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Refresher

why monolingual data?
language models are an important component in statistical machine
translation

monolingual data is far more abundant than parallel data

phrase-based SMT models suffer from independence assumption;
LMs can mitigate this

monolingual data may better match target domain
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Language Models in NMT

[Gülçehre et al., 2015]
shallow fusion: rescore beam with language model (≈ ensembling)

deep fusion: extra, LM-specific hidden layer

(a) Shallow Fusion (Sec. 4.1) (b) Deep Fusion (Sec. 4.2)

Figure 1: Graphical illustrations of the proposed fusion methods.

learned by the LM from monolingual corpora is
not overwritten. It is possible to use monolingual
corpora as well while finetuning all the parame-
ters, but in this paper, we alter only the output pa-
rameters in the stage of finetuning.

4.2.1 Balancing the LM and TM
In order for the decoder to flexibly balance the in-
put from the LM and TM, we augment the decoder
with a “controller” mechanism. The need to flex-
ibly balance the signals arises depending on the
work being translated. For instance, in the case
of Zh-En, there are no Chinese words that corre-
spond to articles in English, in which case the LM
may be more informative. On the other hand, if
a noun is to be translated, it may be better to ig-
nore any signal from the LM, as it may prevent the
decoder from choosing the correct translation. In-
tuitively, this mechanism helps the model dynami-
cally weight the different models depending on the
word being translated.

The controller mechanism is implemented as a
function taking the hidden state of the LM as input
and computing

gt = σ
(
v>g s

LM
t + bg

)
, (7)

where σ is a logistic sigmoid function. vg and bg
are learned parameters.

The output of the controller is then multiplied
with the hidden state of the LM. This lets the de-

coder use the signal from the TM fully, while the
controller controls the magnitude of the LM sig-
nal.

In our experiments, we empirically found that it
was better to initialize the bias bg to a small, neg-
ative number. This allows the decoder to decide
the importance of the LM only when it is deemed
necessary.

5 Datasets

We evaluate the proposed approaches on four di-
verse tasks: Chinese to English (Zh-En), Turkish
to English (Tr-En), German to English (De-En)
and Czech to English (Cs-En). We describe each
of these datasets in more detail below.

5.1 Parallel Corpora

5.1.1 Zh-En: OpenMT’15
We use the parallel corpora made available
as a part of the NIST OpenMT’15 Challenge.
Sentence-aligned pairs from three domains are
combined to form a training set: (1) SMS/CHAT
and (2) conversational telephone speech (CTS)
from DARPA BOLT Project, and (3) newsgroup-
s/weblogs from DARPA GALE Project. In total,
the training set consists of 430K sentence pairs
(see Table 1 for the detailed statistics). We train

In all our experiments, we set bg = −1 to ensure that
gt is initially 0.26 on average.

rare words. But instead of relying on an exter-
nal alignment tool, we used the attention mech-
anism of the NMT model to extract alignments.
This method consistently improved the results by
approximately 1.0 BLEU score.

7 Results and Analysis

7.1 Zh-En: OpenMT’15
In addition to NMT-based systems, we also trained
a phrase-based as well as hierarchical phrase-
based SMT systems (Koehn et al., 2003; Chiang,
2005) with/without re-scoring by an external neu-
ral language model (CSLM) (Schwenk, 2007b).
We present the results in Table 2.

We observed that integrating an additional LM
by deep fusion (see Sec. 4.2) helped the models
achieving better performance in general, except
in the case of the CTS task. We noticed that the
NMT-based models, regardless of whether the LM
was integrated or not, outperformed the more tra-
ditional phrase-based SMT systems.

SMS/CHAT CTS
Dev Test Dev Test

PB 15.5 14.73 21.94 21.68
+ CSLM 16.02 15.25 23.05 22.79
HPB 15.33 14.71 21.45 21.43
+ CSLM 15.93 15.8 22.61 22.17
NMT 17.32 17.36 23.4 23.59
Shallow 16.59 16.42 22.7 22.83
Deep 17.58 17.64 23.78 23.5

Table 2: Results on the task of Zh-En. PB and
HPB stand for the phrase-based and hierarchical
phrase-based SMT systems, respectively.

