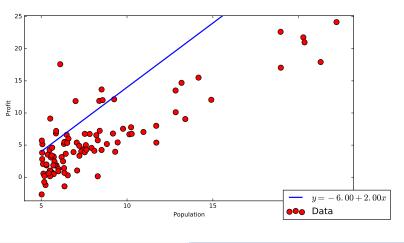


Linear Regression

Parameters: $\theta = \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right]$ Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Population

MT - 2018 - 02



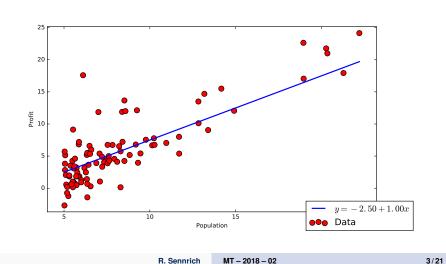
MT - 2018 - 02

R. Sennrich

Linear Regression

••• Data

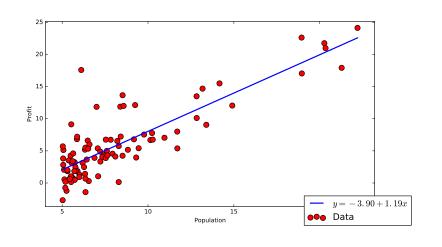
Parameters:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
 Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$



Linear Regression

The cost (or loss) function

Parameters: $\theta = \left[\begin{array}{c} \theta_0 \\ \theta_1 \end{array} \right]$ Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$



• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J:\mathbb{R}^2\to\mathbb{R}$$

$$\hat{\theta} = \underset{\theta \in \mathbb{R}^2}{\arg \min} \ J(\theta)$$

The cost (or loss) function

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \underset{\theta \in \mathbb{R}^2}{\arg \min} \ J(\theta)$$

MT - 2018 - 02

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

The cost (or loss) function

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J:\mathbb{R}^2\to\mathbb{R}$$

MT - 2018 - 02

$$\hat{\theta} = \underset{\theta \in \mathbb{R}^2}{\arg \min} \ J(\theta)$$

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

R. Sennrich

MT - 2018 - 02

4/2

3/21

R. Sennrich

MT - 2018 - 02

4/21

The cost (or loss) function

The cost (or loss) function

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \underset{\theta \in \mathbb{R}^2}{\arg \min} \ J(\theta)$$

• Mean Square Error:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2}$$

where m is the number of data points in the training set.

y = -5.00 + 1.50xData $J(\left[\begin{array}{c} -5.00\\ 1.50 \end{array}\right]) = 6.1561$

