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ABSTRACT
Current query expansion models use pseudo-relevance feedback to
improve first-pass retrieval effectiveness; however, this fails when
the initial results are not relevant. Instead of building a language
model from retrieved results, we propose Generative Relevance
Feedback (GRF) that builds probabilistic feedback models from long-
form text generated from Large Language Models. We study the
effective methods for generating text by varying the zero-shot gen-
eration subtasks: queries, entities, facts, news articles, documents,
and essays. We evaluate GRF on document retrieval benchmarks
covering a diverse set of queries and document collections, and the
results show that GRF methods significantly outperform previous
PRF methods. Specifically, we improve MAP between 5-19% and
NDCG@10 17-24% compared to RM3 expansion, and achieve the
best R@1k effectiveness on all datasets compared to state-of-the-art
sparse, dense, and expansion models.
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1 INTRODUCTION
Recent advances in Large Language Models (LLMs) such as GPT-3
[4], PaLM [6], and ChatGPT demonstrate new capabilities to gen-
erate long-form fluent text. In addition, LLMs are being combined
with search engines, including BingGPT or Bard, to create sum-
maries of search results in interactive forms. In this work, we use
these models not to generate end-user responses but as input to
the core retrieval algorithm.

The classical approach to address the vocabulary mismatch
problem [2] is query expansion using Pseudo-Relevance Feedback
(PRF) [1, 30, 31, 51], where the query is expanded using terms from
the top-𝑘 documents in a feedback set. This feedback set is obtained
using a first-pass retrieval, and the expanded query is then used
for a second-pass retrieval. While query expansion with PRF often
improves recall, its effectiveness hinges on the quality of the first-
pass retrieval. Non-relevant results in the feedback set introduce
noise and may pull the query off-topic.

To address this problem, we propose Generative Relevance Feed-
back (GRF) that uses LLMs to generate text independent of first-pass
retrieval. Figure 1 shows how we use an LLM to generate diverse

types of query-specific text, before using these “generated docu-
ments” as input for proven query expansion models [1]. We experi-
ment using the following types of generated text: keywords, entities,
chain-of-thought reasoning, facts, news articles, documents, and
essays. Furthermore, we find that combining text across all genera-
tion subtasks results in 2-7% higher MAP versus the best standalone
generation.

Figure 1: GRF uses diverse LLM-generate text content for rel-
evance feedback to contextualise the query.

We evaluate GRF1 on four established document ranking bench-
marks (see Section 4.1) and outperform several state-of-the-art
sparse [1, 37], dense [19, 32, 41], and learned sparse [17] PRF mod-
els. We find that long-form text generation (i.e. news articles, docu-
ments, and essays) is 7-14% more effective as a feedback set com-
pared to shorter texts (i.e. entities and keywords). Furthermore, the
closer the generation subtask is to the style of the target dataset (i.e.
news generation for newswire corpus or document generation for
web document corpus), the more effective GRF is. Lastly, combining
text across all generation subtasks results in 2-7% improvement in
MAP over the best standalone generation subtask.

The contributions of this work are:
• We propose GRF, a generative relevance feedback approach
which builds a relevance model using text generated from an
LLM.

• We show LLM generated long-form text in the style of the target
dataset is the most effective. Furthermore, combing text across
multiple generation subtasks can further improve effectiveness.

• We demonstrate that GRF improves MAP between 5-19% and
NDCG@10 between 17-24% compared to RM3 expansion, and
achieves the best Recall@1000 compared to state-of-the-art sparse,
dense and learned sparse PRF retrieval models.

1Prompts and generated data for reproducibility: link
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2 RELATEDWORK
Query Expansion: Lexical mismatch is a crucial issue in infor-
mation retrieval, whereby a user query fails to capture their com-
plete information need [2]. Query expansion methods [38] tackle
this problem by incorporating terms closer to the user’s intended
meaning. One popular technique for automatic query expansion is
pseudo-relevance feedback (PRF), where the top 𝑘 documents from
the initial retrieval are assumed to be relevant. For example, Roc-
chio [38], KL expansion [51], relevance modelling [30], LCE [31],
and RM3 expansion [1]. Additionally, we have seen approaches that
expand queries with KG-based information [9, 29, 45, 47] or utilize
query-focused LLM vectors for query expansion [32].

