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Abstract method involves a significant extension of the tech-
We introduce a spectral learning algorithm for hiques from Hsu et al. (20_09)' L-PCFGs have been
latent-variable PCFGs (Petrov et al., 2006).  Shown to be a very effective model for natural lan-

Under a separability (singular value) condi- guage parsing. Under a separation (singular value)
tion, we prove that the method provides con- condition, our algorithm provides consistent param-
sistent parameter estimates. eter estimates; this is in contrast with previous work,
which has used the EM algorithm for parameter es-
1 Introduction timation, with the usual problems of local optima.

Statistical models with hidden or latent variables are The parameter estimation algorithm (see figure 4)
of great importance in natural language processiné§ simple and efficient. The first step is to take
speech, and many other fields. The EM algorithm igh SVD of the training examples, followed by a
a remarkably successful method for parameter esfrojection of the training examples down to a low-
mation within these models: it is simple, it is oftendimensional space. In a second step, empirical av-
relatively efficient, and it has well understood formakrages are calculated on the training example, fol-
properties. It does, however, have a major limitationowed by standard matrix operations. On test ex-
it has no guarantee of finding the global optimum ofimples, simple (tensor-based) variants of the inside-
the likelihood function. From a theoretical perspecoutside algorithm (figures 2 and 3) can be used to
tive, this means that the EM algorithm is not guarcalculate probabilities and marginals of interest.
anteed to give consistent parameter estimates. FromOur method depends on the following results:
a practical perspective, problems with local optima e Tensor form of the inside-outside algorithm
can be difficult to deal with. Section 5 shows that the inside-outside algorithm for

Recent work has introduced polynomial-timeL-PCFGs can be written using tensors. Theorem 1
learning algorithms (and consistent estimation mettgives conditions under which the tensor form calcu-
ods) for two important cases of hidden-variabldates inside and outside terms correctly.
models: Gaussian mixture models (Dasgupta, 1999; e Observable representationsSection 6 shows
Vempala and Wang, 2004) and hidden Markov modhat under a singular-value condition, there ioan
els (Hsu et al., 2009). These algorithms use speservable fornfor the tensors required by the inside-
tral methods: that is, algorithms based on eigersutside algorithm. By an observable form, we fol-
vector decompositions of linear systems, in particiow the terminology of Hsu et al. (2009) in referring
lar singular value decomposition (SVD). In the gento quantities that can be estimated directly from data
eral case, learning of HMMs or GMMs is intractablewhere values for latent variables are unobserved.
(e.g., see Terwijn, 2002). Spectral methods finesdgheorem 2 shows that tensors derived from the ob-
the problem of intractibility by assuming separabil-servable form satisfy the conditions of theorem 1.
ity conditions. For example, the algorithm of Hsu e Estimating the model.Section 7 gives an al-
et al. (2009) has a sample complexity that is polynogorithm for estimating parameters of the observable
mial in 1/0, whereo is the minimum singular value representation from training data. Theorem 3 gives a
of an underlying decomposition. These methods asample complexity result, showing that the estimates
not susceptible to problems with local maxima, andonverge to the true distribution at a ratelgh/M
give consistent parameter estimates. whereM is the number of training examples.

In this paper we derive a spectral algorithm The algorithm is strikingly different from the EM
for learning of latent-variable PCFGs (L-PCFGsklgorithm for L-PCFGs, both in its basic form, and
(Petrov et al., 2006; Matsuzaki et al., 2005). Ouin its consistency guarantees. The techniques de-



veloped in this paper are quite general, and shoul L-PCFGs: Basic Definitions

be relevant to the development of spectral methodghis section gives a definition of the L-PCFG for-
for estimation in other models in NLP, for exam-malism used in this paper. An L-PCFG is a 5-tuple
ple alignment models for translation, synchronousz/, 7, P, m, n) where:

PCFGs, and so on. The tensor form of the inside- ¢ A/ is the set of non-terminal symbols in the
outside algorithm gives a new view of basic calculagrammar. Z ¢ A is a finite set ofin-terminals
tions in PCFGs, and may itself lead to new models;p A/ is a finite set ofpre-terminals We assume
2  Related Work that ' = ZU P, andZ NP = (). Hence we have