MT - 2018 - 02

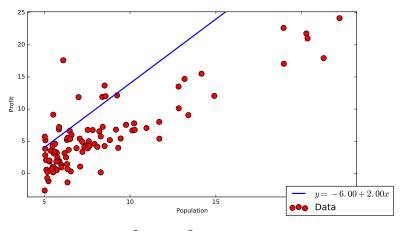
4/21

MT - 2018 - 02

5/21

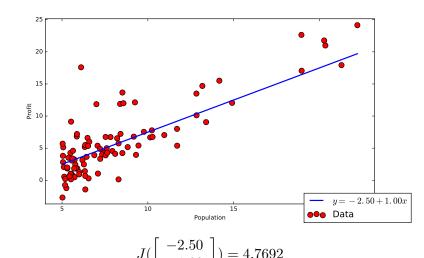
The cost (or loss) function

The cost (or loss) function



$$J(\left[\begin{array}{c} -6.00\\ 2.00 \end{array} \right]) = 19.3401$$

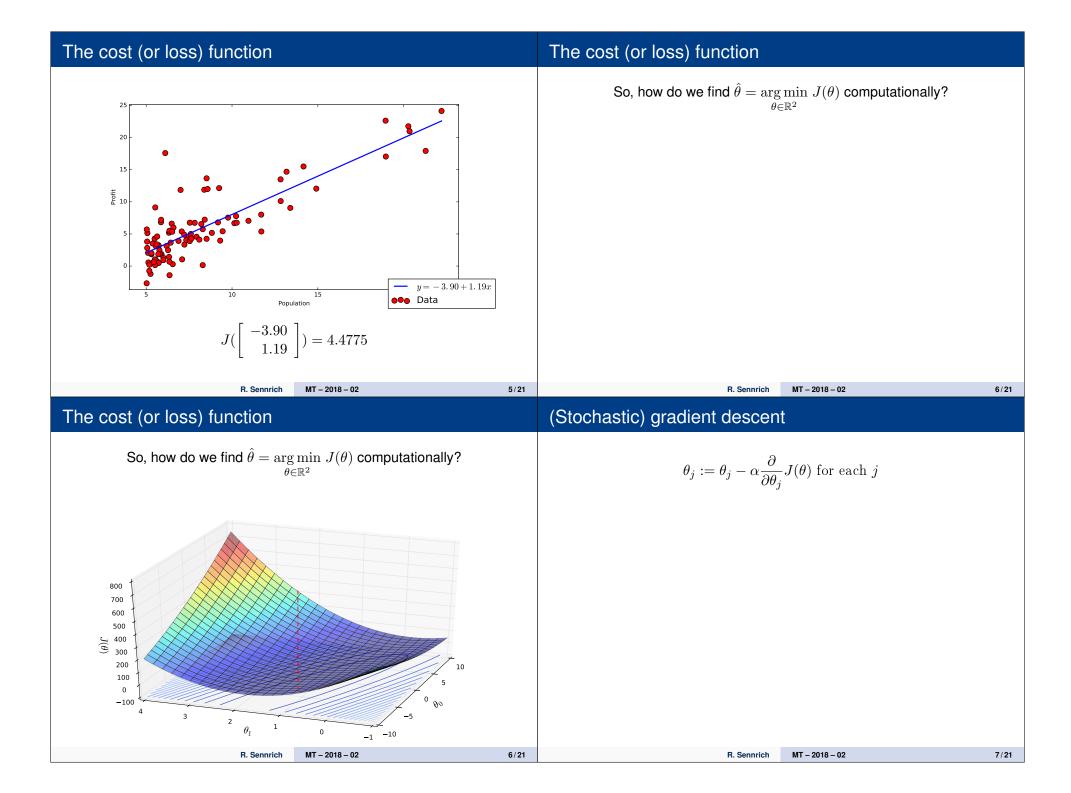
R. Sennrich MT - 2018 - 02

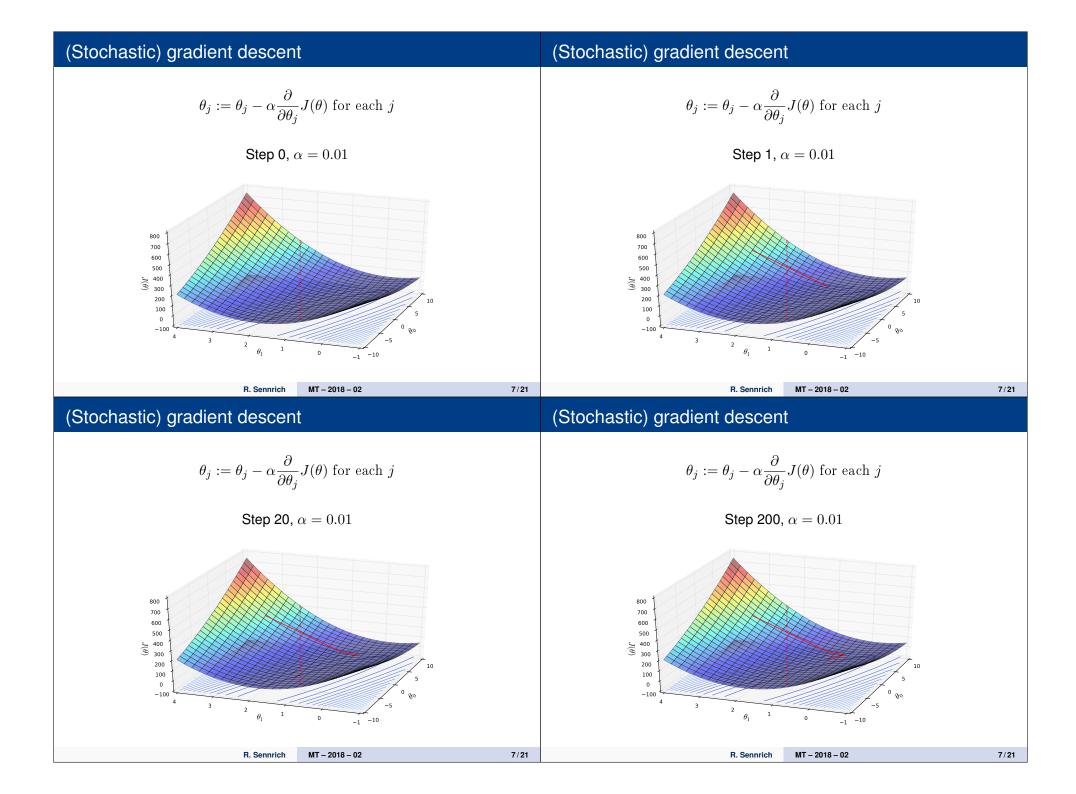


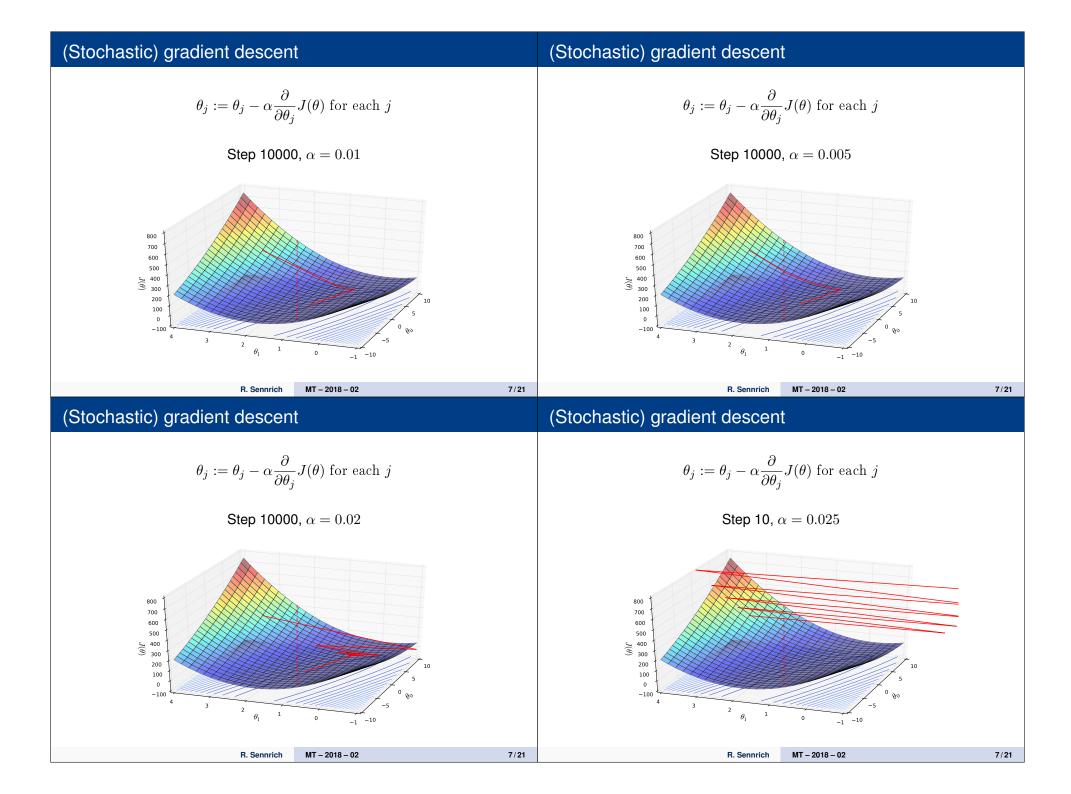
$$J(\left[\begin{array}{c} -2.50\\ 1.00 \end{array}\right]) = 4.7692$$

