THE UNIVERSITY of EDINBURGH	Overview
Machine Translation 04: Neural Machine Translation Rico Sennrich University of Edinburgh	 last lecture how do we represent language in neural networks? how do we treat language probabilistically (with neural networks)? today's lecture how do we model translation with a neural network? how do we generate text from a probabilistic translation model?
R. Sennrich MT - 2018 - 04 1/2 Modelling Translation	O R. Sennrich MT - 2018 - 04 1/20 Differences Between Translation and Language Model
• Suppose that we have: • a source sentence S of length $m(x_1,, x_m)$ • a target sentence T of length $n(y_1,, y_n)$ • We can express translation as a probabilistic model $T^* = \arg \max_T p(T S)$ • Expanding using the chain rule gives $p(T S) = p(y_1,, y_n x_1,, x_m)$ $= \prod_{i=1}^n p(y_i y_1,, y_{i-1}, x_1,, x_m)$	• Target-side language model: $p(T) = \prod_{i=1}^{n} p(y_i y_1, \dots, y_{i-1})$ • Translation model: $p(T S) = \prod_{i=1}^{n} p(y_i y_1, \dots, y_{i-1}, x_1, \dots, x_m)$ • We could just treat sentence pair as one long sequence, but: • We do not care about $p(S)$ • We may want different vocabulary, network architecture for source text
R. Sennrich MT – 2018 – 04 2/2	0 R. Sennrich MT – 2018 – 04 3/20

Differences Between Translation and Language Model

• Target-side language model:

$$p(T) = \prod_{i=1}^{n} p(y_i|y_1,\ldots,y_{i-1})$$

• Translation model:

$$p(T|S) = \prod_{i=1}^{n} p(y_i|y_1, \dots, y_{i-1}, x_1, \dots, x_m)$$

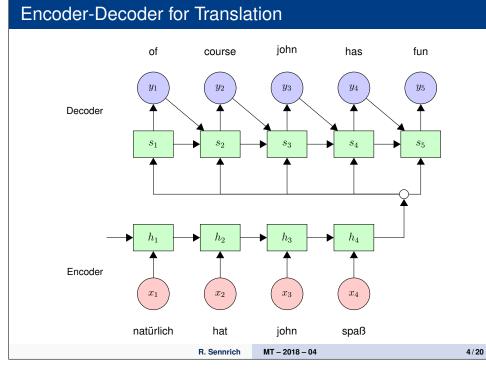
• We could just treat sentence pair as one long sequence, but:

R. Sennrich

- $\bullet~$ We do not care about p(S)
- We may want different vocabulary, network architecture for source text

MT - 2018 - 04

 $\rightarrow~$ Use separate RNNs for source and target.



Summary vector

3/20

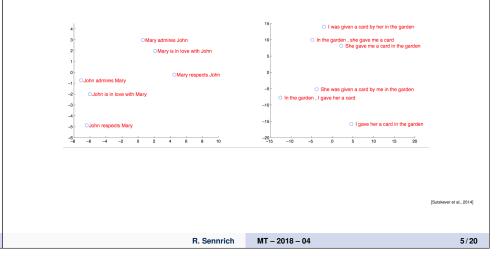
• Last encoder hidden-state "summarises" source sentence

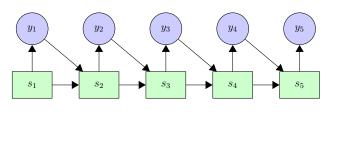
R. Sennrich

• With multilingual training, we can potentially learn language-independent meaning representation

