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Text Representation

how do we represent text in NMT?
1-hot encoding

lookup of word embedding for input
probability distribution over vocabulary for output

large vocabularies
increase network size
decrease training and decoding speed

typical network vocabulary size: 10 000–100 000 symbols
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Problem

translation is open-vocabulary problem

many training corpora contain millions of word types

productive word formation processes (compounding; derivation) allow
formation and understanding of unseen words

names, numbers are morphologically simple, but open word classes
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Non-Solution: Ignore Rare Words

replace out-of-vocabulary words with UNK

a vocabulary of 50 000 words covers 95% of text

this gets you 95% of the way...
... if you only care about automatic metrics

why 95% is not enough
rare outcomes have high self-information

source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
[Bahdanau et al., 2015] Die UNK ist sehr angenehm. 7

[Jean et al., 2015] Die Innenpool ist sehr angenehm. 7

[Sennrich, Haddow, Birch, ACL 2016] Die Innen+ temperatur ist sehr angenehm. X

R. Sennrich MT – 2018 – 07 4 / 22



Non-Solution: Ignore Rare Words

replace out-of-vocabulary words with UNK

a vocabulary of 50 000 words covers 95% of text

this gets you 95% of the way...
... if you only care about automatic metrics

why 95% is not enough
rare outcomes have high self-information

source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
[Bahdanau et al., 2015] Die UNK ist sehr angenehm. 7

[Jean et al., 2015] Die Innenpool ist sehr angenehm. 7

[Sennrich, Haddow, Birch, ACL 2016] Die Innen+ temperatur ist sehr angenehm. X

R. Sennrich MT – 2018 – 07 4 / 22



Solution 1: Approximative Softmax

approximative softmax [Jean et al., 2015]
compute softmax over "active" subset of vocabulary
→ smaller weight matrix, faster softmax

at training time: vocabulary based on words occurring in training set
partition

at test time: determine likely target words based on source text
(using cheap method like translation dictionary)

limitations
allows larger vocabulary, but still not open

network may not learn good representation of rare words
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Solution 2: Back-off Models

back-off models [Jean et al., 2015, Luong et al., 2015]
replace rare words with UNK at training time

when system produces UNK, align UNK to source word, and translate
this with back-off method

source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
[Bahdanau et al., 2015] Die UNK ist sehr angenehm. 7

[Jean et al., 2015] Die Innenpool ist sehr angenehm. 7

limitations
compounds: hard to model 1-to-many relationships

morphology: hard to predict inflection with back-off dictionary

names: if alphabets differ, we need transliteration

alignment: attention model unreliable
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Subwords for NMT: Motivation

MT is an open-vocabulary problem
compounding and other productive morphological processes

they charge a carry-on bag fee.
sie erheben eine Hand|gepäck|gebühr.

names

Obama(English; German)
Îáàìà (Russian)
オバマ (o-ba-ma) (Japanese)

technical terms, numbers, etc.
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Subword units

segmentation algorithms: wishlist
open-vocabulary NMT: encode all words through small vocabulary

encoding generalizes to unseen words

small text size

good translation quality

our experiments [Sennrich et al., 2016]
after preliminary experiments, we propose:

character n-grams (with shortlist of unsegmented words)
segmentation via byte pair encoding (BPE)
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Byte pair encoding for word segmentation

bottom-up character merging
starting point: character-level representation
→ computationally expensive

compress representation based on information theory
→ byte pair encoding [Gage, 1994]

repeatedly replace most frequent symbol pair (’A’,’B’) with ’AB’

hyperparameter: when to stop
→ controls vocabulary size

word freq
’l o w</w>’ 5
’l o w e r</w>’ 2
’n e w e s t</w>’ 6
’w i d e s t</w>’ 3

vocabulary:
l o w</w> w e r</w> n s t</w> i d

es est</w> lo
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Byte pair encoding for word segmentation

why BPE?
open-vocabulary:
operations learned on training set can be applied to unknown words

compression of frequent character sequences improves efficiency
→ trade-off between text length and vocabulary size

’l o w e s t</w>’
e s → es
es t</w> → est</w>
l o → lo
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Evaluation: data and methods

data
WMT 15 English→German and English→Russian

model
attentional encoder–decoder neural network

parameters and settings as in [Bahdanau et al, 2014]
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Subword NMT: Translation Quality
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word-level NMT (with back-off) [Jean et al., 2015]

subword-level NMT: BPE
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Subword NMT: Translation Quality
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Examples

system sentence
source health research institutes
reference Gesundheitsforschungsinstitute
word-level (with back-off) Forschungsinstitute
character bigrams Fo|rs|ch|un|gs|in|st|it|ut|io|ne|n
BPE Gesundheits|forsch|ungsin|stitute
source rakfisk
reference ðàêôèñêà (rakfiska)
word-level (with back-off) rakfisk → UNK→ rakfisk
character bigrams ra|kf|is|k→ ðà|êô|èñ|ê (ra|kf|is|k)
BPE rak|f|isk → ðàê|ô|èñêà (rak|f|iska)
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Character-level Models