For work on L-PCFGs using the EM algorithm, seddartitioned the set of non-terminals into two subsets.
Petrov et al. (2006), Matsuzaki et al. (2005), Pereira ® [1] is the set of possible hidden states.

and Schabes (1992). Our work builds on meth- ® [1] is the set of possible words.

ods for learning of HMMs (Hsu et al., 2009; Fos- e Foralla € Z,b € N, c € N, hi, ha, hz € [m],
ter et al., 2012; Jaeger, 2000), but involves sewe have a context-free rutgh,) — b(ha) c(hs).
eral extensions: in particular in the tensor form of ® Foralla € P, h € [m], z € [n], we have a
the inside-outside algorithm, and observable reprgontext-free rulei(h) — .

sentations for the tensor form. Balle et al. (2011) Hence each in-terminal € 7 is always the left-
consider spectral learning of finite-state transducergand-side of a binary rule — b ¢; and each pre-
Lugue et al. (2012) considers spectral learning derminala € P is always the left-hand-side of a
head automata for dependency parsing. Parikh et &ille a — z. Assuming that the non-terminals in

(2011) consider spectral learning algorithms of treethe grammar can be partitioned this way is relatively
structured directed bayes nets. benign, and makes the estimation problem cleaner.

We define the set of possible “skeletal rules” as
R={a—>bc:aecIbeN,ceN} The
parameters of the model are as follows:

e For eachu — bc € R, andh € [m], we have
a parameteg(a — b c|h,a). For eacha € P,

€ [n], andh € [m], we have a parameter
g(a — z|h,a). For eacha — b ¢ € R, and
h,h' € [m], we have parametergh’|h,a — b c)

3 Notation
Given a matrixA or a vectorv, we write AT or v’
for the associated transpose. For any integer 1,
we use[n| to denote the sefl,2,...n}. For any
row or column vectory € R™, we usediag(y) to
refer to the(m x m) matrix with diagonal elements
equal toy;, for h = 1...m, and off-diagonal ele-
ments equal t@. For any statemerit, we use[[[']] ,
to refgr to_the indicator function that_lsif Tis true, an.%(ehsghacéfmit?ocgé give a PCFG, with rule proba-
ando if T is false. For a random variabl€, we use pijities
E[X] to denote its expected value.

We will make (quite limited) use of tensors: ~ P(a(h1) = blhe) c(hs)|a(h1)) =
Definition 1 A tensorC' € Rmxmxm) js g set of 4(¢ = b clhi,a) x s(halhi,a = b c) x t(hslh1,a = be)

m? parameters’; ; ;. for i, j, k € [m]. Given a ten- andp(a(h) — z|a(h)) = q(a — z|h, a).

sor C, and a vectory € R™, we defineC(y) to be  |n addition, for each: e Z, for eachh € [m], we
the (m x m) matrix with component§C'(y)];; = have a parameter(a, 1) which is the probability of
>_kepm) Cijkyk- HenceC can be interpreted as a non-terminala paired with hidden variablé being
function C' : R™ — R(™>™) that maps a vector atthe root of the tree.

y € R™ to a matrixC(y) of dimension(m x m). An L-PCFG defines a distribution over parse trees
In addition, we define the tens6t, € R(mxmxm)  as follows. Askeletal treg(s-tree) is a sequence of
for any tensorC' € R(mxmxm) g have values rulesry ...ry where eachr; is either of the form
a — bc ora — x. The rule sequence forms
[Celigik = Chji a top-down, left-most derivation under a CFG with

Finally, for vectorsz,y,z € R™, zy'z" is the skeletal rules. See figure 1 for an example.
tensorD € R™™*™ whereD; ., = x;jyrz (this A full tree consists of an s-treg . .. 7y, together
is analogous to the outer produéty ", = x;yx). With valuesh, ... hy. Eachh; is the value for



r, =S— NP VP

S1
/\ ro=NP—=DN
NP, VP rs =D — the
o~ /i ry = N — dog
Ds N, Vi P; rs =VP—>VP

r¢g =V — saw
r7:P—>him

the dog saw him

Figure 1: An s-tree, and its sequence of rules. (For cor
venience we have numbered the nodes in the tree.)