Encoder-Decoder for Translation

of





MT - 2018 - 04

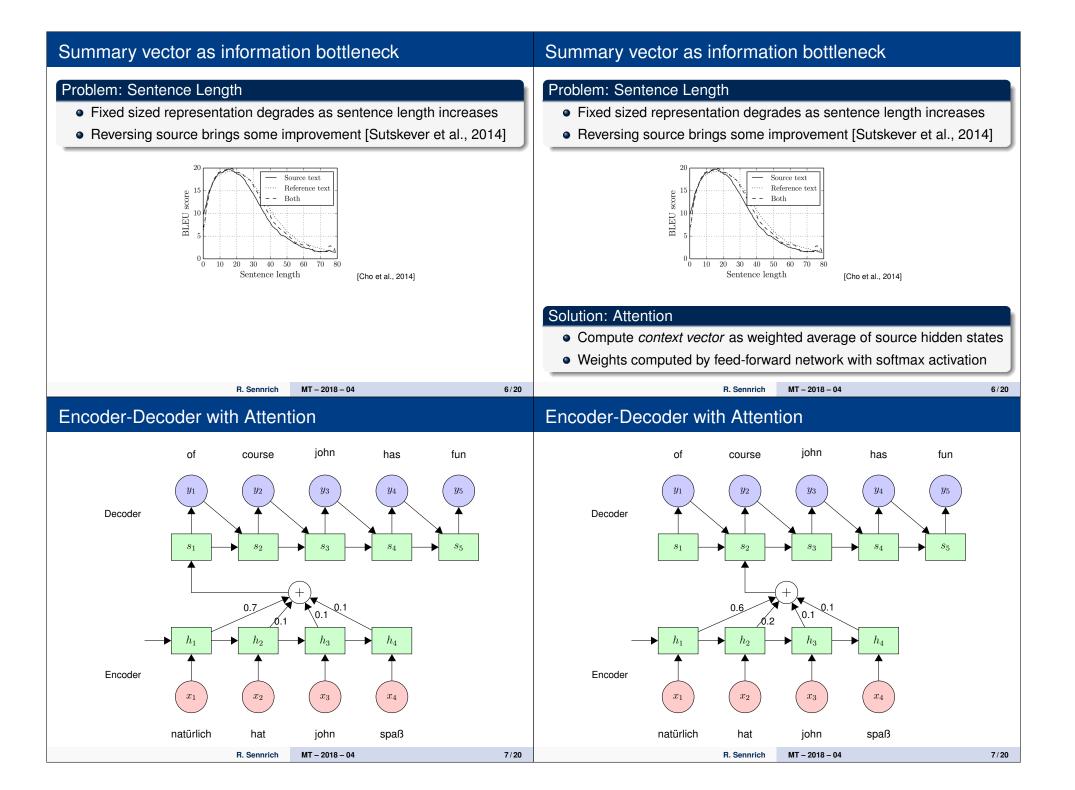
john

course

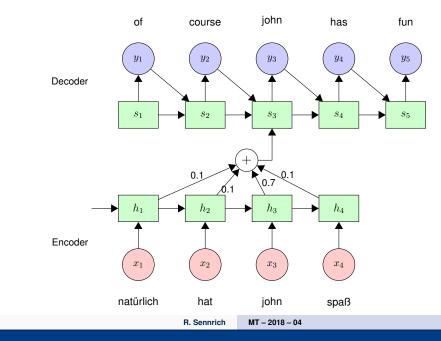
has

fun

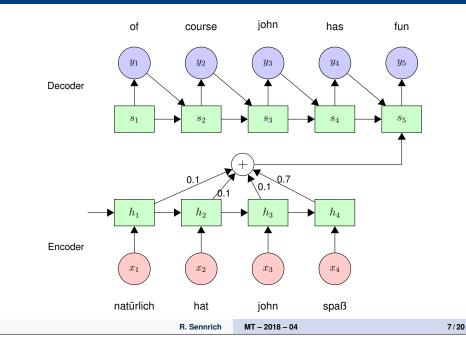
4/20



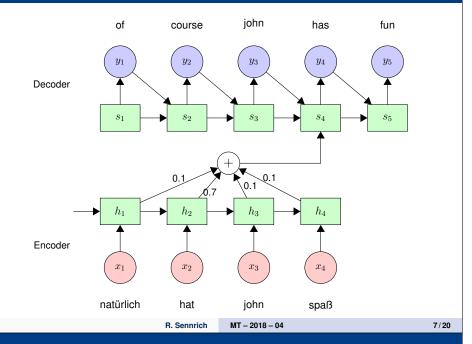
Encoder-Decoder with Attention



Encoder-Decoder with Attention



Encoder-Decoder with Attention



Attentional encoder-decoder: Maths

simplifications of model by [Bahdanau et al., 2015] (for illustration)