7.2 Tr-En: IWSLT’14
In Table 3, we present our results on Tr-En. Com-
pared to Zh-En, we saw a greater performance im-
provement up to +1.19 BLEU points from the ba-
sic NMT to the NMT integrated with the LM un-
der the proposed method of deep fusion. Further-
more, by incorporating the LM using deep fusion,
the NMT systems were able to outperform the best
previously reported result (Yılmaz et al., 2013) by
up to +1.96 BLEU points on all of the separate
test sets.

7.3 Cs-En and De-En: WMT-15
We provide the results of Cs-En and De-En on
Table 4. Shallow fusion achieved 0.09 and 0.29

De-En Cs-En
Dev Test Dev Test

NMT Baseline 25.51 23.61 21.47 21.89
Shallow Fusion 25.53 23.69 21.95 22.18
Deep Fusion 25.88 24.00 22.49 22.36

Table 4: Results for De-En and Cs-En translation
tasks on WMT’15 dataset.

BLEU score improvements respectively on De-En
and Cs-En over the baseline NMT model. With
deep fusion the improvements of 0.39 and 0.47
BLEU score were observed again over the NMT
baseline.

7.4 Analysis: Effect of Language Model

The performance improvements we report in this
paper reflect a heavy dependency on the degree of
similarity between the domain of monolingual cor-
pora and the target domain of translation.

In the case of Zh-En, intuitively, we can tell that
the style of writing in both SMS/CHAT as well
as the conversational speech will be different from
that of news articles (which constitutes the major-
ity of the English Gigaword corpus). Empirically,
this is supported by the high perplexity on the de-
velopment set with our LM (see the column Zh-En
of Table 5). This explains the marginal improve-
ment we observed in Sec. 7.1.

On the other hand, in the case of Tr-En, the sim-
ilarity between the domains of the monolingual
corpus and parallel corpora is higher (see the col-
umn Tr-En of Table 5). This led to a significantly
larger improvement in translation performance by
integrating the external language model than the
case of Zh-En. Similarly, we observed the im-
provement by both shallow and deep fusion in the
case of De-En and Cs-En, where the perplexity on
the development set was much lower.

Unlike shallow fusion, deep fusion allows a
model to selectively incorporate the information
from the additional LM by the controller mech-
anism from Sec. 4.2.1. Although this controller
mechanism works on per-word basis, it can be ex-
pected that if the additional LM models the target
domain better, the controller mechanism will be
more frequently active on average, i.e., E[gt]� 0.
From Table 5, we can see that, on average, the con-
troller mechanism is most active with De-En and
Cs-En, where the additional LM was able to model
the target sentences best. This effectively means
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Monolingual Data in NMT

NMT is a conditional language model
p(ui) = f(zi, ui−1, ci)

Problem
for monolingual training instances, source context ci is missing

R. Sennrich MT – 2018 – 09 5 / 20

Monolingual Training Instances

solutions: missing data imputation for ci

missing data indicator:
−→
0

→ works, but danger of catastrophic forgetting

impute ci with neural network
→ we do this indirectly by back-translating the target sentence
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Evaluation: English→German

NMT parallel +missing
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+back-
translation
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Back-Translation: Comparison to Phrase-based SMT

back-translated parallel data
back-translation has been proposed for phrase-based SMT
[Schwenk, 2008, Bertoldi and Federico, 2009, Lambert et al., 2011]

PBSMT already has LM
→ main rationale: phrase-table domain adaptation

rationale in NMT: train end-to-end model on monolingual data

BLEU

system WMT IWSLT
(in-domain) (out-of-domain)

PBSMT gain +0.7 +0.1
NMT gain +2.9 +1.2

Table: Gains on English→German from adding back-translated News Crawl data.
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Autoencoders

general principle: train network that encodes input, and learns to
reconstruct input from encoded representation
→ unsupervised representation learning

s1 s2 s3 s4

y1 y2 y3 y4

john likes his cat

h1 h2 h3 h4

x1 x2 x3 x4

john likes his cat

Decoder

Encoder
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Autoencoders in Neural Machine Translation

autoencoders are used via multi-task learning:
shared models, multiple task-specific objectives

Published as a conference paper at ICLR 2016

German (translation)

English (unsupervised) German (unsupervised)

English

Figure 4:Many-to-many setting – multiple encoders, multiple decoders. We consider this scheme
in a limited context of machine translation to utilize the large monolingual corpora in both the
source and the target languages. Here, we consider a single translation task and two unsupervised
autoencoder tasks.

consist of ordered sentences, e.g., paragraphs. Unfortunately, in many applications that include
machine translation, we only have sentence-level data where the sentences are unordered. To address
that, we split each sentence into two halves; we then use one half to predict the other half.