R. Sennrich

MT - 2018 - 02







Backpropagation

Computation Graphs

How do we calculate $\frac{\partial}{\partial \theta_j} J(\theta)$?

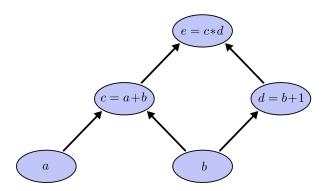
In other words:

how sensitive is the loss function to the change of a parameter θ_i ?

why backpropagation?

we could do this by hand for linear regression... but what about complex functions?

→ propagate error backward (special case of automatic differentiation)



R. Sennrich

MT - 2018 - 02

8/21

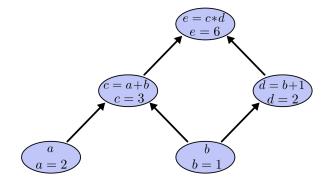
R. Sennrich

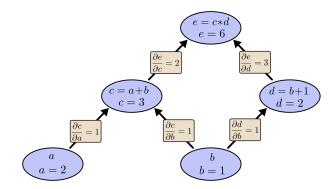
MT - 2018 - 02

9/21

Computation Graphs

Computation Graphs





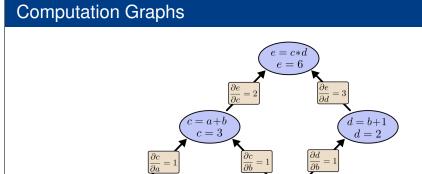
R. Sennrich

MT - 2018 - 02

9/21

R. Sennrich

MT - 2018 - 02



applying chain rule:

$$\frac{\partial e}{\partial b} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} \cdot \frac{\partial d}{\partial b} = 1 \cdot 2 + 1 \cdot 3 = 5$$

next, let's use dynamic programming to avoid re-computing intermediate results...

9/21

forward-mode differentiation lets us compute partial derivatives $\frac{\partial x}{\partial b}$ for all nodes x

MT - 2018 - 02

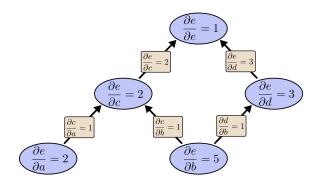
 \rightarrow still inefficient if you have many inputs

Backpropagation

Christopher Olah http://colah.github.io/posts/2015-08-Backprop

Backpropagation

To summarize what we have learned



MT - 2018 - 02

backward-mode differentiation lets us efficiently compute $\frac{\partial e}{\partial x}$ for all inputs x in one pass

→ also known as *error backpropagation*

MT - 2018 - 02

When approaching a machine learning problem, we need:

MT - 2018 - 02

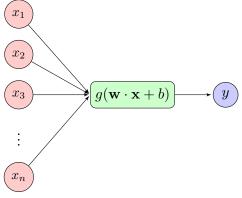
To summarize what we have learned	To summarize what we have learned
When approaching a machine learning problem, we need: a suitable model;	When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function;
R. Sennrich MT – 2018 – 02 11/21	R. Sennrich MT – 2018 – 02 11/21
To summarize what we have learned	To summarize what we have learned
When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function; an optimization algorithm; B. Sennrich MT – 2018 – 02 11/21	When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function; an optimization algorithm; the gradient(s) of the cost function (if required by the optimization algorithm).

