
Hardware just-in-time compilation
Kimberley Stonehouse, Tom Spink and Björn Franke
UK Systems, 18th April 2024



What is just-in-time (JIT) compilation?

1



• Manufacturing philosophy pioneered by Toyota in 1950s Japan
• Items are created on demand, not in advance
• Reduces inventory cost and resource usage
• Efficiency becomes even more crucial to servicing demand

"Making only what is needed, only when it is 
needed, and only in the amount that is needed" [1]

A brief history of just-in-time

2[1] Ohno, Taiichi (1988), Toyota Production System: Beyond Large-Scale Production, Cambridge, MA: Productivity Press, ISBN 0915299143.



A brief history of just-in-time

• Manufacturing philosophy pioneered by Toyota in 1950s Japan
• Creates items on demand, not in advance
• Reduces inventory cost and resource usage
• Efficiency becomes even more crucial to servicing demand

"Making only what is needed, only when it is 
needed, and only in the amount that is needed" [1]

2[1] Ohno, T., 1998. Toyota production system: beyond large-scale production. Productivity Press. ISBN 978-0-915299-14-0. 



• Manufacturing philosophy pioneered by Toyota in 1950s Japan
• Creates items on demand, not in advance
• Efficiency is now crucial to servicing demand
• Reduces resource usage and inventory cost

"Making only what is needed, only when it is 
needed, and only in the amount that is needed" [1]

A brief history of just-in-time

[1] Ohno, T., 1998. Toyota production system: beyond large-scale production. Productivity Press. ISBN 978-0-915299-14-0. 2



A brief history of just-in-time

• Manufacturing philosophy pioneered by Toyota in 1950s Japan
• Creates items on demand, not in advance
• Efficiency is now crucial to servicing demand
• Reduces resource usage and inventory cost

"Making only what is needed, only when it is 
needed, and only in the amount that is needed" [1]

2[1] Ohno, T., 1998. Toyota production system: beyond large-scale production. Productivity Press. ISBN 978-0-915299-14-0.



• The same philosophy can be applied to compilation

A brief history of just-in-time

3



A brief history of just-in-time

3

• The same philosophy can be applied to compilation
• Compiles functions on demand when called



• The same philosophy can be applied to compilation
• Compiles functions on demand when called
• Reduces initial latency and memory usage
• Once again, efficiency is crucial

Compiling only what is needed, only when it is 
needed, and only in the amount that is needed

A brief history of just-in-time

3



What are the benefits of just-in-time?

4



• Portability
• Responding to platform demand, rather than anticipating it

Benefits of just-in-time

5



Benefits of just-in-time

5

• Portability
• Responding to platform demand, rather than anticipating it

• Optimisations
• Leveraging dynamic information to improve code quality



• Portability
• Responding to platform demand, rather than anticipating it

• Optimisations
• Leveraging dynamic information to improve code quality

• Performance
• Accelerating Java, Python, C#, PHP, JavaScript, Ruby, WebAssembly…

Benefits of just-in-time

5



What challenges does just-in-time face?

6



• Once again, efficiency is crucial
• Latency ultimately results in program pauses

Challenges faced by just-in-time

7



• Once again, efficiency is crucial
• Latency ultimately results in program pauses

The primary constraint on just-in-time 
compilers is speed. The program 

must not pause during execution.

Challenges faced by just-in-time

7



How is latency mitigated?

8



Dynamic recompilation

• Hot swapping
• Most programs spend the majority of time on a minority of code [1]

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9



Dynamic recompilation

• Hot swapping
• Most programs spend the majority of time on a minority of code [1]
• Recompilation can yield significant performance improvements

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9



• Hot swapping
• Most programs spend the majority of time on a minority of code [1]
• Recompilation can yield significant performance improvements

• Tiered compilation
• Each tier delivers higher quality code, taking longer to do so

Dynamic recompilation

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9



• Hot swapping
• Most programs spend the majority of time on a minority of code [1]
• Recompilation can yield significant performance improvements

• Tiered compilation
• Each tier delivers higher quality code, taking longer to do so
• Low latency early tiers conceal background optimisations

Dynamic recompilation

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9



• Hardware acceleration
• Adding hardware accelerated instructions can improve the 

efficiency of code generation by an average of 15% [1, 2]

Introducing hardware

[1] Carbon, M.A. et al., 2013. Hardware acceleration for just-in-time compilation on heterogeneous embedded systems. IEEE ASAPʼ13.
[2] Carbon, M.A. et al., 2014. Hardware acceleration of red-black tree management and application to just-in-time compilation. Journal of Signal Processing Systems. 10



Introducing hardware

[1] Carbon, M.A. et al., 2013. Hardware acceleration for just-in-time compilation on heterogeneous embedded systems. IEEE ASAPʼ13.
[2] Carbon, M.A. et al., 2014. Hardware acceleration of red-black tree management and application to just-in-time compilation. Journal of Signal Processing Systems.