3.5 LEARNING

Dong et al. (2015) adopted analternatingtraining approach, where they optimize each task for a
fixed number of parameter updates (or mini-batches) before switching to the next task (which is a
different language pair). In our setting, our tasks are morediverse and contain different amounts of
training data. As a result, we allocate different numbers ofparameter updates for each task, which
are expressed with themixing ratio valuesαi (for each taski). Each parameter update consists of
training data from one task only. When switching between tasks, we select randomly a new taski
with probability αi∑

j αj
.

Our convention is that the first task is thereferencetask withα1 = 1.0 and the number of training
parameter updates for that task is prespecified to beN . A typical taski will then be trained forαi

α1
·N

parameter updates. Such convention makes it easier for us tofairly compare the same reference task
in a single-task setting which has also been trained for exactly N parameter updates.

When sharing an encoder or a decoder, we share both the recurrent connections and the correspond-
ing embeddings.

4 EXPERIMENTS

We evaluate the multi-task learning setup on a wide variety of sequence-to-sequence tasks: con-
stituency parsing, image caption generation, machine translation, and a number of unsupervised
learning as summarized in Table 1.

4.1 DATA

Our experiments are centered around thetranslationtask, where we aim to determine whether other
tasks can improve translation and vice versa. We use the WMT’15 data (Bojar et al., 2015) for
the English⇆German translation problem. Following Luong et al. (2015a), we use the 50K most
frequent words for each language from the training corpus.1 These vocabularies are then shared
with other tasks, except for parsing in which the target “language” has a vocabulary of 104 tags. We
use newstest2013 (3000 sentences) as a validation set to select our hyperparameters, e.g., mixing
coefficients. For testing, to be comparable with existing results in (Luong et al., 2015a), we use the
filtered newstest2014 (2737 sentences)2 for the English→German translation task and newstest2015
(2169 sentences)3 for the German→English task. See the summary in Table 1.

1The corpus has already been tokenized using the default tokenizer from Moses. Words not in these vocab-
ularies are represented by the token<unk>.

2http://statmt.org/wmt14/test-filtered.tgz
3http://statmt.org/wmt15/test.tgz

4

[Luong et al., 2016]

does idea still work if we use attention mechanism?
(far less of a representation bottleneck)

apparently, yes (for low-resource language pairs):
[Currey et al., 2017]

analysis: BPE-based system gets better at copying unknown names:
source Les Dissonances a aparut pe scena muzicala în 2004 ...
reference Les Dissonances appeared on the music scene in 2004 ...
baseline Les Dissonville appeared on the music scene in 2004 ...
+ copied Les Dissonances appeared on the music scene in 2004 ...
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Dual Learning [He et al., 2016]

dual-learning game
closed loop of two translation systems

translate sentence from language A into language B and back
loss functions:

is sentence in language B natural?
→ loss is negative log-probability under (static) LM
is second translation similar to original?
→ loss is standard cross-entropy, with original as reference

use reinforcement learning to update weights

we can also start with sentence in language B
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Parameter Pre-Training

[Ramachandran et al., 2017]
core idea: pre-train encoder and decoder on language modelling task

models are fine-tuned with translation objective,
along with continued use of LM objective (with shared parameters)

A B C <EOS> W X Y Z

W X Y Z <EOS>

Embedding

First RNN Layer

Softmax

Second RNN Layer

Figure 1: Pretrained sequence to sequence model. The red parameters are the encoder and the blue
parameters are the decoder. All parameters in a shaded box are pretrained, either from the source side
(light red) or target side (light blue) language model. Otherwise, they are randomly initialized.

