Machine T 02: Neural Ne Rico Se University of	etwork Basics	THE UNIVERSITY of EDINBURGH	 MSc by Research + PhD Research-focused: Work on your thesis topic from the start Collaboration between: University of Edinburgh's 	 Research topi hardware, the application o Parallelism Concurrency Distribution Full funding a Industrial eng programme in internships at companies Now accep Find out m 	eory and f: available gagement ncludes	EPSRC Brearing and Physics 25 Weight down	
R. Sennrich	MT – 2018 – 02	1/21		R. Sennrich	MT – 2018 – 02		1/21
Today's Lecture			Linear Regression				
 linear regression stochastic gradient descent (SGI backpropagation a simple neural network 	D) MT - 2018 - 02	2/21	Parameters: 6	$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$	Model: <i>h</i> _d	$\theta(x) = \theta_0 + \theta_1 x$	3/21

Linear Regression	The cost (or loss) function
Parameters: $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$ Model: $h_{\theta}(x) = \theta_0 + \theta_1 x$	• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal: $J: \mathbb{R}^2 \to \mathbb{R}$ $\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^2} J(\theta)$
R. Sennrich MT – 2018 – 02 3/21	R. Sennrich MT – 2018 – 02 4/21
The cost (or loss) function	The cost (or loss) function
• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal: $J : \mathbb{R}^2 \to \mathbb{R}$ $\hat{\theta} = \arg \min J(\theta)$	• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal: $J : \mathbb{R}^2 \to \mathbb{R}$ $\hat{\theta} = \arg \min J(\theta)$
$\theta \in \mathbb{R}^2$	$ heta \in \mathbb{R}^2$
• Mean Square Error:	$\theta \in \mathbb{R}^2$ • Mean Square Error:

4/21

R. Sennrich

MT – 2018 – 02

4/21

R. Sennrich MT – 2018 – 02

The cost (or loss) function

• We try to find parameters $\hat{\theta} \in \mathbb{R}^2$ such that the cost function $J(\theta)$ is minimal:

$$J: \mathbb{R}^2 \to \mathbb{R}$$
$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^2} J(\theta)$$

• Mean Square Error:

The cost (or loss) function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

MT - 2018 - 02

where m is the number of data points in the training set.

R. Sennrich

The cost (or loss) function

4/21

MT - 2018 - 02

R. Sennrich

Computation Graphs	Backpropagation
$\frac{\partial e}{\partial c} = 2$ $\frac{\partial e}{\partial c} = 2$ $\frac{\partial e}{\partial d} = 3$ $\frac{\partial e}{\partial d} = 3$ $\frac{\partial e}{\partial d} = 1$ $\frac{\partial e}{\partial d} = 1$ $\frac{\partial e}{\partial b} = \frac{\partial e}{\partial c} \cdot \frac{\partial c}{\partial b} + \frac{\partial e}{\partial d} \cdot \frac{\partial d}{\partial b} = 1 \cdot 2 + 1 \cdot 3 = 5$ next, let's use <i>dynamic programming</i> to avoid re-computing intermediate results	$ \begin{array}{l} & $
R. Sennrich MT – 2018 – 02 9/21	R. Sennrich MT – 2018 – 02 10/21
Backpropagation	To summarize what we have learned
$\frac{\partial e}{\partial c} = 2$ $\frac{\partial e}{\partial d} = 3$ $\frac{\partial e}{\partial d} = 1$ $\frac{\partial e}{\partial b} = 1$ $\frac{\partial e}{\partial b} = 5$	When approaching a machine learning problem, we need:
backward-mode differentiation lets us efficiently compute $\frac{\partial e}{\partial x}$ for all inputs x in one pass \rightarrow also known as <i>error backpropagation</i>	
R. Sennrich MT – 2018 – 02 10/21	R. Sennrich MT – 2018 – 02 11/21

To summarize what we have learned		To summarize what we have learned			
When approaching a machine learning problem, we need: • a suitable model;		 When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function; 			
R. Sennrich MT - 2018 - 02 To summarize what we have learned	11/21	R. Sennrich MT - 2018 - 02 11/21 To summarize what we have learned			
 When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function; an optimization algorithm; 		 When approaching a machine learning problem, we need: a suitable model; a suitable cost (or loss) function; an optimization algorithm; the gradient(s) of the cost function (if required by the optimization algorithm). 			
R. Sennrich MT – 2018 – 02	11/21	R. Sennrich MT – 2018 – 02 11/21			

To summarize what we have learned	What is a Neural Network?		
 When approaching a machine learning problem, we need: a suitable model; (here: a linear model) a suitable cost (or loss) function; (here: mean square error) an optimization algorithm; (here: a variant of SGD) the gradient(s) of the cost function (if required by the optimization algorithm). 	 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices 		
R. Sennrich MT – 2018 – 02 11/21	R. Sennrich MT – 2018 – 02 12/21		
What is a Neural Network?	What is a Neural Network?		
 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices Why is this useful? very expressive can represent (e.g.) parameterised probability distributions evaluation and parameter estimation can be built up from components 	 A complex non-linear function which: is built from simpler units (neurons, nodes, gates,) maps vectors/matrices to vectors/matrices is parameterised by vectors/matrices Why is this useful? very expressive can represent (e.g.) parameterised probability distributions evaluation and parameter estimation can be built up from components 		
	 relationship to linear regression more complex architectures with <i>hidden</i> units (neither input nor output) neural networks typically use non-linear activation functions 		
R. Sennrich MT – 2018 – 02 12/21	R. Sennrich MT - 2018 - 02 12/21		

An Artificial Neuron

Why Non-linearity?

• x is a vector input, y is a scalar output

• *g* is a (non-linear) *activation function*

• w and b are the *parameters* (b is a *bias* term)

Functions like XOR cannot be separated by a linear function

R. Sennrich

R. Sennrich

Why Non-linearity?

MT - 2018 - 02

(neurons arranged in layers, and fire if input is ≥ 1)

14/21

MT - 2018 - 02

R. Sennrich MT – 2018 – 02

More Complex Archite	ectures	Practical Considerations		
Convolutional	Image: chars: 10 1	 efficiency: GPU acceleration of BLAS operations perform SGD in mini-batches hyperparameters: number and size of layers minibatch size learning rate initialisation of weight matrices stopping criterion regularization (dropout) bias units (always-on input) 		
	R. Sennrich MT - 2018 - 02	18/21 R. Sennrich MT - 2018 - 02 19/21		
Toolkits for Neural Net	tworks	Further Reading		
 What does a Toolkit Provide Multi-dimensional matrices (tensors) Automatic differentiation Efficient GPU routines for tensor operations 		 required reading: Koehn (2017), chapter 13.2-3. further reading on backpropagation: http://colah.github.io/posts/2015-08-Backprop/ 		
	orFlow https://www.tensorflow.org/			
theano Thear		eano/		
	R. Sennrich MT - 2018 - 02	20/21 R. Sennrich MT - 2018 - 02 21/21		

Slide Credits		Bibliography I
some slides borrowed from: • Sennrich, Birch, and Junczys-Dow Machine Translation • Sennrich and Haddow (2017): Pra	ctical Neural Machine Translation	Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A Convolutional Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
R. Sennrich	MT – 2018 – 02 22/21	R. Sennrich MT – 2018 – 02 23/21