Recent advancements in dense retrieval [16, 21, 46] have led to
the development of vector-based PRF models [19], such as ColBERT
PRF [41], ColBERT-TCT PRF [49], and ANCE-PRF [49]. Further-
more, SPLADE [11] is a neural retrieval model that uses BERT and
sparse regularization to learn query and document sparse expan-
sions. Recent work has leveraged query expansion with PRF of
learned sparse representations [17]. Unlike prior work, GRF does
not rely on pseudo-relevance feedback, instead generating relevant
text context for query expansion using LLMs.
LLM Query Augmentation The emergence of LLMs has shown
progress across many different aspects of information retrieval [48].
This includes using LLMs to change the query representation, such
as query generation and rewriting [15, 24, 34, 39, 44, 50], context
generation [12, 23], and query-specific reasoning [10, 36]. For ex-
ample, Nogueira et al. [34] fine-tune a T5 model to generate queries
for document expansion for passage retrieval. More recent work by
Bonifacio et al. [3] shows that GPT3 can be effectively leveraged for
few-short query generation for dataset generation. Furthermore,
LLMs have been used for conversational query re-writing [44] and
generating clarifying questions [50].

We have also seen facet generation using T5 [24] and GPT3 [39]
to improve the relevance or diversity of search results. While in
QA, Liu et al. [23] sample various contextual clues from LLMs and
augment and fuse multiple queries. For passage ranking, HyDe [12]
uses InstructGPT [35] to generate hypothetical document embed-
dings and use Contriever [14] for dense retrieval. Lastly, works have
shown LLM generation used for query-specific reasoning [10, 36]
to improve ranking effectiveness. Our approach differs from prior
LLM augmentation approaches as we use LLMs to generate long-
form text to produce a probabilistic expansion model to tackle
query-document lexical mismatch.

3 GENERATIVE RELEVANCE FEEDBACK
Generative Relevance Feedback (GRF) tackles query-document lex-
ical mismatch using text generation for zero-shot query expansion.
Unlike traditional PRF approaches for query expansion [1, 30, 31],
GRF is not reliant on first-pass retrieval effectiveness to find useful
terms for expansion. Instead, we leverage LLMs [5] to generate
zero-shot relevant text content.

We build upon prior work on Relevance Models [1] to incorpo-
rate the probability distribution of the terms generated by our LLM.
This approach enriches the original query with useful terms from
diverse generation subtasks, including keywords, entities, chain-
of-thought reasoning, facts, news articles, documents, and essays.

We find that the most effective query expansions are: (1) long-form
text generations and (2) text content closer in style to the target
dataset. In essence, we show that LLMs can effectively generate
zero-shot text context close to the target relevant documents.

Lastly, we propose our full GRF method that combines text con-
tent across all generation subtasks. The intuition behind this ap-
proach is that if terms are used consistently generated across sub-
tasks (i.e. within the entity, fact, and news generations), then these
terms are likely useful for expansion. Additionally, multiple diverse
subtasks also help expose tail knowledge or uncommon synonyms
helpful for retrieval. We find this approach is more effective than
any standalone generation subtasks.

3.1 GRF Query Expansion
For a given query 𝑄 , Equation 1 shows how 𝑃𝐺𝑅𝐹 (𝑤 |𝑅) is the
probability of a term,𝑤 , being in a relevant document, 𝑅. Similar to
RM3 [1], GRF expansion combines the probability of a term given
the original query 𝑃 (𝑤 |𝑄) with the probability of a term within
our LLM-generated document, 𝑃 (𝑤 |𝐷𝐿𝐿𝑀 ), which we assume is
relevant. 𝛽 (original query weight) is a hyperparameter to weigh the
relative importance of our generative expansion terms. Additionally,
\ (number of expansion terms) is a hyperparameter with𝑊\ being
the set of most probable LLM-generated terms.

𝑃𝐺𝑅𝐹 (𝑤 |𝑅) = 𝛽𝑃 (𝑤 |𝑄) +
{
(1 − 𝛽)𝑃 (𝑤 |𝐷𝐿𝐿𝑀 ), if𝑤 ∈𝑊\ .

0, otherwise.
(1)

3.2 Generation Subtasks
We study how LLMs can generate relevant text, 𝐷𝐿𝐿𝑀 , across di-
verse generation subtasks for GRF expansion. The 10 query-specific
generation subtasks are:

• Keywords (64 tokens): Generates a list of the important words
or phrases for the topic, similar to facet generation [24, 39].

• Entities (64 tokens): Generates a list of important concepts or
named entities, similar to KG-based expansion approaches [9].

• CoT-Keywords (256 tokens): Generate chain-of-thought (CoT) [43]
reasoning to explain “why” a list of keywords are relevant.

• CoT-Entities (256 tokens): Generate CoT reasoning to explain
“why” a list of entities are relevant.

• Queries (256 tokens): Generate a list of queries based on the
original query, similar to [3].