2 Methods

In the following section, we will describe our basic
unsupervised pretraining procedure for sequence
to sequence learning and how to modify sequence
to sequence learning to effectively make use of the
pretrained weights. We then show several exten-
sions to improve the basic model.

2.1 Basic Procedure

Given an input sequence x1, x2, ..., xm and an
output sequence yn, yn−1, ..., y1, the objective of
sequence to sequence learning is to maximize the
likelihood p(yn, yn−1, ..., y1|x1, x2, ..., xm).
Common sequence to sequence learn-
ing methods decompose this objective
as p(yn, yn−1, ..., y1|x1, x2, ..., xm) =∏n

t=1 p(yt|yt−1, ..., y1;x1, x2, ..., xm).
In sequence to sequence learning, an RNN en-

coder is used to represent x1, ..., xm as a hidden
vector, which is given to an RNN decoder to pro-
duce the output sequence. Our method is based
on the observation that without the encoder, the
decoder essentially acts like a language model on
y’s. Similarly, the encoder with an additional out-
put layer also acts like a language model. Thus it
is natural to use trained languages models to ini-
tialize the encoder and decoder.

Therefore, the basic procedure of our approach
is to pretrain both the seq2seq encoder and de-
coder networks with language models, which can
be trained on large amounts of unlabeled text data.
This can be seen in Figure 1, where the parame-
ters in the shaded boxes are pretrained. In the fol-
lowing we will describe the method in detail using

machine translation as an example application.

First, two monolingual datasets are collected,
one for the source side language, and one for the
target side language. A language model (LM) is
trained on each dataset independently, giving an
LM trained on the source side corpus and an LM
trained on the target side corpus.

After two language models are trained, a multi-
layer seq2seq model M is constructed. The em-
bedding and first LSTM layers of the encoder and
decoder are initialized with the pretrained weights.
To be even more efficient, the softmax of the de-
coder is initialized with the softmax of the pre-
trained target side LM.

2.2 Monolingual language modeling losses

After the seq2seq model M is initialized with the
two LMs, it is fine-tuned with a labeled dataset.
However, this procedure may lead to catastrophic
forgetting, where the model’s performance on the
language modeling tasks falls dramatically after
fine-tuning (Goodfellow et al., 2013). This may
hamper the model’s ability to generalize, espe-
cially when trained on small labeled datasets.

To ensure that the model does not overfit the la-
beled data, we regularize the parameters that were
pretrained by continuing to train with the monolin-
gual language modeling losses. The seq2seq and
language modeling losses are weighted equally.

In our ablation study, we find that this technique
is complementary to pretraining and is important
in achieving high performance.

384
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Bilingual Lexicon Induction

learn lexical correspondences from monolingual data
correspondences are based on various types of similarity:

contextual similarity

temporal similarity

orthographic similarity

frequency similarity

today we look at distributional word representations
(contextual similarity)
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Embedding Space Similarities Across Languages

[Mikolov et al., 2013]
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Learning to Map Between Vector Spaces

supervised mapping [Mikolov et al., 2013]
we can learn linear transformation between embedding spaces with
small dictionary.

given linear transformation matrix W , and two vector representations
xi, yi in source and target language

training objective (optimized with SGD):

argmin
W

n∑

i=1

||Wxi − yi||2

training requires small seed lexicon of (x, y) pairs

after mapping, induce bilingual lexicon via nearest neighbor search
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Learning to Map Between Vector Spaces

unsupervised mapping [Miceli Barone, 2016, Conneau et al., 2017]
adversarial training:

co-train classifier (adversary) that predicts whether embedding
represents source or target language word
objective of linear, orthogonal transformation:
fool classifier by making embeddings as similar as possiblePublished as a conference paper at ICLR 2018

Figure 1: Toy illustration of the method. (A) There are two distributions of word embeddings, English words
in red denoted by X and Italian words in blue denoted by Y , which we want to align/translate. Each dot
represents a word in that space. The size of the dot is proportional to the frequency of the words in the training
corpus of that language. (B) Using adversarial learning, we learn a rotation matrix W which roughly aligns the
two distributions. The green stars are randomly selected words that are fed to the discriminator to determine
whether the two word embeddings come from the same distribution. (C) The mapping W is further refined via
Procrustes. This method uses frequent words aligned by the previous step as anchor points, and minimizes an
energy function that corresponds to a spring system between anchor points. The refined mapping is then used
to map all words in the dictionary. (D) Finally, we translate by using the mapping W and a distance metric,
dubbed CSLS, that expands the space where there is high density of points (like the area around the word
“cat”), so that “hubs” (like the word “cat”) become less close to other word vectors than they would otherwise
(compare to the same region in panel (A)).