Inputs: s-treer; ...rn, L-PCFG(N,Z, P, m,n), parameter

o Cobe c RM*™MX™M forallg —» beeR
o 2, eR™ ™ foralla e P,z e [n]

o cl e R™ Y foralla € 7.
Algorithm: (calculate thef? terms bottom-up in the tree)
e Foralli € [N] suchthau; € P, f' = ¢

e Foralli € [N]suchthau, € Z, f' = fYC"i(f”) where
3 is the index of the left child of nodgin the tree, and
is the index of the right child.

1_

the hidden variable for the left-hand-side of rule
Eachh; can take any value ifin|.

Definea; to be the non-terminal on the left-hand-
side of ruler;. Foranyi € {2... N} definepa(i)
to be the index of the rule above nod the tree.

Return: flc}l1 =p(ri...rn)

Figure 2: The tensor form for calculationofry ... rx).

1. For a given s-treer;...ry, calculate

p(r1...rN).

Define L C [N] to be the set of nodes in the tree 2. For a given input sentenee= z; ...z, cal-

which are the left-child of some parent, afd C

[N] to be the set of nodes which are the right-child of
some parent. The probability mass function (PMF)

over full trees is then

p(T‘l ...T’N,hl hN) = ﬂ(al,hl)

N
X HQ(TZ‘VM,CLZ‘) X Hs(hi|hpa(i)arpa(i))

i=1 i€l
X H t(hi|hpa(i)> 7apa(i)) (l)
1€ER

The PMF over s-trees isp(ry...rn)

> hhy POrL - TN L ).

In the remainder of this paper, we make use of ma-

trix form of parameters of an L-PCFG, as follows:
e For eacha — bc € R, we defineQ?¢ ¢
R™*™ to be the matrix with valueg(a — b c|h, a)
for h = 1,2,...m on its diagonal, an@ values for
its off-diagonal elements. Similarly, for eaahe P,
x € [n], we defineQ*~* € R™*™ to be the matrix
with valuesq(a — z|h,a) for h = 1,2,...monits
diagonal, and) values for its off-diagonal elements.
e For eacha — b ¢ € R, we defines*¢ ¢
R™ ™ where[S47° €], = s(h|h,a — b c).
e For eacha — b ¢ € R, we defineT*b¢ ¢
R™*™ where[T% €|, , = t(h'|h,a — b c).
e For eachn € Z, we define the vector® ¢ R™
where[r?];, = w(a, h).
5 Tensor Form of the Inside-Outside
Algorithm
Given an L-PCFG, two calculations are central;

culate the marginal probabilities

2

TET (x):(ay5,5)ET

:“’(a>i7j) = p(T)

for each non-terminak € N/, for each(i, j)

suchthatl <i<j < N.
Here 7 (x) denotes the set of all possible s-trees for
the sentence:, and we write(a,?,j) € 7 if non-
terminala spans words; . . . z; in the parse tree.

The marginal probabilities have a number of uses.
Perhaps most importantly, for a given sentemce
x1 ... xN, the parsing algorithm of Goodman (1996)
can be used to find
) > ulaig)

(a,i.j)er

arg max
TET (x

This is the parsing algorithm used by Petrov et al.
(2006), for example. In addition, we can calcu-
late the probability for an input sentence(z)
ZTET(:B) p(T), aSp(x) Zan :u(a7 L, N)

Variants of the inside-outside algorithm can be
used for problems 1 and 2. This section introduces a
novel form of these algorithms, using tensors. This
is the first step in deriving the spectral estimation
method.

The algorithms are shown in figures 2 and 3. Each
algorithm takes the following inputs:

1. A tensorCe—bc ¢ R(mxmxm) for each rule
a—be.

2. Avectorc®,, € R(™™) for each rules — .



3. Avectorcl € R(™) for eacha € 7.
The following theorem gives conditions under
which the algorithms are correct:

Theorem 1 Assume that we have an L-PCFG with
parametersQ“_“, Qa—)b < Ta—b < Sa—)b ¢ 7o, and
that there exist matrice&® ¢ R(™*™) for all ¢ €
N such that eaclty is invertible, and such that:

1. For all rules a—be, C*70¢(y)
GcTa—>b Cdiag(beSa_)b C)Qa—>b C(Ga)—l

— 1TQa—>x(Ga)—1

o0
2. Forallrulesa — x, 22, ,

3. Foralla € Z, ¢} = Gn®

Then: 1) The algorithm in figure 2 correctly com-
putesp(r ...ry) under the L-PCFG. 2) The algo-
rithm in figure 3 correctly computes the marginalg
u(a,i,7) under the L-PCFG.

