
THE UNIVERSITY of EDINBURGH	MT – 2018 – 07
Machine Translation 07: Open-vocabulary Translation Rico Sennrich	 Refresher Open-vocabulary models Non-Solution: Ignore Rare Words Solution 1: Approximative Softmax Solution 2: Back-off Models Solution 3: Subword NMT Solution 4: Character-level NMT
University of Edinburgh R. Sennrich MT - 2018 - 07 1/22 Text Representation	R. Sennrich MT - 2018 - 07 1/22 Problem
how do we represent text in NMT? • 1-hot encoding • lookup of word embedding for input • probability distribution over vocabulary for output • large vocabularies • increase network size • decrease training and decoding speed • typical network vocabulary size: 10 000–100 000 symbols vocabulary representation of "cat" 1 cat 0 1 cat 0 2 is 0 0 1 1024 id	 translation is open-vocabulary problem many training corpora contain millions of word types productive word formation processes (compounding; derivation) allow formation and understanding of unseen words names, numbers are morphologically simple, but open word classes
R. Sennrich MT – 2018 – 07 2/22	R. Sennrich MT – 2018 – 07 3/22

Non-Solution: Ignore Rare Words	Non-Solution: Ignore Rare Words
 replace out-of-vocabulary words with UNK a vocabulary of 50 000 words covers 95% of text 	 replace out-of-vocabulary words with UNK a vocabulary of 50 000 words covers 95% of text
this gets you 95% of the way if you only care about automatic metrics	this gets you 95% of the way if you only care about automatic metrics
	why 95% is not enough rare outcomes have high self-information
	source referenceThe indoor temperature is very pleasant. Das Raumklima ist sehr angenehm.[Bahdanau et al., 2015]Die UNK ist sehr angenehm.[Jean et al., 2015]Die Innenpool ist sehr angenehm.[Sennrich, Haddow, Birch, ACL 2016]Die Innen+ temperatur ist sehr angenehm.
R. Sennrich MT-2018-07 4/22 Solution 1: Approximative Softmax	R. Sennrich MT - 2018 - 07 4/22 Solution 2: Back-off Models
approximative softmax [Jean et al., 2015] compute softmax over "active" subset of vocabulary \rightarrow smaller weight matrix, faster softmax	 back-off models [Jean et al., 2015, Luong et al., 2015] replace rare words with UNK at training time when system produces UNK, align UNK to source word, and translate this with back-off method source The indoor temperature is very pleasant.
 at training time: vocabulary based on words occurring in training set partition at test time: determine likely target words based on source text (using cheap method like translation dictionary) 	reference Das Raumklima ist sehr angenehm. [Bahdanau et al., 2015] Die UNK ist sehr angenehm. X [Jean et al., 2015] Die Innenpool ist sehr angenehm. X
partitionat test time: determine likely target words based on source text	referenceDas Raumklima ist sehr angenehm.[Bahdanau et al., 2015]Die UNK ist sehr angenehm.

MT – 2018 – 07	Subwords for NMT: Motivation
 Refresher Open-vocabulary models Non-Solution: Ignore Rare Words Solution 1: Approximative Softmax Solution 2: Back-off Models Solution 3: Subword NMT Solution 4: Character-level NMT 	 MT is an open-vocabulary problem compounding and other productive morphological processes they charge a carry-on bag fee. sie erheben eine Hand gepäck gebühr. names Obama(English; German) Obama (Russian) Intra (O-ba-ma) (Japanese) technical terms, numbers, etc.
R. Sennrich MT - 2018 - 07 7/22 Subword units	R. Sennrich MT - 2018 - 07 8/22
 segmentation algorithms: wishlist open-vocabulary NMT: encode <i>all</i> words through small vocabulary encoding generalizes to unseen words small text size good translation quality Our experiments [Sennrich et al., 2016]	 Byte pair encoding for word segmentation bottom-up character merging starting point: character-level representation → computationally expensive compress representation based on information theory → byte pair encoding [Gage, 1994] repeatedly replace most frequent symbol pair ('A','B') with 'AB' hyperparameter: when to stop → controls vocabulary size
 after preliminary experiments, we propose: character n-grams (with shortlist of unsegmented words) segmentation via <i>byte pair encoding</i> (BPE) 	word freq 'l o w' 5 'l o w e r' 2 'l o w e r' 2 'n e w e s t' 6 'w i d e s t' 3
R. Sennrich MT – 2018 – 07 9/22	R. Sennrich MT – 2018 – 07 10/22