advantages:
(mostly) open-vocabulary
no heuristic or language-specific segmentation
neural network can conceivably learn from raw character sequences

drawbacks:
increasing sequence length slows training/decoding
(reported x2–x4 increase in training time)
naive char-level encoder-decoders are currently resource-limited
[Luong and Manning, 2016]

open questions
on which level should we represent meaning?
on which level should attention operate?
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Character-level Models

hierarchical model: back-off revisited [Luong and Manning, 2016]
word-level model produces UNKs

for each UNK, character-level model predicts word based on word
hidden state
pros:

prediction is more flexible than dictionary look-up
more efficient than pure character-level translation

cons:
independence assumptions between main model and backoff model
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Character-level Models

character-level output [Chung et al., 2016]
no word segmentation on target side

encoder is BPE-level

good results for EN→{DE,CS,RU,FI}

long training time (≈ x2 compared to BPE-level model)

Figure 3: Alignment matrix of a test example from En-De using the BPE→Char (bi-scale) model.

6 Quantitative Analysis

Slower Layer for Alignment On En-De, we
test which layer of the decoder should be used
for computing soft-alignments. In the case of
subword-level decoder, we observed no difference
between choosing any of the two layers of the de-
coder against using the concatenation of all the
layers (Table 1 (a–b)) On the other hand, with the
character-level decoder, we noticed an improve-
ment when only the slower layer (h2) was used
for the soft-alignment mechanism (Table 1 (c–g)).
This suggests that the soft-alignment mechanism
benefits by aligning a larger chunk in the target
with a subword unit in the source, and we use only
the slower layer for all the other language pairs.

Single Models In Table 1, we present a com-
prehensive report of the translation qualities of
(1) subword-level decoder, (2) character-level base
decoder and (3) character-level bi-scale decoder,
for all the language pairs. We see that the both
types of character-level decoder outperform the
subword-level decoder for En-Cs and En-Fi quite
significantly. On En-De, the character-level base
decoder outperforms both the subword-level de-
coder and the character-level bi-scale decoder,
validating the effectiveness of the character-level
modelling. On En-Ru, among the single mod-
els, the character-level decoders outperform the
subword-level decoder, but in general, we observe
that all the three alternatives work comparable to
each other.

These results clearly suggest that it is indeed
possible to do character-level translation without
explicit segmentation. In fact, what we observed is
that character-level translation often surpasses the
translation quality of word-level translation. Of
course, we note once again that our experiment is
restricted to using an unsegmented character se-
quence at the decoder only, and a further explo-
ration toward replacing the source sentence with
an unsegmented character sequence is needed.

Ensembles Each ensemble was built using eight
independent models. The first observation we
make is that in all the language pairs, neural ma-
chine translation performs comparably to, or often
better than, the state-of-the-art non-neural transla-
tion system. Furthermore, the character-level de-
coders outperform the subword-level decoder in
all the cases.

7 Qualitative Analysis

(1) Can the character-level decoder generate
a long, coherent sentence? The translation in
characters is dramatically longer than that in
words, likely making it more difficult for a recur-
rent neural network to generate a coherent sen-
tence in characters. This belief turned out to be
false. As shown in Fig. 2 (left), there is no sig-
nificant difference between the subword-level and
character-level decoders, even though the lengths
of the generated translations are generally 5–10
times longer in characters.

(2) Does the character-level decoder help with
rare words? One advantage of character-level
modelling is that it can model the composition of
any character sequence, thereby better modelling
rare morphological variants. We empirically con-
firm this by observing the growing gap in the aver-
age negative log-probability of words between the
subword-level and character-level decoders as the
frequency of the words decreases. This is shown
in Fig. 2 (right) and explains one potential cause
behind the success of character-level decoding in
our experiments (we define diff(x, y) = x− y).

(3) Can the character-level decoder soft-align
between a source word and a target charac-
ter? In Fig. 3 (left), we show an example soft-
alignment of a source sentence, “Two sets of light
so close to one another”. It is clear that the
character-level translation model well captured the
alignment between the source subwords and tar-
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Character-level Models

character-level input [Ling et al., 2015]
hierarchical representation: RNN states represent words, but their
representation is computed from character-level LSTM

Under review as a conference paper at ICLR 2016

variables, the source attention a and the target context lfp−1, the probability of a given word type tp

being the next translated word tp is given by:

P (tp|a, lfp−1) =
exp(eS

tp

a a+Stp

l lfp−1)
∑

j∈[0,T ] exp(e
Sj

aa+Sj
l l

f
p−1)

,

where Sa and Sl are the parameters that map the conditioned vectors into a score for each word type
in the target language vocabulary T . The parameters for a specific word type j are obtained as Sj

a

and Sj
l , respectively. Then, scores are normalized into a probability.