Proof: See section 9.1

6 Estimating the Tensor Model

A crucial result is that it is possible to directly esti-
mate parametei8 =" ¢, ¢, andc. that satisfy the
conditions in theorem 1, from a training sample con
sisting of s-trees (i.e., trees where hidden variablg
are unobserved). We first describe random variabls
underlying the approach, then describe observal

Inputs: Sentencer; ...zn, L-PCFG(N,Z, P, m,n), param-
etersC®7b ¢ € R™™ ™) forallg > be € R, ¢, €
R™™ foralla € P,z € [n], ¢l € R™ Y foralla € T.
Data structures:
e Eacha®® ¢ R fora e N, 1 <4 < j
row vector of inside terms.
e Eachg® e R™'fora e N, 1 <4< j
column vector of outside terms.
e Eachyu(a,i,j) € Rfora e N, 1 <i <j
marginal probability.

< Nisa
< Nisa
Nisa

<

Algorithm: .
(Inside base cas&) € P,i € [N], a*“"
(Inside recursionYa € Z,1 < i < j < N,

o0
Ca—x;

j—1

aa,i,j :z : z : ac,k+1,jca—>b C(ab,i,k)

k=ia—bc

(Outside base casgy € Z, B“"" =c,
Outside recursionya € N,1 <¢ < j < N,
J

i—1
Ba,i,j — Z Z Cb—n: a(ac,k,ifl)ﬁb,k,j

k=lb—ca

+ iv: Z Ciiﬂa C(ac_’j‘i,l}k)/@b}i’k

k=j+1lb—ac
~(Marginals)va € M,1 <i < j <N,
£S S L
}L(CL, Z,]) _ aa,z,]ﬁa,z,j — Z Oéz,Z,J/BZ,'LJ

BS
he[m]
le

representations based on these random variables.

6.1 Random Variables Underlying the Approach
Each s-tree withV rulesr; ...y hasN nodes. We

Figure 3: The tensor form of the inside-outside algorithm,

for calculation of marginal termg(a, 7, j).

will use the s-tree in figure 1 as a running example.The outside tree contains everything in the s-tree
Each node has an associated rule: for example, . .. ry, excluding the subtree below node

node2 in the tree in figure 1 has the ruN® — D N.

Our random variables are defined as follows.

If the rule at a node is of the form— b ¢, then there First, we select a random internal node, from a ran-

are left and rightnside treesdelow the left child and dom tree, as follows:
right child of the rule. For example, for nodewe
have a left inside tree rooted at nogieand a right
inside tree rooted at nodk(in this case the left and
right inside trees both contain only a single rule pro-

e Sample an s-treer;...ry from the PMF
p(r1...ryn). Choose a nodeuniformly at ran-
dom from[N].

duction, of the formu — z; however in the general

If the ruler; for the node is of the forma — b ¢,

case they might be arbitrary subtrees).
In addition, each node has awtsidetree. For
node 2, the outside tree is

we define random variables as follows:

e R; is equal to the rule; (e.g.,NP — D N).

e T} is the inside tree rooted at nodeTs is the
inside tree rooted at the left child of nodeandT;
is the inside tree rooted at the right child of nade

e Hq, H,, H3 are the hidden variables associated
with nodezi, the left child of nodei, and the right
child of nodei respectively.



e A, Ay, Az are the labels for nodé the left Our observable representation then consists of:
child of nodei, and the right child of nodérespec-

tively. (E.g.,A; = NP, Ay — D, A3 = IV.) Cy) = DUy (n) @)
e O is the outside tree at node &, = d°,, (37! 3)
e Bis equal tol if node: is at the root of the tree ¢t = E[[Ai=aWi|B=1] (4)