- plain RNN instead of GRU
- simpler output layer
- we do not show bias terms
- decoder follows Look, Update, Generate strategy [Sennrich et al., 2017]
- Details in https://github.com/amunmt/amunmt/blob/master/contrib/notebooks/dl4mt.ipynb

notation

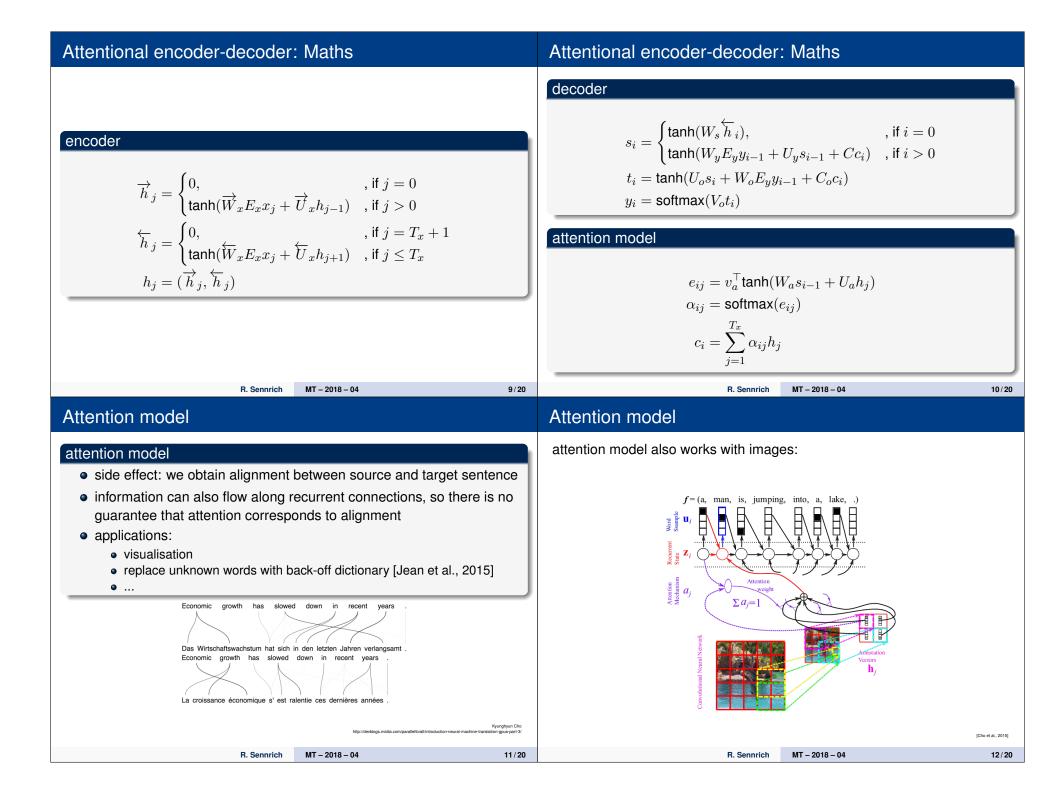
7/20

- W, U, E, C, V are weight matrices (of different dimensionality)
 - E one-hot to embedding (e.g. $50000 \cdot 512$)
 - W embedding to hidden (e.g. $512 \cdot 1024$)
 - U hidden to hidden (e.g. $1024 \cdot 1024$)
 - C context (2x hidden) to hidden (e.g. $2048 \cdot 1024$)
 - V_o hidden to one-hot (e.g. $1024 \cdot 50000$)

• separate weight matrices for encoder and decoder (e.g. E_x and E_y)

• input X of length T_x ; output Y of length T_y

R. Sennrich MT – 2018 – 04



Attention model

man is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor. A dog is standing on a hardwood floor.