• Summary (256 tokens): Generate a concise summary (or an-
swer) to satisfy the query.

• Facts: Generate a knowledge-intensive list of text-based facts on
the topic, which is close to [23].

• Document (512 tokens): Generate a relevant document based
on the query closest to a long-form web document.

• Essay (512 tokens): Generate a long-form essay-style response.
• News (512 tokens): Generate text in the style of a news article.

The full GRF expansion model concatenates text generated
across all subtasks to produce𝐷𝐿𝐿𝑀 . We then calculate 𝑃 (𝑤 |𝐷𝐿𝐿𝑀 )
using this aggregated text, as outlined above. Section 5 shows that
the combination using the text across all types is most effective.



4 EXPERIMENTAL SETUP
4.1 Datasets
4.1.1 Retrieval Corpora. TREC Robust04 [40] was created to in-
vestigate methods targeting poorly performing topics. This dataset
comprises 249 topics, containing short keyword “titles” and longer
natural-language "descriptions" queries. Relevance judgments are
over a newswire collection of 528k long documents (TREC Disks 4
and 5), i.e. FT, Congressional Record, LA Times, etc.

CODEC [28] is a dataset that focuses on the complex informa-
tion needs of social science researchers. Domain experts (economists,
historians, and politicians) generate 42 challenging essay-style top-
ics. CODEC has a focused web corpus of 750k long documents,
which includes news (BBC, Reuters, CNBC etc.) and essay-based
web content (Brookings, Forbes, eHistory, etc.).

TREC Deep Learning (DL) 19/20 [7, 8] builds upon the MS
MARCO web queries and documents [33]. The TREC DL dataset
uses NIST annotators to provide judgments pooled to a greater
depth, containing 43 topics for DL-19 and 45 topics for DL-20. Both
query sets are predominately factoid-based [27].

4.1.2 Indexing and Evaluation. For indexing we use Pyserini ver-
sion 0.16.0 [20], removing stopwords and using Porter stemming.
We use cross-validation and optimise R@1k on standard folds for
Robust04 [13] and CODEC [28]. On DL-19, we cross-validated on
DL-20 and use the average parameters zero-shot on DL-19 (and
vice versa for DL-20). We assess the system runs to a run depth
of 1,000. With GRF being an initial retrieval model, recall-oriented
evaluation is important, such as Recall@1000 and MAP to identify
relevant documents. We also analyse NDCG@10 to show precision
in the top ranks. We use ir-measures for all our evaluations [25]
and a 95% confidence paired-t-test for significance.

4.2 GRF Implementation
LLMGeneration. For our text generation we use the GPT3 API [5].
Specifically, we use the text-davinci-002model with parameters:
temperature of 0.7, top_p of 1.0, frequency_penalty of 0.0, and pres-
ence_penalty of 0.0. We release all code, generation subtask prompts,
generated text content and runs for reproducibility.

Retrieval and Expansion To avoid query drift, all GRF runs in
the paper use a tuned BM25 system for the input initial run [37]. We
tune GRF hyperparameters: the number of feedback terms (\ ) and
the interpolation between the original terms and generative expan-
sion terms (𝛽). The tuning methodology is the same as BM25 and
BM25 with RM3 expansion to make the GRF directly comparable;
see below for details.

4.3 Comparison Methods
BM25 [37]: Sparse retrieval method, we tune 𝑘1 parameter (0.1 to
5.0 with a step size of 0.2) and 𝑏 (0.1 to 1.0 with a step size of 0.1).
BM25+RM3 [1]: For BM25with RM3 expansion, we tune 𝑓 𝑏_𝑡𝑒𝑟𝑚𝑠

(5 to 95 with a step of 5), 𝑓 𝑏_𝑑𝑜𝑐𝑠 (5 to 50 with a step of 5), and
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑞𝑢𝑒𝑟𝑦_𝑤𝑒𝑖𝑔ℎ𝑡 (0.2 to 0.8 with a step of 0.1).
CEQE [32]: Utilizes query-focused vectors for query expansion.
We use the CEQE-MaxPool runs provided by the author.
SPLADE+RM3: We use RM3 [1] expansion with SPLADE [11]. We
use naver/splade-cocondenser-ensembledistil checkpoint and
Pyserini’s [20] “impact” searcher for max-passage aggregation.
We tune 𝑓 𝑏_𝑑𝑜𝑐𝑠 (5,10,15,20,25,30), 𝑓 𝑏_𝑡𝑒𝑟𝑚𝑠 (20,40,60,80,100), and
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑞𝑢𝑒𝑟𝑦_𝑤𝑒𝑖𝑔ℎ𝑡 (0.1 to 0.9 with a step of 0.1).
TCT+PRF: [18] is a Roccio PRF approach using ColBERT-TCT [22].
We employ a max-passage approach with TCT-ColBERT-v2-HNP
checkpoint. We tune Roccio PRF parameters: 𝑑𝑒𝑝𝑡ℎ (2,3,5,7,10,17),
𝛼 (0.1 to 0.9 with a step of 0.1), and 𝛽 (0.1 to 0.9 with a step of 0.1).
ColBERT+PRF [41]: We use the runs provided by Wang et al. [42],
which use pyterrier framework [26] for ColBERT-PRF retrieval.