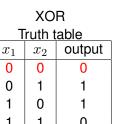
To summarize what we have learned	What is a Neural Network?
 When approaching a machine learning problem, we need: a suitable model; (here: a linear model) a suitable cost (or loss) function; (here: mean square error) an optimization algorithm; (here: a variant of SGD) the gradient(s) of the cost function (if required by the optimization algorithm). 	 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices
R. Sennrich MT – 2018 – 02 11/21	R. Sennrich MT – 2018 – 02 12 / 21
What is a Neural Network?	What is a Neural Network?
 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices Why is this useful? very expressive can represent (e.g.) parameterised probability distributions evaluation and parameter estimation can be built up from components 	 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices Why is this useful? very expressive can represent (e.g.) parameterised probability distributions evaluation and parameter estimation can be built up from components relationship to linear regression more complex architectures with hidden units (neither input nor output)
	neural networks typically use non-linear activation functions
R. Sennrich MT – 2018 – 02 12/21	R. Sennrich MT – 2018 – 02 12 / 21

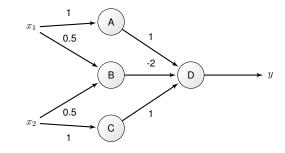
An Artificial Neuron

Why Non-linearity?

Functions like XOR cannot be separated by a linear function







- x is a vector input, y is a scalar output
- w and b are the parameters (b is a bias term)
- *g* is a (non-linear) *activation function*

MT - 2018 - 02

(neurons arranged in layers, and fire if input is ≥ 1)

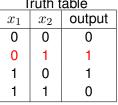
MT - 2018 - 02

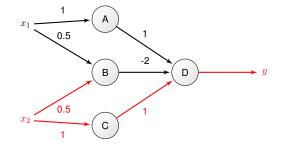
Why Non-linearity?

Why Non-linearity?

Functions like XOR cannot be separated by a *linear* function

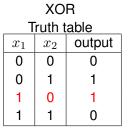
XOR Truth table

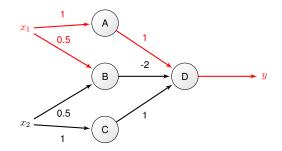




(neurons arranged in layers, and fire if input is ≥ 1)

Functions like XOR cannot be separated by a linear function





(neurons arranged in layers, and fire if input is ≥ 1)

R. Sennrich

MT - 2018 - 02

13/21

MT - 2018 - 02

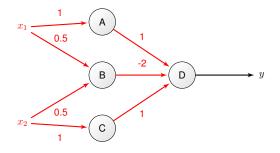
Why Non-linearity?

Activation functions

Functions like XOR cannot be separated by a *linear* function

XOR

Truth table		
x_1	x_2	output
0	0	0
0	1	1
1	0	1
1	1	0



(neurons arranged in layers, and fire if input is ≥ 1)

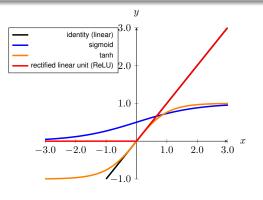
R. Sennrich

MT - 2018 - 02

14/21

desirable:

- differentiable (for gradient-based training)
- monotonic (for better training stability)
- non-linear (for better expressivity)



R. Sennrich

MT - 2018 - 02

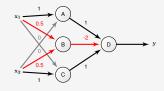
15/21

A Simple Neural Network: Maths

A Simple Neural Network: Python Code

we can use linear algebra to formalize our neural network:

the network



$$v_1 = \begin{bmatrix} 1 & 0 \\ 0.5 & 0.5 \\ 0 & 1 \end{bmatrix} \quad h_1 = \begin{bmatrix} A \\ B \\ C \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$v_2 = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \quad y = \begin{bmatrix} D \end{bmatrix}$$