R. Sennrich

MT - 2018 - 04

trees in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

Fig. 5. Examples of the attention-based model attending to the correct object (*white* indicates the attended regions, *underlines* indicated the corresponding word) [22]

Application of Encoder-Decoder Model

Scoring (a translation)

p(La, croissance, économique, s'est, ralentie, ces, dernières, années, . | Economic, growth, has, slowed, down, in, recent, year, .) = ?

Decoding (a source sentence)

Generate the most probable translation of a source sentence

R. Sennrich

MT - 2018 - 04

 $y^* = \operatorname{argmax}_{y} p(y | \text{Economic, growth, has, slowed, down, in, recent, year, .})$

R. Sennrich	MT – 2018 – 04	[Cho et al., 2015] 13 / 20	R. Sennrich MT – 2018 – 04	14/20
Decoding			Decoding	
exact search • generate every possible sentence • compute score $p(T S)$ for each • pick best one • intractable: $ vocab ^N$ translations \rightarrow we need approximative searc	s for output length N		 approximative search/1: greedy search at each time step, compute probability distribution P(yi S, y<i)< li=""> select yi according to some heuristic: sampling: sample from P(yi S, y<i)< li=""> greedy search: pick argmaxy p(yi S, y<i)< li=""> </i)<></i)<> continue until we generate <eos></eos> </i)<>	0 hello 0.946 0.056 world 0.957 0.100 1 0.928 0.175 0.175

15/20

Decoding	Ensembles		
 approximative search/2: beam search maintain list of K hypotheses (beam) at each time step, expand each hypothesis k: p(y_i^k S, y_{<i}^k)< li=""> select K hypotheses with highest total probability: Image: p(y_i^k S, y_{<i}^k)< p=""> </i}^k)<> relatively efficient beam expansion parallelisable currently default search strategy in neural machine translation small beam (K ≈ 10) offers good speed-quality trade-off </i}^k)<>	 combine decision of multiple classifiers by voting ensemble will reduce error if these conditions are met: base classifiers are accurate base classifiers are diverse (make different errors) 		
R. Sennrich MT - 2018 - 04 17/20 Ensembles in NMT	R. Sennrich MT - 2018 - 04 18/2 Further Reading		
 vote at each time step to explore same search space (better than decoding with one, reranking n-best list with others) voting mechanism: typically average (log-)probability $log P(y_i S, y_{< i}) = \frac{\sum_{m=1}^{M} log P_m(y_i S, y_{< i})}{M}$ requirements for voting at each time step: same output vocabulary same factorization of Y but: internal network architecture may be different 	 Required Reading Koehn, 13.5 Optional Reading Sequence to Sequence Learning with Neural Networks. (Sutskever, Vinyals, Le): https://papers.nips.cc/paper/		
 we still use reranking in some situations 			

Bibliography I		Bib	Bibliography II			
	 Doha, Qatar. Association for Computational Linguistics. Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On Using Very Large Target Vocabulary for Neural Machine Ton Proceedings of the 53rd Annual Meeting of the Association for pages 1–10, Beijing, China. Association for Computational Li Junczys-Dowmunt, M. and Grundkiewicz, R. (2016). Log-linear Combinations of Monolingual and Bilingual Neural In Proceedings of the First Conference on Machine Translation Linguistics. Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitsch Mokry, J., and Nadejde, M. (2017). Nematus: a Toolkit for Neural Machine Translation. In Proceedings of the Software Demonstrations of the 15th Compages 65–68, Valencia, Spain. 	 Representations (ICLR). Ider-Decoder Networks. (2014). Decoder Approaches. Imantics and Structure in Statistical Translation, pages 103–111, Translation. for Computational Linguistics and the 7th International Joint Conference Linguistics. (a) Machine Translation Models for Automatic Post-Editing. tion, pages 751–758, Berlin, Germany. Association for Computational Schler, J., Junczys-Dowmunt, M., Läubli, S., Miceli Barone, A. V., 		Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information Processing Systems 27: And pages 3104–3112, Montreal, Quebec, Canada.		
	R. Sennrich	MT – 2018 – 04 21 / 20		R. Sennrich	MT – 2018 – 04	22/20