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Statistical Machine Translation (SMT)

given a sequence of words s in the source language,
find the most probable sequence t in the target language [Brown et al., 1993]

t∗ ≈ argmax
t

M∑
m=1

λmhm(s, t) [Och, 2003]

main research trend

→

feature engineering
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Neural Machine Translation

Kyunghyun Cho
http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
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Neural Machine Translation

very general model:

applied to many
sequence–to–sequence tasks

variants used in computer vision

[Cho et al., 2015]
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Neural Machine Translation: Timeline

1987 Early encoder-decoder, with vocabulary size 30-40 [Allen, 1987]

...
2013 Pure neural MT system presented [Kalchbrenner and Blunsom, 2013]

2014 RNN Encoder-Decoder with Attention [Bahdanau et al., 2015]

2015 WMT 15: Montreal NMT is competitive [Jean et al., 2015b]

2015 Subword-level NMT [Sennrich et al., 2016c]

2015 Monolingual Data in NMT [Sennrich et al., 2016b]

2016 WMT 16: Edinburgh NMT is dominant [Sennrich et al., 2016a]

2017 Various architectures competitive [Gehring et al., 2017, Vaswani et al., 2017]
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WMT16 Shared Translation Task: Results

(tied) best constrained system for 7 out of 8 translation directions

system BLEU official rank
uedin-nmt 34.2 1
metamind 32.3 2
uedin-syntax 30.6 3
NYU-UMontreal 30.8 4
online-B 29.4 5-10
KIT/LIMSI 29.1 5-10
cambridge 30.6 5-10
online-A 29.9 5-10
promt-rule 23.4 5-10
KIT 29.0 6-10
jhu-syntax 26.6 11-12
jhu-pbmt 28.3 11-12
uedin-pbmt 28.4 13-14
online-F 19.3 13-15
online-G 23.8 14-15

WMT16 EN→DE

system BLEU official rank
uedin-nmt 38.6 1
online-B 35.0 2-5
online-A 32.8 2-5
uedin-syntax 34.4 2-5
KIT 33.9 2-6
uedin-pbmt 35.1 5-7
jhu-pbmt 34.5 6-7
online-G 30.1 8
jhu-syntax 31.0 9
online-F 20.2 10

WMT16 DE→EN
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Open-Vocabulary Neural MT

problem
word-level neural networks use one-hot encoding
→ closed and small vocabulary

this gets you 95% of the way...
... if you only care about automatic metrics

why 95% is not enough
rare outcomes have high self-information

source The indoor temperature is very pleasant.
reference Das Raumklima ist sehr angenehm.
[Bahdanau et al., 2015] Die UNK ist sehr angenehm. 7

[Jean et al., 2015a] Die Innenpool ist sehr angenehm. 7

[Sennrich, Haddow, Birch, ACL 2016a] Die Innen+ temperatur ist sehr angenehm. X
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Subword Neural MT [Sennrich, Haddow, Birch, ACL 2016a]

goal
subword segmentation that:

uses a closed vocabulary of subword units

can represent open vocabulary (including unknown words)

minimizes the sequence length (given the vocabulary size)

solution
greedy compression algorithm: byte pair encoding (BPE) [Gage, 1994]

we adapt BPE to word segmentation

hyperparameter: vocabulary size

vocabulary
text

size
300 t+ h+ e i+ n+ d+ o+ o+ r t+ e+ m+ p+ e+ r+ a+ t+ u+ r+ e i+ s v+ e+ r+ y p+ l+ e+ a+ s+ a+ n+ t

1300 the in+ do+ or t+ em+ per+ at+ ure is very p+ le+ as+ ant

10300 the in+ door temper+ ature is very pleasant

50300 the indoor temperature is very pleasant
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Subword NMT: Translation Quality

EN-DE EN-RU
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Subword NMT: Translation Quality
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Semi-Supervised Training for NMT [Sennrich, Haddow, Birch, ACL 2016b]

why?
monolingual data

is much less sparse than parallel data

is useful for structured prediction

may be used for domain adaptation

why is this hard?
standard in SMT: monolingual LM as feature in linear model

linear combination of NMT and LM barely effective [Gülçehre et al., 2015]

our solution
end-to-end training of NMT model with parallel and monolingual data

Rico Sennrich NMT: Breaking through the Performance Ceiling 10 / 21



Monolingual Data in NMT

NMT is a conditional language model
p(ui) = f(zi, ui−1, ci)