calculation of $x \mapsto y$

$$h_1 = \varphi(xw_1)$$
$$y = \varphi(h_1w_2)$$

import numpy as np

```
#activation function
```

```
def phi(x):
    return np.greater_equal(x,1).astype(int)

def nn(x, w1, w2):
    h1 = phi(np.dot(x, w1))
    y = phi(np.dot(h1, w2))
    return y

w1 = np.array([[1, 0.5, 0], [0, 0.5, 1]])
w2 = np.array([[1], [-2], [1]])
```

```
w1 = np.array([[1, 0.5, 0], [0, 0.5, 1]]
w2 = np.array([[1], [-2], [1]])
x = np.array([1, 0])
print nn(x, w1, w2)
```

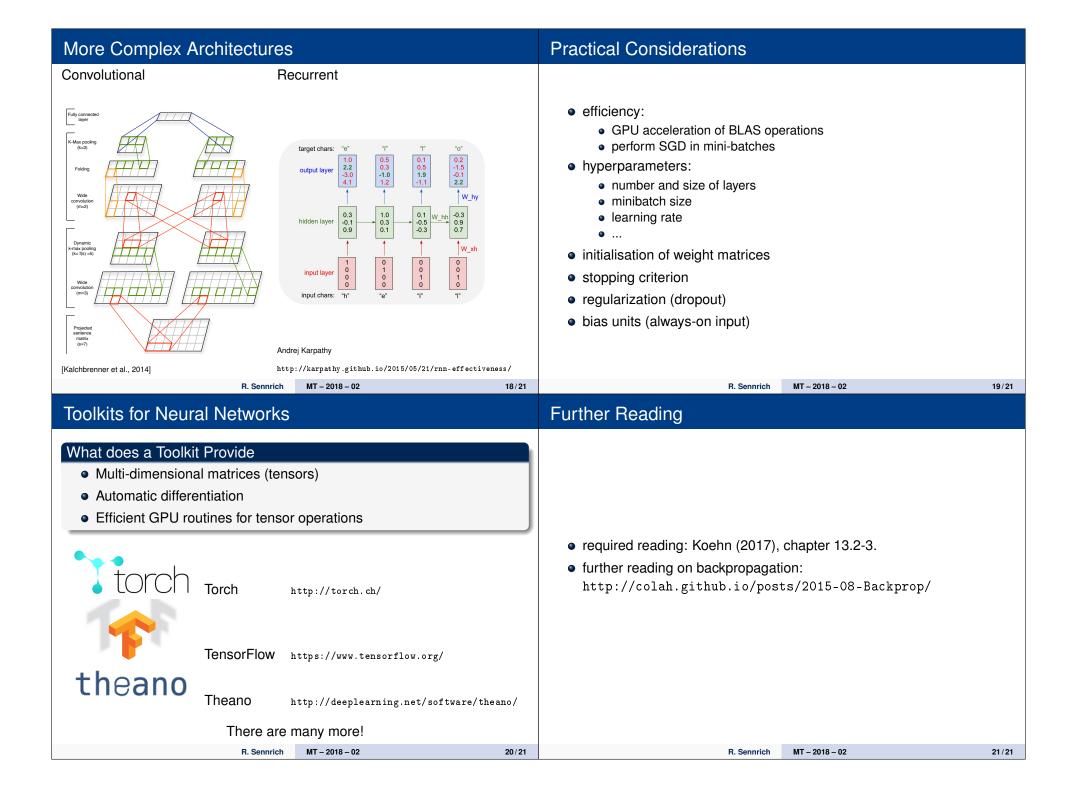
R. Sennrich

MT - 2018 - 02

16/21

R. Sennrich

MT - 2018 - 02



Slide Credits		Bibliography I
some slides borrowed from: Sennrich, Birch, and Junczys-Do Machine Translation Sennrich and Haddow (2017): Pr	ractical Neural Machine Translation	Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A Convolutional Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
R. Sennrich	MT – 2018 – 02 22/21	R. Sennrich MT – 2018 – 02 23/21