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What is just-in-time (JIT) compilation?
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• Manufacturing philosophy pioneered by Toyota in 1950s Japan
• Items are created on demand, not in advance
• Reduces inventory cost and resource usage
• Efficiency becomes even more crucial to servicing demand

"Making only what is needed, only when it is 
needed, and only in the amount that is needed" [1]

A brief history of just-in-time

2[1] Ohno, Taiichi (1988), Toyota Production System: Beyond Large-Scale Production, Cambridge, MA: Productivity Press, ISBN 0915299143.
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• The same philosophy can be applied to compilation
• Compiles functions on demand when called
• Reduces initial latency and memory usage
• Once again, efficiency is crucial

Compiling only what is needed, only when it is 
needed, and only in the amount that is needed

A brief history of just-in-time
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What are the benefits of just-in-time?
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• Portability
• Responding to platform demand, rather than anticipating it
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• Portability
• Responding to platform demand, rather than anticipating it

• Optimisations
• Leveraging dynamic information to improve code quality

• Performance
• Accelerating Java, Python, C#, PHP, JavaScript, Ruby, WebAssembly…

Benefits of just-in-time
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What challenges does just-in-time face?
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• Once again, efficiency is crucial
• Latency ultimately results in program pauses

Challenges faced by just-in-time
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• Once again, efficiency is crucial
• Latency ultimately results in program pauses

The primary constraint on just-in-time 
compilers is speed. The program 

must not pause during execution.

Challenges faced by just-in-time
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How is latency mitigated?
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Dynamic recompilation

• Hot swapping
• Most programs spend the majority of time on a minority of code [1]

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9
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• Hot swapping
• Most programs spend the majority of time on a minority of code [1]
• Recompilation can yield significant performance improvements

• Tiered compilation
• Each tier delivers higher quality code, taking longer to do so
• Low latency early tiers conceal background optimisations

Dynamic recompilation

[1] Knuth, D.E., 1971. An empirical study of FORTRAN programs. Software: Practice and experience, 1(2), pp.105-133. 9



• Hardware acceleration
• Adding hardware accelerated instructions can improve the 

efficiency of code generation by an average of 15% [1, 2]

Introducing hardware

[1] Carbon, M.A. et al., 2013. Hardware acceleration for just-in-time compilation on heterogeneous embedded systems. IEEE ASAPʼ13.
[2] Carbon, M.A. et al., 2014. Hardware acceleration of red-black tree management and application to just-in-time compilation. Journal of Signal Processing Systems. 10
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• Hardware acceleration
• Adding hardware accelerated instructions can improve the 

efficiency of code generation by an average of 15% [1, 2]

Can we combine tiered compilation 
with hardware acceleration?
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What about a first tier entirely 
in hardware?
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Can we use high-level synthesis (HLS)?

13



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device



High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


High-level synthesis (HLS)

14

• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management

[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays
• No double pointers, function pointers or general pointer casting

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs


• Develop a software prototype in C/C++
• Synthesise onto a programmable logic device
• Code must conform to synthesisability constraints [1]

• No system calls or dynamic memory management
• No recursion, virtual functions or variable length arrays
• No double pointers, function pointers or general pointer casting
• No library calls or standard template library containers

High-level synthesis (HLS)

14[1] AMD High-Level Synthesis User Guide.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Unsupported-C/C-Constructs
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• Demonstrated benefits in multiple contexts
• Lightweight compilation in constrained environments [1]

[1] Coffin, E. et al., 2020. MicroJIT: a case for templated just-in-time compilation in constrained environments. CASCONʼ20.
[2] Kaur, H. et al., 2023. Performance Evaluation of Template-based JIT Compilation in OpenJ9. CASCONʼ23.
[3] Xu, H. et al., 2021. Copy-and-patch compilation: a fast compilation algorithm for high-level languages and bytecode. OOPSLAʼ21.



• Define a target template for each source instruction
• At runtime, patch the template with dynamic values and emit
• Produces largely unoptimised code, but very quickly
• Simple implementation, so amenable to synthesis

• Demonstrated benefits in multiple contexts
• Lightweight compilation in constrained environments [1]
• Reduced start up latency for larger virtual machines [2, 3]

[1] Coffin, E. et al., 2020. MicroJIT: a case for templated just-in-time compilation in constrained environments. CASCONʼ20.
[2] Kaur, H. et al., 2023. Performance Evaluation of Template-based JIT Compilation in OpenJ9. CASCONʼ23.
[3] Xu, H. et al., 2021. Copy-and-patch compilation: a fast compilation algorithm for high-level languages and bytecode. OOPSLAʼ21.

Templating compiler
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Current progress

• Proof of concept implementation
• Translates register-based intermediate representation to native x86
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Current progress

• Proof of concept implementation
• Translates register-based intermediate representation to native x86
• Transfers code back and forth via physical Ethernet connection
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• Use a portable bytecode like WebAssembly
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Future work

• Extend language support
• Use a portable bytecode like WebAssembly
• Requires stack-based to register-based conversion

• Optimise hardware implementation
• Synthesisable design != optimal design
• Requires hardware knowledge

• Measure system performance
• Choose appropriate benchmarks for evaluation
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• Just-in-time compilation brings many benefits
• Dynamic optimisations can be very powerful
• But speed is still the primary limiting factor

• Hardware just-in-time is a promising space
• Hardware acceleration has shown positive results
• Research into an entirely hardware first tier is ongoing
• But there are still many interesting problems left to solve