Problem
for monolingual training instances, source context ci is missing

Rico Sennrich NMT: Breaking through the Performance Ceiling 11 / 21



Monolingual Training Instances

solutions: missing data imputation for ci

missing data indicator:
−→
0

→ works, but danger of catastrophic forgetting

impute ci with neural network
→ we do this indirectly by back-translating the target sentence
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Evaluation: English→German

syntax-
based SMT

[Sennrich and Haddow, 2015]

NMT parallel +missing
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translation
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Human Evaluation of Neural MT [Bojar et al., 2016]

Fluency Adequacy
is translation good English? is meaning preserved?

+13% +1%

CS→EN DE→EN RO→EN RU→EN
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Figure: WMT16 direct assessment results
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Adequacy in Neural Machine Translation

Word Sense Disambiguation
system sentence
source Dort wurde er von dem Schläger und einer weiteren männl. Person erneut angegriffen.
reference There he was attacked again by his original attacker and another male.
our NMT There he was attacked again by the racket and another male person.
Google There he was again attacked by the bat and another male person.

Schläger

attackerracket bat

racket https://www.flickr.com/photos/128067141@N07/15157111178 / CC BY 2.0
attacker https://commons.wikimedia.org/wiki/File:Wikibully.jpg

bat1 www.personalcreations.com / CC-BY-2.0
bat2 Hasitha Tudugalle https://commons.wikimedia.org/wiki/File:Flying-Fox-Bat.jpg /

CC-BY-4.0
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Evaluating Word Sense Disambiguation [Rios, Mascarell, Sennrich, WMT 2017]

core idea
NMT assigns score to every translation hypothesis
we provide NMT system with several translations:

correct human reference translation
contrastive variants which introduces error

we count how often model prefers correct translation

test set (ContraWSD)
35 ambiguous German nouns

2–4 senses per source noun

contrastive translation sets (1 or more contrastive translations)

≈ 100 test instances per sense
→≈ 7000 test instances
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Evaluating Word Sense Disambiguation [Rios, Mascarell, Sennrich, WMT 2017]

source: Also nahm ich meinen amerikanischen Reisepass
und stellte mich in die Schlange für Extranjeros.

reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive: So I took my U.S. passport and got in the snake for Extranjeros.
contrastive: So I took my U.S. passport and got in the serpent for Extranjeros.
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Word Sense Disambiguation: Progress over Time

UEDIN-NMT at WMT (German→English)
[Sennrich, Birch, Currey, Germann, Haddow, Heafield, Miceli Barone, Williams, WMT 2017]

at WMT16, UEDIN-NMT was top-ranked

large lead in fluency; small lead in adequacy
for WMT17, we improved our MT system in several ways:

deep transition networks
layer normalization
better hyperparameters
better ensembles
(slightly) more training data

are we getting better at word sense disambiguation?
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Results: Word Sense Disambiguation

word sense disambiguation accuracy
n=7359
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What Did We Learn?

word sense disambiguation remains challenging problem in MT,
but measurable progress last year

On sentence-level, even humans may find it challenging

German Sehen Sie die Muster?
reference Do you see the patterns?
contrastive Do you see the examples?

→ targeted evaluation of document-level modelling [Bawden et al., 2018]
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Conclusion

neural sequence–to–sequence models

neural models have revolutionized MT

we have overcome early limitations

many methods shared with general deep learning

open challenges
increasing semantic faithfulness

scaling up sequence length (documents)
novel objective functions (NCE, GANs etc.)
word sense disambiguation

data efficiency
interactive MT
one-shot learning
low-resourced translation
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Thanks

Thank you for your attention

Resources
BPE scripts: https://github.com/rsennrich/subword-nmt

ContraWSD: https://github.com/a-rios/ContraWSD
pre-trained models:

WMT16: http://data.statmt.org/wmt16_systems/
WMT17: http://data.statmt.org/wmt17_systems/
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