(i.e.,7 = 1), 0 otherwise.
If the rule r; for the selected node is of We next introduce conditions under which these
the form « — 2z, we have random vari- quantities satisfy the conditions in theorem 1.
ables Ry,T1,Hy,A:,0,B as defined above, but The following definition will be important:
H,, H3, Ty, T3, Ay, and A3 are not defined.
We assume a functiog that maps outside trees
to feature vectorg)(o) € R . For example, the fea-

Definition 2 For all « € N, we define the matrices
1% € R(@xm) gnd jo e R(@*xm) g

ture vector might track the rule directly above the (19 = E[¢:(T1) | Hi = h, A = d
node in question, the word following the node in ’
question, and so on. We also assume a function [Jin =E[i(O) | Hi = h, A1 = d

that maps inside treego feature vectors(t) € R?. "
P B(t) € In addition, for anya € N, we usey® € R™ to

As one example, the functiof might be an indica- o - -
tor function tracking the rule production at the rootdenote the vector withi; = P(H = h|A1 = a).

of the inside tree. Later we give formal criteria for The correctness of the representation will rely on
what makes good definitions af(o) of ¢(t). One the following conditions being satisfied (these are
requirement is thaf’ > m andd > m. parallel to conditions 1 and 2 in Hsu et al. (2009)):

In tandem with these definitions, we assume prazcgndition 1 Va e A, the matrices/® and J¢ are

jection matices/* € R@™ andVe € R@>™) of full rank (i.e., they have rank). For all a € N,
for all a € A. We then define additional randomgqy 411 1, e [m), v > 0.

variablesYi,Y5,Y3, Z as . . d
Condition 2 Va € N, the matriced/® € R(@x™)

Yi = (UNTH(T) Z = (V) T(0) andV® € R(¢*™) are such that the matrice§8® =
(U TI*and K = (V)T .J* are invertible.
_ a2\ T _ az\ T
Yo = (U") ¢(I2) Y3 = (U™) ¢(I5) The following lemma justifies the use of an SVD
where a; is the value of the random variabl¢;. calculation as one method for finding values &6t
Note thatY7, Y>, Y3, Z are all inR™. andV® that satisfy condition 2:

Lemma 1 Assume that condition 1 holds, and for

. s _ _ _ all a € NV define
Given the definitions in the previous section, our

representation is based on the following matrix, ten- Q% = E[¢(Ty) (w(0)) " |4, = d] (5)
sor and vector quantities, defined for ale N/, for

all rules of the form: — b ¢, and for all rules of the _Then ifU* is a matrix of them left singular vec-
form a — x respectively: tors of Q2% corresponding to non-zero singular val-

ues, and/* is a matrix of them right singular vec-
¥ = EY;Z'|A; =d] tors of Q¢ corresponding to non-zero singular val-
ues, then condition 2 is satisfied.

6.2 Observable Representations

pihe — g [[[R1 —a b dVZTY, |A = a}
Proof sketch: It can be shown that2® =

d?,, = E [[[Rl —a—2)|Z"|A = a} I%diag(y*)(J*) . The remainder is similar to the
proof of lemma 2 in Hsu et al. (2009)]
Assuming access to functiosand+, and projec- The matrice€2® can be estimated directly from a
tion matriced/* andV ¢, these quantities can be es-raining set consisting of s-trees, assuming that we
timated directly from training data consisting of ahave access to the functiopsands).
set of s-trees (see section 7). We can now state the following theorem:



Theorem 2 Assume conditions 1 and 2 are satisfied:(“V), ¢(42) ¢(i3) () down to m-dimensional vec-
For all a € WV, defineG® = (U%)TI*. Then under torsy®1, 42 4(3) (). these vectors are used to
the definitions in Egs. 2-4: derive the estimates @f* "¢, ¢°, , andc..