5 RESULTS & ANALYSIS
5.1 RQ1: What generative content is most

effective for query expansion?
Table 1 shows the effectiveness of generative feedback with varying
units of text (Keywords-News) and our full hybrid method that uses
text from all subtasks. We test for significant improvements against
BM25 with RM3 expansion, to ascertain whether our zero-shot
generative feedback methods improve over RM3 expansion.

Generation subtasks that target short text span or lists (Key-
words, Entities, Keywords-COT, Entities-COT, and Queries) do not

Table 1: GRF with different generation subtasks. Significant improvements against BM25+RM3 (“+”) and best system (bold).

Robust04 -Title CODEC DL-19 DL-20
NDCG@10 MAP R@1k NDCG@10 MAP R@1k NDCG@10 MAP R@1k NDCG@10 MAP R@1k

BM25 0.445 0.252 0.705 0.316 0.214 0.783 0.531 0.335 0.703 0.546 0.413 0.811
BM25+RM3 0.451 0.292 0.777 0.326 0.239 0.816 0.541 0.383 0.745 0.513 0.418 0.825
GRF-Keywords 0.435 0.252 0.717 0.327 0.218 0.748 0.565 0.377 0.749 0.554 0.435 0.822
GRF-Entities 0.452 0.252 0.698 0.341 0.216 0.750 0.531 0.363 0.741 0.544 0.414 0.824
GRF-CoT-Keywords 0.436 0.248 0.704 0.327 0.239 0.774 0.550 0.382 0.748 0.542 0.423 0.817
GRF-CoT-Entities 0.450 0.252 0.714 0.355 0.243 0.789 0.563 0.389 0.757 0.552 0.430 0.832
GRF-Queries 0.450 0.257 0.710 0.347 0.233 0.773 0.551 0.367 0.760 0.568 0.439 0.851
GRF-Summary 0.491+ 0.277 0.730 0.398+ 0.260 0.796 0.577 0.414 0.761 0.585+ 0.472+ 0.865
GRF-Facts 0.501+ 0.284 0.744 0.353 0.255 0.795 0.569 0.401 0.769 0.583+ 0.459+ 0.871
GRF-Document 0.480+ 0.276 0.728 0.376+ 0.265 0.795 0.618+ 0.428+ 0.787+ 0.589+ 0.476+ 0.872
GRF-Essay 0.494+ 0.284 0.736 0.405+ 0.270+ 0.803 0.609+ 0.421+ 0.779+ 0.551 0.440 0.859
GRF-News 0.501+ 0.287 0.745 0.398+ 0.270+ 0.828 0.609 0.409 0.777 0.578+ 0.457 0.853
GRF 0.528+ 0.307 0.788 0.405+ 0.285+ 0.830 0.620+ 0.441+ 0.797+ 0.607+ 0.486+ 0.879+



Table 2: GRF against state-of-the-art PRF models. Significant improvements against BM25+RM3 (“+”) and best system (bold).

Robust04 -Title CODEC DL-19 DL-20
nDCG@10 MAP R@1k nDCG@10 MAP R@1k nDCG@10 MAP R@1k nDCG@10 MAP R@1k

BM25+RM3 0.451 0.292 0.777 0.326 0.239 0.816 0.541 0.383 0.745 0.513 0.418 0.825
CEQE-MaxPool 0.474 0.310+ 0.764 - - - 0.518 0.378 0.746 0.473 0.396 0.841
SPLADE+RM3 0.418 0.248 0.703 0.311 0.216 0.770 0.566 0.328 0.651 0.533 0.379 0.784
TCT+PRF 0.493 0.274 0.684 0.358 0.239 0.757 0.670+ 0.378 0.684 0.618+ 0.442 0.784
ColBERT-PRF 0.467 0.272 0.648 - - - 0.668+ 0.385 0.625 0.615+ 0.489+ 0.813
GRF (Ours) 0.528+ 0.307 0.788 0.405+ 0.285+ 0.830 0.620+ 0.441+ 0.797+ 0.607+ 0.486+ 0.879+

offer significantly improves over RM3 expansion. Conversely, sub-
tasks targeting long text generation (Summary, Facts, Document,
Essay, News) significantly improve at least two datasets over RM3
expansions. This indicates that more terms generated from the
LLM provide a better relevance model, and increases MAP between
7-14% when we compare these two categories.