2.2 CHARACTER-BASED MACHINE TRANSLATION

We now present our adaptation of the word-based neural network model to operate over character
sequences rather than word sequences. However, unlike previous approaches that attempt to discard
the notion of words completely (Vilar et al., 2007; Neubig et al., 2013), we propose an hierarhical
architecture, which replaces the word lookup tables (steps 1 and 3) and the word softmax (step 6)
with character-based alternatives, which compose the notion of words from individual characters.
The advantage of this approach is that we benefit from properties of character-based approaches (e.g.
compactness and orthographic sensitivity), but can also easily be incorporated into any word-based
neural approaches.

Character-based Word Representation The work in (Ling et al., 2015; Ballesteros et al., 2015)
proposes a compositional model for learning word vectors from characters. Similar to word lookup
tables, a word string sj is mapped into a ds,w-dimensional vector, but rather than allocating param-
eters for each individual word type, the word vector sj is composed by a series of transformation
using its character sequence sj,0, . . . , sj,x.

* C2W Compositional Model

BLSTM

W h e r e

Word Vector for "Where"

Figure 2: Illustration of the C2W model. Square boxes represent vectors of neuron activations.

The illustration of the model is shown in 2. Essentially, the model builds a representation of the word
using characters, by reading characters from left to right and vice-versa. More formally, given an in-
put word sj = sj,0, . . . , sj,x, the model projects each character into a continuous ds,c-dimensional
vectors sj,0, . . . , sj,x using a character lookup table. Then, it builds a forward LSTM state se-
quence hf

0 , . . . ,h
f
k by reading the character vectors sj,0, . . . , sj,x. Another, backward LSTM reads

the character vectors in the reverse order generating the backward states hb
k, . . . ,h

b
0. Finally, the

4
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Fully Character-level NMT [Lee et al., 2016]

goal: get rid of word boundaries

character-level RNN on target side

source side: convolution and max-pooling layers

_ _ T h e s e c o n d p e r s o n _ _

Convolution	+	ReLU

Max	Pooling	
with	Stride	5

Highway	Network

Bidirectional	GRU

Character
Embeddingsℝ#×%&	

ℝ()×(%&+,-#)	

ℝ/×%&	

ℝ/×(%& 0⁄ )	

ℝ/×(%& 0⁄ )	

Segment	
Embeddings

Figure 1: Encoder architecture schematics. Underscore denotes padding. A dotted vertical line delimits each segment.

3.3 Challenges

Sentences are on average 6 (DE, CS and RU) to 8
(FI) times longer when represented in characters.
This poses three major challenges to achieving fully
character-level translation.

(1) Training/decoding latency For the decoder, al-
though the sequence to be generated is much longer,
each character-level softmax operation costs consid-
erably less compared to a word- or subword-level
softmax. Chung et al. (2016) report that character-
level decoding is only 14% slower than subword-
level decoding.

On the other hand, computational complexity of
the attention mechanism grows quadratically with
respect to the sentence length, as it needs to attend
to every source token for every target token. This
makes a naive character-level approach, such as
in (Luong and Manning, 2016), computationally
prohibitive. Consequently, reducing the length of
the source sequence is key to ensuring reasonable
speed in both training and decoding.

(2) Mapping character sequence to continuous
representation The arbitrary relationship between
the orthography of a word and its meaning is a well-
known problem in linguistics (de Saussure, 1916).
Building a character-level encoder is arguably a
more difficult problem, as the encoder needs to learn
a highly non-linear function from a long sequence

of character symbols to a meaning representation.

(3) Long range dependencies in characters A
character-level encoder needs to model dependen-
cies over longer timespans than a word-level en-
coder does.

4 Fully Character-Level NMT

4.1 Encoder

We design an encoder that addresses all the chal-
lenges discussed above by using convolutional and
pooling layers aggressively to both (1) drastically
shorten the input sentence and (2) efficiently capture
local regularities. Inspired by the character-level
language model from (Kim et al., 2015), our
encoder first reduces the source sentence length
with a series of convolutional, pooling and highway
layers. The shorter representation, instead of the full
character sequence, is passed through a bidirectional
GRU to (3) help it resolve long term dependencies.
We illustrate the proposed encoder in Figure 1 and
discuss each layer in detail below.

Embedding We map the source sentence
(x1, . . . , xTx) ∈ R1×Tx to a sequence of character
embeddings X = (C(x1), . . . ,C(xTx)) ∈ Rdc×Tx

where C is the character embedding lookup table:
C ∈ Rdc×|C|.

Convolution One-dimensional convolution opera-
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Conclusion

BPE-level subword segmentation is currently the most widely used
technique for open-vocabulary NMT

character-level models are theoretically attractive, but currently
require specialized architectures and more computational resources

the presented methods allow open vocabulary; how well we
generalize is other question
→ next lecture: morphology
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