We now state a PAC-style theorem for the learning
algorithm. First, for a given L-PCFG, we need a
couple of definitions:

1. For all rules a—bec, C*70¢(y)
GcTa—>b Cdiag(beSa_)b C)Qa—>b C(Ga)—l

2. Forall rulesa — z, ¢, = 17Q7%(G)~1. e A is the minimum absolute value of any element
e of the vectors/matrices/tensors, d°,,, D*b¢,
3. Foralla € V, ¢} = Gon® (£4)~1. (Note thatA is a function of the projec-

o N tion matricesU® and V¢ as well as the underlying
Proof: The following identities hold (see sec- L-PCFG.)

tion 9.2): e For eacha € N, o% is the value of then'th
D (y) = (6) largest singular value ¢2*. Defines = min, o®.
G°T* ™" “diag(yG"S* ™" ©)Q" ™" “diag(y*)(K”) " We then have the following theorem:
00 _ 1T Ha—x 4 a a\ T
dase =1 Q"™ diag(7")(K") (") Theorem 3 Assume that the inputs to the algorithm
21 :ci dalagﬁ J(KT) g; in figure 4 are i.i.d. draws from the joint distribution
c, = Gm

over the random variable®,, 71, 7>, T3, O, B, un-

Under conditions 1 and 2% is invertible, and der an L-PCFG with distributiorp(ry ... 7x) over
(29~ = (K*) ")~ !(diag(y*))~1(G*)~t. The s-trees. Definen to be the number of latent states

identities in the theorem follow immediately in the L-PCFG. Assume that the algorithm in fig-
7 Derivina Empirical Estimates ure 4 has projection matriceS* and V' * derived as

) 9 P ) ) left and right singular vectors df2®, as defined in
Figure 4 shows an algorithm that derives estlEq_ 5. Assume that the L-PCFG, together wiith
mates of the quantities in Eqs 2, 3, and 4. Agpqya has coefficientd > 0 ando > 0. In addi-
inp'ut, the algorithlm takes a sequence of tuplegon assume that all elements dh, d°,, D¢
(T(Z’1)>t(l’1)7t(”2)>t(z’3)aO(Z)ab(_l)) fori c [M]. andX® are in[—1, +1]. For any s-treer; ... ry de-

These tuples can be derived from a training S§fne j5(r, ... 7y) to be the value calculated by the
consisting of s-trees; ... ) as follows: algorithm in figure 3 with inputs%}l, o0 (a—be

a—x)

e Vi € [M], choose a single nodg uniformly at  yerived from the algorithm in figure 4. Defireto
random from the nodes in. pefmer(%l) tobe the e the total number of rules in the grammar of the
rule at nodej;. t(1) is the inside tree rooted at nodesom ¢ —s b ¢ or a4 — . DefineM, to be the num-
Ji- If r(>1)'is of the forma —be, thent(-?) is the  per of training examples in the input to the algorithm
inside tree under the left child of nogg andt®» figure 4 where-! has non-terminak on its left-
is the inside tree under the right child of nogle If - 3nq_side. Under these assumptions, if forall
r(1) is of the forma — =z, thent(®2) = ¢(i:3) =
NULL. o is the outside tree at node. b is 1 if M 128m? log [ 2mE
nodej; is at the root of the tree) otherwise. ‘= (VYT Fe— 1)2 A204 o8 ( o )

Under this process, assuming that the s-trees
7 ...y are ii.d. draws from the distribution Then
p(r) over s-trees under an L-PCFG, the tuples l1—e S'
(1) 461 4G2) 1G3) o) p()) are ii.d. draws
from the joint distribution over the random variables
Ry,T1,T5,T5,0, B defined in the previous section. iasij) i

The algorithm first computes estimates of the prot ~ € = ‘u(a,i,j) ‘ <1+ ¢ for the marginals.
jection matricesU* and V¢: following lemma 1, The condition that/* and V¢ are derived from
this is done by first deriving estimates 6%, ¢, as opposed to the sample estim@fe follows
and then taking SVDs of each®. The matrices Foster et al. (2012). As these authors note, similar
are then used to project inside and outside tredschniques to those of Hsu et al. (2009) should be

‘Sl—i—e
p\r1...rn

A similar theorem (omitted for space) states that




applicable in deriving results for the case whexe
is used in place of2®.

Proof sketch:The proof is similar to that of Foster
et al. (2012). The basic idea is to first show tha

under the assumptions of the theorem, the estimates

¢k, de, ., Dbe 330 are all close to the underlying
values being estimated. The second step is to shg
that this ensures thl; :i:x:; is close tol. O

The method described of selecting a single tupl
(r@1) 461 4G:2) 1G3) () () for each s-tree en-
sures that the samples are i.i.d., and simplifies t
analysis underlying theorem 3. In practice, an im
plementation should most likely use all nodes in al
trees in training data; by Rao-Blackwellization we
know such an algorithm would be better than th
one presented, but the analysis of how much bett
would be challenging. It would almost certainly lead

to a faster rate of convergencezmfo p.