Furthermore, we find most effective generation subtasks are
aligned with the style of the target dataset. For example, Facts
and News are the best standalone generation methods across all
measures on Robust04, where the dataset contains fact-heavy topics
and a newswire corpus. Additionally, Essay and News are the best
generation subtasks on CODEC across all measures, which aligns
with its essay-style queries over a news (BBC, Reuters, CNBC, etc.)
and essay-style (Brookings, Forbes, eHistory, etc.) corpus. Lastly,
Document is the best generation subtask across DL-19 and DL-20,
aligning with MS Marcos web document collection. Overall, this
finding supports that LLM generative content in the styles of the
target dataset is the most effective.

Although we see significant improvements from some stan-
dalone generation subtasks, particularly NDCG@10 (15/40 subtasks
across the datasets), the full GRF method is consistently as good if
not better than any standalone subtask. Specifically, GRF improves
NDCG by 0.0-5.4%, MAP by 2.1-7.0% and R@1k by 0.2-5.8% across
the datasets. This shows that combining LLM-generated text from
various generation subtasks is a robust and effective method of
relevance modelling.

Lastly, these results show that GRF expansion from generated
text is consistently better, often significantly, than RM3 expansion
that uses documents from the target corpus. Specifically, we find
significant improvement on all measures across DL-19 and DL-20,
NDCG@10 and MAP on CODEC, and NDCG@10 on Robust04
titles. Although not included for space limitations, on Robust04
description queries, GRF shows significant improvements with an
NDCG of 0.550, MAP of 0.318, and R@1k of 0.776.

These results strongly support that LLM generation is an effec-
tive query expansion method without relying on first-pass retrieval
effectiveness. For example, we look at the hardest 20% of Robust04
topics ordered by NDCG@10; we find that RM3 offers minimal
uplift and only improves NDCG@10 by +0.006, MAP by +0.008,
and R@1k by +0.052. In contrast, GRF is not reliant on first-pass
retrieval effectiveness, and GRF improves NDCG@10 by +0.145,
MAP by +0.068, and R@1k by +0.165 (a relative improvement of
+100-200% on NDCG@10 and MAP).

5.2 RQ2: How does GRF compare to
state-of-the-art PRF models?

Table 2 showsGRF against state-of-the-art sparse, dense, and learned
sparse PRF models across target datasets. This allows us to directly
compare GRF’s unsupervised term-based queries against PRF meth-
ods that use more complex LLM-based embeddings. We conduct
significance testing against BM25 with RM3 expansion.

GRF has the best R@1k across all datasets and has comparable
and often better effectiveness in the top ranks. Specifically, on more
challenging datasets, such as CODEC and Robust04 titles, GRF is the
best system across all measures, except Robust04 titles MAP, which
is 0.003 less than CEQE. Although not included for space limitations,
GRF is also the most effective system on Robust04 descriptions
across all measures. GRF vastly outperforms dense retrieval and
dense PRF on these challenging datasets, with a performance gap
of 7-14% on NDCG@20, 13-21% MAP, and 10-22% R@1k.

Dense retrieval has been shown to be highly effective on themore
factoid-focused datasets, such as DL-19 and DL-20. However, as well
as the best R@1k, our unsupervised GRF queries have comparable
NDCG@10 andMAP scores to dense PRFmodels. This is juxtaposed
to other sparse methods (BM25 and BM25 with RM3 expansions)
or LLM expansion (CEQE), which have much poorer precision in
the top ranks. Overall, this supports that generative expansion is a
highly effective initial retrieval method across various collections
and query types.

6 CONCLUSION
To our knowledge, this is the first work to study the use of long-form
text generated from large-language models for query expansion.
We show that generating long-form text in news-like and essay-
like formats is effective input for probabilistic query expansion
approaches. The results on document retrieval on multiple corpora
show that the proposed GRF approach outperforms models that use
retrieved documents (PRF). The results show GRF improves MAP
between 5-19% and NDCG@10 between 17-24% when compared to
RM3 expansion, and achieves the best Recall@1000 compared to
state-of-the-art PRF retrieval models. We envision GRF as one of
the many new emerging methods that use LLM-generated content
to improve the effectiveness of core retrieval tasks.
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