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Overview

last lecture
simple neural networks

real-valued vectors as input and output

today’s lecture
how do we represent language in neural networks?

how do we treat language probabilistically (with neural networks)?
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A probabilistic model of translation

Suppose that we have:
a source sentence S of length m (x1, . . . , xm)
a target sentence T of length n (y1, . . . , yn)

We can express translation as a probabilistic model

T ∗ = arg max
T

P (T |S)

Expanding using the chain rule gives

P (T |S) = P (y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

P (yi|y1, . . . , yi−1, x1, . . . , xm)
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A probabilistic model of language

simpler: instead of P (T |S), what is P (T )?
why do we care?

language model is integral part of statistical machine translation:

T ∗ = arg max
T

P (S|T )P (T ) Bayes’ theorem

T ∗ ≈ arg max
T

M∑
m=1

λmhm(S, T ) [Och, 2003]

in neural machine translation, separate language model is untypical,
but architectures are similar
language models have many other applications in NLP:

language identification
predictive typing
as a component in various NLP tasks
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N-gram language model

chain rule and Markov assumption
a sentence T of length n is a sequence x1, . . . , xn

P (T ) = P (x1, . . . , xn)

=

n∏
i=1

P (xi|x0, . . . , xi−1) (chain rule)

≈
n∏

i=1

P (xi|xi−k, . . . , xi−1) (Markov assumption: n-gram model)
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Discrete n-gram models

count-based models
estimate probability of n-grams via counting

main challenge: how to estimate probability of unseen n-grams?

n-grams
zerogram uniform distribution

unigram probability estimated from word frequency

bigram xi depends only on xi−1

trigram xi depends only on xi−2, xi−1
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Example: bigrams

German police have recovered more than 100 items stolen from John Lennon’s estate, including three
diaries. The diaries were put on display at Berlin police headquarters with other items including a tape
recording of a Beatles concert, two pairs of glasses, sheet music and a cigarette case. Police said a
58-year-old man had been arrested on suspicion of handling stolen goods. The items were stolen in
New York in 2006 from Lennon’s widow, Yoko Ono. Detectives said much of the haul was confiscated
from an auction house in Berlin in July, sparking an investigation to find the rest of the stolen items.
Ono identified the objects from photos she was shown at the German consulate in New York, German
media reported.
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P (of) =
5

101
≈ 0.041
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P (the|of) =
P (of the)

P (of)
≈ 0.0165

0.041
≈ 0.4

=
C(of the)

C(of)
=

2

5
= 0.4
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Sparse data

what is probability of "of his"?
→ unseen in our training data, so we estimate P (of his) ≈ 0

can we simply use more training data?
→ for higher n, most n-grams will be unseen

Google n-grams

length number ratio

1 13,588,391 1.00
2 314,843,401 1.70e-06
3 977,069,902 3.89e-13
4 1,313,818,354 3.85e-20
5 1,176,470,663 2.54e-27

Tokens 1,024,908,267,229

R. Sennrich MT – 2018 – 03 7 / 23



Smoothing

core idea: reserve part of probability mass for unseen events.
most popular: back-off smoothing: if n-gram is unseen, make
estimate based on smaller n-grams

example: Jelinek-Mercer smoothing

psmooth(x|h) =

{
α(x|h) + γ(h)β(x|h) C(x, h) > 0

γ(h)β(x|h) C(x, h) = 0

= α(x|h) + γ(h)β(x|h)

α(x|h) = λ(h)pML(x|h) = λ(h)
C(x, h)

C(h)

γ(h) = 1− λ(h)

β(xi|xi−1
i−n+1) = psmooth(xi|xi−1

i−n+2)
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Continuous n-gram language models

core idea: rather than backing off, rely on similarity in internal
representation for estimating unseen events:

P (barks|the Rottweiler) ≈ P (barks|the Terrier)
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Continuous n-gram language models

[Vaswani et al., 2013]

n-gram NNLM [Bengio et al., 2003]
input: context of n-1 previous words

output: probability distribution for next word

linear embedding layer with shared weights

one or several hidden layers
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Representing words as vectors

One-hot encoding
example vocabulary: ’man, ’runs’, ’the’, ’.’

input/output for p(runs|the man):

x0 =


0
0
1
0

 x1 =


1
0
0
0

 ytrue =


0
1
0
0


size of input/output vector: vocabulary size
embedding layer is lower-dimensional and dense

smaller weight matrices
network learns to group similar words to similar point in vector space
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Multi-class logistic regression

1

x1

x2

· · ·

xn

∑
∑
∑

P (c = 0|Θ, X)

P (c = 1|Θ, X)

P (c = 2|Θ, X)

θ
(0)
0

θ
(0)
1

θ
(0)
2

θ
(0)
n

θ
(2)
n

Features

Input layer

Layer 1

g(z) = softmax(z)

R. Sennrich MT – 2018 – 03 12 / 23



Softmax activation function

softmax function

p(y = j|x) =
exj∑
k e

xk

softmax function normalizes output vector to probability distribution
→ computational cost linear to vocabulary size (!)
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Cross-entropy Loss

goal: predict probability 1 for correct word; 0 for rest:

L(Θ) = −
c∑

k=1

δ(y, k) log p(k|x,Θ)

δ(x, y) =

{
1 if x = y
0 otherwise

simplified:
L(Θ) = − log p(y|x,Θ)
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Feedforward neural language model: math

[Vaswani et al., 2013]

h1 = ϕW1(Ex1, Ex2)

y = softmax(W2h1)
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Recurrent neural network language model (RNNLM)

RNNLM [Mikolov et al., 2010]
motivation: condition on arbitrarily long context
→ no Markov assumption

we read in one word at a time, and update hidden state incrementally

hidden state is initialized as empty vector at time step 0
parameters:

embedding matrix E
feedforward matrices W1, W2

recurrent matrix U

hi =

{
0, , if i = 0

tanh(W1Exi + Uhi−1) , if i > 0

yi = softmax(W2hi−1)
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Cross-entropy Loss in RNNs

unrolling RNN produces acyclic network (with shared weights)
backpropagation like with feed-forward network
each time step contributes to (shared) weight update

loss is applied to every word:

L(Θ) = −
n∑

i=1

log p(xi|x1, . . . , xi−1,Θ)

teacher forcing: for each word, condition prediction on true history
→ efficient, but mismatch to test time (where history is unreliable)

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNNs and long distance dependencies

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM) – Step-by-step

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated Recurrent Units (GRUs)

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN variants

gated units
sigmoid layers σ act as “gates” that control flow of information

reduces vanishing gradient problem

strong empirical results

Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Further Reading

Required Reading
Koehn, 13.4

Optional Reading
Basic probability theory (Sharon Golwater):
http://homepages.inf.ed.ac.uk/sgwater/math_tutorials.html

introduction to LSTMs:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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