• Hardware acceleration
• Adding hardware accelerated instructions can improve the 

efficiency of code generation by an average of 15% [1, 2]

Can we combine tiered compilation 
with hardware acceleration?

10



What about a first tier entirely 
in hardware?

11



12

System architecture



System architecture

12(not to scale)



System architecture

12(not to scale)

code please!

sure thing!



System architecture

12(not to scale)

code please!

sure thing!



12(very not to scale)



Can we use high-level synthesis (HLS)?

13



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management

[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays
• No double pointers, function pointers or general pointer casting

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays
• No double pointers, function pointers or general pointer casting
• No library calls or standard template library containers

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit

Templating compiler

15



• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit
• Produces largely unoptimised code, but very quickly

Templating compiler

15



• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit
• Produces largely unoptimised code, but very quickly
• Simple implementation, so amenable to synthesis

Templating compiler

15



Templating compiler

15

• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit
• Produces largely unoptimised code, but very quickly
• Simple implementation, so amenable to synthesis

• Demonstrated benefits in multiple contexts
• Lightweight compilation in constrained environments [1]

[1] Coffin, E. et al., 2020. MicroJIT: a case for templated just-in-time compilation in constrained environments. CASCONʼ20.
[2] Kaur, H. et al., 2023. Performance Evaluation of Template-based JIT Compilation in OpenJ9. CASCONʼ23.
[3] Xu, H. et al., 2021. Copy-and-patch compilation: a fast compilation algorithm for high-level languages and bytecode. OOPSLAʼ21.



• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit
• Produces largely unoptimised code, but very quickly
• Simple implementation, so amenable to synthesis

• Demonstrated benefits in multiple contexts
• Lightweight compilation in constrained environments [1]
• Reduced start up latency for larger virtual machines [2, 3]

[1] Coffin, E. et al., 2020. MicroJIT: a case for templated just-in-time compilation in constrained environments. CASCONʼ20.
[2] Kaur, H. et al., 2023. Performance Evaluation of Template-based JIT Compilation in OpenJ9. CASCONʼ23.
[3] Xu, H. et al., 2021. Copy-and-patch compilation: a fast compilation algorithm for high-level languages and bytecode. OOPSLAʼ21.

Templating compiler

15



Current progress

• Proof of concept implementation
• Translates register-based intermediate representation to native x86

16



Current progress

• Proof of concept implementation
• Translates register-based intermediate representation to native x86
• Transfers code back and forth via physical Ethernet connection

16



Future work

• Extend language support
• Use a portable bytecode like WebAssembly

17



Future work

• Extend language support
• Use a portable bytecode like WebAssembly
• Requires stack-based to register-based conversion

17



• Extend language support
• Use a portable bytecode like WebAssembly
• Requires stack-based to register-based conversion

• Optimise hardware implementation
• Synthesisable design != optimal design

Future work

17



Future work

• Extend language support
• Use a portable bytecode like WebAssembly
• Requires stack-based to register-based conversion

• Optimise hardware implementation
• Synthesisable design != optimal design
• Requires hardware knowledge

17



Future work

• Extend language support
• Use a portable bytecode like WebAssembly
• Requires stack-based to register-based conversion

• Optimise hardware implementation
• Synthesisable design != optimal design
• Requires hardware knowledge

• Measure system performance
• Choose appropriate benchmarks for evaluation

17



Summary

18

• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful



Summary

18

• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful
• But speed is still the primary limiting factor



Summary

18

• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful
• But speed is still the primary limiting factor

• Hardware just-in-time is a promising space
• Hardware acceleration has shown positive results



• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful
• But speed is still the primary limiting factor

• Hardware just-in-time is a promising space
• Hardware acceleration has shown positive results
• Research into an entirely hardware first tier is ongoing

Summary

18



Summary

18

• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful
• But speed is still the primary limiting factor

• Hardware just-in-time is a promising space
• Hardware acceleration has shown positive results
• Research into an entirely hardware first tier is ongoing
• But there are still many interesting problems left to solve


