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Overview

last lecture
how do we represent language in neural networks?

how do we treat language probabilistically (with neural networks)?

today’s lecture
how do we model translation with a neural network?

how do we generate text from a probabilistic translation model?
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Modelling Translation

Suppose that we have:
a source sentence S of length m (x1, . . . , xm)
a target sentence T of length n (y1, . . . , yn)

We can express translation as a probabilistic model

T ∗ = argmax
T

p(T |S)

Expanding using the chain rule gives

p(T |S) = p(y1, . . . , yn|x1, . . . , xm)

=

n∏
i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)
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Differences Between Translation and Language Model

Target-side language model:

p(T ) =

n∏
i=1

p(yi|y1, . . . , yi−1)

Translation model:

p(T |S) =
n∏

i=1

p(yi|y1, . . . , yi−1, x1, . . . , xm)

We could just treat sentence pair as one long sequence, but:
We do not care about p(S)
We may want different vocabulary, network architecture for source text

→ Use separate RNNs for source and target.
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Encoder-Decoder for Translation

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

of course john has fun

h1 h2 h3 h4

x1 x2 x3 x4

natürlich hat john spaß

Decoder

Encoder
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Summary vector

Last encoder hidden-state “summarises” source sentence

With multilingual training, we can potentially learn
language-independent meaning representation

[Sutskever et al., 2014]
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Summary vector as information bottleneck

Problem: Sentence Length
Fixed sized representation degrades as sentence length increases

Reversing source brings some improvement [Sutskever et al., 2014]

[Cho et al., 2014]

Solution: Attention
Compute context vector as weighted average of source hidden states

Weights computed by feed-forward network with softmax activation
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Encoder-Decoder with Attention
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Attentional encoder-decoder: Maths

simplifications of model by [Bahdanau et al., 2015] (for illustration)
plain RNN instead of GRU

simpler output layer

we do not show bias terms

decoder follows Look, Update, Generate strategy [Sennrich et al., 2017]

Details in https://github.com/amunmt/amunmt/blob/master/contrib/notebooks/dl4mt.ipynb

notation
W , U , E, C, V are weight matrices (of different dimensionality)

E one-hot to embedding (e.g. 50000 · 512)
W embedding to hidden (e.g. 512 · 1024)
U hidden to hidden (e.g. 1024 · 1024)
C context (2x hidden) to hidden (e.g. 2048 · 1024)
Vo hidden to one-hot (e.g. 1024 · 50000)

separate weight matrices for encoder and decoder (e.g. Ex and Ey)

input X of length Tx; output Y of length Ty
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Attentional encoder-decoder: Maths

encoder

−→
h j =

{
0, , if j = 0

tanh(
−→
W xExxj +

−→
U xhj−1) , if j > 0

←−
h j =

{
0, , if j = Tx + 1

tanh(
←−
W xExxj +

←−
U xhj+1) , if j ≤ Tx

hj = (
−→
h j ,
←−
h j)
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Attentional encoder-decoder: Maths

decoder

si =

{
tanh(Ws

←−
h i), , if i = 0

tanh(WyEyyi−1 + Uysi−1 + Cci) , if i > 0

ti = tanh(Uosi +WoEyyi−1 + Coci)

yi = softmax(Voti)

attention model

eij = v>a tanh(Wasi−1 + Uahj)

αij = softmax(eij)

ci =

Tx∑
j=1

αijhj
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Attention model

attention model
side effect: we obtain alignment between source and target sentence

information can also flow along recurrent connections, so there is no
guarantee that attention corresponds to alignment
applications:

visualisation
replace unknown words with back-off dictionary [Jean et al., 2015]
...

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Attention model

attention model also works with images:

[Cho et al., 2015]
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Attention model

[Cho et al., 2015]
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Application of Encoder-Decoder Model

Scoring (a translation)
p(La, croissance, économique, s’est, ralentie, ces, dernières, années, . |
Economic, growth, has, slowed, down, in, recent, year, .) = ?

Decoding ( a source sentence)
Generate the most probable translation of a source sentence

y∗ = argmaxy p(y|Economic, growth, has, slowed, down, in, recent, year, .)
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Decoding

exact search
generate every possible sentence T in target language

compute score p(T |S) for each

pick best one

intractable: |vocab|N translations for output length N
→ we need approximative search strategy
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Decoding

approximative search/1: greedy search
at each time step, compute probability
distribution P (yi|S, y<i)

select yi according to some heuristic:

sampling: sample from P (yi|S, y<i)
greedy search: pick argmaxy p(yi|S, y<i)

continue until we generate <eos>

! 0.928

0.175

<eos> 0.999

0.175

hello 0.946

0.056

world 0.957

0.100

0

efficient, but suboptimal
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Decoding

approximative search/2: beam
search

maintain list of K hypotheses
(beam)

at each time step, expand each
hypothesis k: p(yki |S, yk<i)

select K hypotheses with
highest total probability:∏

i

p(yki |S, yk<i)

hello 0.946

0.056

world 0.957

0.100

World 0.010

4.632

. 0.030

3.609

! 0.928

0.175

... 0.014

4.384

<eos> 0.999

3.609

world 0.684

5.299

HI 0.007

4.920

<eos> 0.994

4.390

Hey 0.006

5.107

<eos> 0.999

0.175

0

K = 3

relatively efficient . . . beam expansion parallelisable

currently default search strategy in neural machine translation

small beam (K ≈ 10) offers good speed-quality trade-off

R. Sennrich MT – 2018 – 04 17 / 20



Ensembles

combine decision of multiple classifiers by voting
ensemble will reduce error if these conditions are met:

base classifiers are accurate
base classifiers are diverse (make different errors)
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Ensembles in NMT

vote at each time step to explore same search space
(better than decoding with one, reranking n-best list with others)

voting mechanism: typically average (log-)probability

logP (yi|S, y<i) =

∑M
m=1 logPm(yi|S, y<i)

M

requirements for voting at each time step:
same output vocabulary
same factorization of Y
but: internal network architecture may be different

we still use reranking in some situations
example: combine left-to-right decoding and right-to-left decoding
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Further Reading

Required Reading
Koehn, 13.5

Optional Reading
Sequence to Sequence Learning with Neural Networks. (Sutskever,
Vinyals, Le) :
https://papers.nips.cc/paper/

5346-sequence-to-sequence-learning-with-neural-networks.pdf

Neural Machine Translation by Jointly Learning to Align and Translate. (Bahdanau, Cho,
Bengio) :
https://arxiv.org/pdf/1409.0473.pdf
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