In practice, Mikolov et al. (2013b) obtained better results on the word translation task using a sim-
ple linear mapping, and did not observe any improvement when using more advanced strategies like
multilayer neural networks. Xing et al. (2015) showed that these results are improved by enforc-
ing an orthogonality constraint on W . In that case, the equation (1) boils down to the Procrustes
problem, which advantageously offers a closed form solution obtained from the singular value de-
composition (SVD) of Y XT :

W ? = argmin
W∈Od(R)

‖WX − Y ‖F = UV T ,with UΣV T = SVD(Y XT ). (2)

In this paper, we show how to learn this mappingW without cross-lingual supervision; an illustration
of the approach is given in Fig. 1. First, we learn an initial proxy of W by using an adversarial
criterion. Then, we use the words that match the best as anchor points for Procrustes. Finally, we
improve performance over less frequent words by changing the metric of the space, which leads to
spread more of those points in dense regions. Next, we describe the details of each of these steps.

2.1 DOMAIN-ADVERSARIAL SETTING

In this section, we present our domain-adversarial approach for learning W without cross-lingual
supervision. Let X = {x1, ..., xn} and Y = {y1, ..., ym} be two sets of n and m word embeddings
coming from a source and a target language respectively. A model is trained to discriminate between
elements randomly sampled from WX = {Wx1, ...,Wxn} and Y . We call this model the discrim-
inator. W is trained to prevent the discriminator from making accurate predictions. As a result, this
is a two-player game, where the discriminator aims at maximizing its ability to identify the origin of
an embedding, and W aims at preventing the discriminator from doing so by making WX and Y as
similar as possible. This approach is in line with the work of Ganin et al. (2016), who proposed to
learn latent representations invariant to the input domain, where in our case, a domain is represented
by a language (source or target).

Discriminator objective We refer to the discriminator parameters as θD. We consider the prob-
ability PθD

(
source = 1

∣∣z
)

that a vector z is the mapping of a source embedding (as opposed to a
target embedding) according to the discriminator. The discriminator loss can be written as:

LD(θD|W ) = − 1

n

n∑

i=1

logPθD
(
source = 1

∣∣Wxi
)
− 1

m

m∑

i=1

logPθD
(
source = 0

∣∣yi
)
. (3)

Mapping objective In the unsupervised setting, W is now trained so that the discriminator is
unable to accurately predict the embedding origins:

LW (W |θD) = − 1

n

n∑

i=1

logPθD
(
source = 0

∣∣Wxi
)
− 1

m

m∑

i=1

logPθD
(
source = 1

∣∣yi
)
. (4)

3

[Conneau et al., 2017]
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Learning to Map Between Vector Spaces

warning
these are recent research results – open questions remain

under what conditions will this method succeed / fail?

method was tested with typologically relatively similar languages

method was tested with similar monolingual data (same domains and
genres)
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Improving Word Order

[Lample et al., 2017]
joint training of both translation directions

use translation model to back-translate monolingual data

learn encoder-decoder to reconstruct original sentence from noisy
translation

iterate several times
use various other tricks and objectives to improve learning

pre-trained embeddings
denoising autencoder as additional objective
shared encoder / decoder parameters in both directions
adversarial objective

BLEU
system en-fr en-de
supervised 28.0 21.3
word-by-word [Conneau et al., 2017] 6.3 7.1
[Lample et al., 2017] 15.1 9.6
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Conclusion

there are various ways to learn from monolingual data
combination with language model
pre-training and parameter sharing
creating synthetic training data

methods are especially useful when:
parallel data is sparse
monolingual data is highly relevant (in-domain)

hot research topic: learning to translate without parallel data
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