	ding for word segmentation	Byte pair encoding for word segmentation
ottom-up charac	ster merging	bottom-up character merging
	character-level representation	 starting point: character-level representation
•	nally expensive	ightarrow computationally expensive
	resentation based on information theory ncoding [Gage, 1994]	• compress representation based on information theory \rightarrow byte pair encoding [Gage, 1994]
 repeatedly rep 	place most frequent symbol pair ('A','B') with 'AB'	 repeatedly replace most frequent symbol pair ('A','B') with 'AB'
• hyperparamet \rightarrow controls vo	•	 hyperparameter: when to stop → controls vocabulary size
word 'I o w'	freq 5 vocabulary:	word freq 'I o w' 5 vocabulary:
'l o w e r'	2 I o w w e r n s t i d	'l o w e r' 2 l o w w e r n s t i d
'n e w es t'	6 es	'n e w est ' 6 es est
'w i d es t'	3	'w i d est <b w>' 3
	R. Sennrich MT – 2018 – 07	10/22 R. Sennrich MT – 2018 – 07 10/
vte pair enco	ding for word segmentation	Byte pair encoding for word segmentation
ottom-up charac • starting point:		
ightarrow computatio	character-level representation nally expensive	why BPE?
• compress rep	nally expensive resentation based on information theory	• open-vocabulary:
• compress repr \rightarrow byte pair er	nally expensive resentation based on information theory ncoding [Gage, 1994]	 open-vocabulary: operations learned on training set can be applied to unknown words
 compress repr → byte pair er repeatedly rep 	nally expensive resentation based on information theory ncoding [Gage, 1994] place most frequent symbol pair ('A','B') with 'AB'	• open-vocabulary:
• compress repr \rightarrow byte pair er	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency
 compress repr → byte pair er repeatedly rep hyperparamet → controls vo 	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop cabulary size	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size e s → es
 compress repr → byte pair er repeatedly rep hyperparamet → controls vo 	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop cabulary size	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size e s → es
 compress repr → byte pair er repeatedly rep hyperparamet → controls vo 	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop cabulary size	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size e s → es 'l o w e s t'
 compress repr → byte pair er repeatedly reprint hyperparametric → controls vo word 'lo w' 	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop cabulary size	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size e s → es 'l o w e s t'
 compress repr → byte pair er repeatedly rep hyperparamet → controls vo word [']lo w 'lo w e r 	nally expensive resentation based on information theory ncoding [Gage, 1994] blace most frequent symbol pair ('A','B') with 'AB' er: when to stop cabulary size freq 5 vocabulary: 2 l o w w e r n s t i d	 open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size e s → es 'l o w e s t'

Byte pair encoding for word segmentation	Byte pair encoding for word segmentation
why BPE?• open-vocabulary: operations learned on training set can be applied to unknown words• compression of frequent character sequences improves efficiency \rightarrow trade-off between text length and vocabulary size'I o w es t'e s \rightarrow es es t l o \rightarrow lo	why BPE?• open-vocabulary: operations learned on training set can be applied to unknown words• compression of frequent character sequences improves efficiency \rightarrow trade-off between text length and vocabulary size'I o w est' $e s \rightarrow es$ $es t \rightarrow estI o \rightarrow Io$
R. Sennrich MT - 2018 - 07 11 Byte pair encoding for word segmentation	22 R. Sennrich MT - 2018 - 07 11/22 Evaluation: data and methods
 why BPE? open-vocabulary: operations learned on training set can be applied to unknown words compression of frequent character sequences improves efficiency → trade-off between text length and vocabulary size 	data ● WMT 15 English→German and English→Russian model
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 attentional encoder-decoder neural network parameters and settings as in [Bahdanau et al, 2014]

Character-level Models	Character-level Models
 advantages: (mostly) open-vocabulary no heuristic or language-specific segmentation neural network can conceivably learn from raw character sequences drawbacks: increasing sequence length slows training/decoding (reported x2-x4 increase in training time) naive char-level encoder-decoders are currently resource-limited [Luong and Manning, 2016] open questions on which level should we represent meaning? on which level should attention operate? 	 hierarchical model: back-off revisited [Luong and Manning, 2016] word-level model produces UNKs for each UNK, character-level model predicts word based on word hidden state pros: prediction is more flexible than dictionary look-up more efficient than pure character-level translation cons: independence assumptions between main model and backoff model
R. Sennrich MT-2018-07 17/22	R. Sennrich MT - 2018 - 07 18/22 Character-level Models
Character-level Models character-level output [Chung et al., 2016] a no word segmentation on target side a encoder is BPE-level a good results for EN→{DE,CS,RU,FI} b long training time (≈ x2 compared to BPE-level model) Two sets of lights Z w e i L i chtersets	<section-header></section-header>

Fully Character-level NMT [Lee et al., 2016] Conclusion • goal: get rid of word boundaries character-level RNN on target side • BPE-level subword segmentation is currently the most widely used • source side: convolution and max-pooling layers technique for open-vocabulary NMT • character-level models are theoretically attractive, but currently $\mathbb{R}^{N \times (T_x/s)}$ Bidirectional GRU require specialized architectures and more computational resources Highway Networ • the presented methods allow open vocabulary; how well we $\mathbb{R}^{N \times (T_x/s)}$ Segment Embeddings generalize is other question \rightarrow next lecture: morphology Max Pooling $\mathbb{R}^{N \times T_x}$ with Stride 5 $\mathbb{R}^{d_c \times (T_x + w - 1)}$ Convolution + Rel I I Characte $\mathbb{R}^{1 \times T_x}$ __The second person__ Embeddings R. Sennrich MT - 2018 - 07 21/22 R. Sennrich MT - 2018 - 07 22/22 **Bibliography I Bibliography II** Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the International Conference on Learning Representations (ICLR) Luong, M.-T. and Manning, D. C. (2016). Chung, J., Cho, K., and Bengio, Y. (2016). Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models. A Character-level Decoder without Explicit Segmentation for Neural Machine Translation. CoRR, abs/1603.06147. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1054-1063. Association for Computational Linguistics. Gage, P. (1994). Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015) A New Algorithm for Data Compression. Addressing the Rare Word Problem in Neural Machine Translation. C Users J., 12(2):23-38. Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference pages 11-19, Beijing, China. Association for Computational Linguistics. On Using Very Large Target Vocabulary for Neural Machine Translation. Sennrich, R., Haddow, B., and Birch, A. (2016). Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of Neural Machine Translation of Rare Words with Subword Units. pages 1–10, Beijing, China. Association for Computational Linguistics. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages Lee, J., Cho, K., and Hofmann, T. (2016). 1715-1725, Berlin, Germany. Fully Character-Level Neural Machine Translation without Explicit Segmentation. ArXiv e-prints. Ling, W., Trancoso, I., Dyer, C., and Black, A. W. (2015). Character-based Neural Machine Translation. ArXiv e-prints R. Sennrich MT - 2018 - 07 23/22 R. Sennrich MT - 2018 - 07 24/22