8 Discussion

There are several potential applications of th
method. The most obvious is parsing with LA
PCFGs! The approach should be applicable in othe
cases where EM has traditionally been used, for e
ample in semi-supervised learning. Latent-variabl
HMNMs for sequence labeling can be derived as sp
cial case of our approach, by converting tagged s
guences to right-branching skeletal trees.

The sample complexity of the method depends g
the minimum singular values &2%; these singular
values are a measure of how well correlatednd
¢ are with the unobserved hidden varialile. Ex-

Inputs: Training examplegr (1) ¢ 1(2) 3(13) 5@ b))
fori € {1...M}, wherer(®! is a context free rulet(*V),
t2) and ¢t are inside treesp® is an outside tree; ar|
tb(i) = 1if the rule is at the root of tre®, otherwise. A function
qu that maps inside tregdo feature-vectors(t) € R”. A func-
ion ¢ that maps outside treego feature-vectorg)(o) € RY .
Algorithm:
DWefine a; to be the non-terminal on the left-hand side of 1
&Y 1 £ s of the forma — b ¢, defineb; to be the non
terminal for the left-child of- (1), andc; to be the non-terming
Bor the right-child.
(Step 0: Singular Value Decompositions)

e

ule

1

e Use the algorithm in figure 5 to calculate matridés e
R™™ andV* € R *™ for eacha € .

I(Step 1: Projection)

e Foralli € [M], computey V) = (%) T p(¢t(1).

e For all i € [M] such thatr®" is of the form
a — b c, computey? = (U%)T¢(t™?) andy ™ =
(U) T ().

e Foralli € [M], computez® = (V) T4(0?).

(Step 2: Calculate Correlations)

e Foreachu € \V, defined, = 1/ 3 [[a; = d]]

e For each rulea — be, compute D¢ = §,

11

er

1)

F RN =a s by )T ()T

K o For each rulea — =z, computedﬁ;‘;z = 0q X
B S =a -2l

D A

~ e For eacha € W, compute ¥* = §, x
-l

S o = allyD )T

(Step 3: Compute Final Parameters)

e Foralla = be, C70¢(y) = D ¢(y)(59) !
=d,, (2!

M [ai=a @Ndp® =1]]y D)
M ™ =1]]

5

(oo}
a—x

e Foralla — z, ¢

e ForallaeZ, ¢l =

perimental work is required to find a good choice o
values fory) and¢ for parsing.

9 Proofs

This section gives proofs of theorems 1 and 2. DU
to space limitations we cannot give full proofs; in-
stead we provide proofs of some key lemmas. /
long version of this paper will give the full proofs.

9.1 Proof of Theorem 1

First, the following lemma leads directly to the cor
rectness of the algorithm in figure 2:

!parameters can be estimated using the algorithm
figure 4; for a test sentencer;...zy we can first
use the algorithm

argmMaXre7(z) Z(a,i,j)e-r ,u(a, i, J)

Figure 4: The spectral learning algorithm.

@nputs: Identical to algorithm in figure 4.
Algorithm:

ne For eachu € N, compute® € R x4 a5

>t llai = aljg(t™ D) ((0™) |
>ili(lai = al]

and calculate a singular value decompositiof26f

e For eachu € \V, definel’'* € R™*? to be a matrix of the lef
singular vectors of)® corresponding to the: largest singula
walues. Defind”® € R™*?' to be a matrix of the right singul
vectors ofQ2* corresponding to the: largest singular valuesjl

M
i=1

0" =

=

in figure 3 to calculate marginals
u(a,i,7), then use the algorithm of Goodman (1996) to find

Figure 5: Singular value decompositions.



Lemma 2 Assume that conditions 1-3 of theorem L.emma 3 Assume that conditions 1-3 of theorem 1
are satisfied, and that the input to the algorithm inare satisfied, and that the input to the algorithm in

figure 2 is an s-tree; ...ry. Definea; for i € [N]

figure 3 is a sentence, ...z . For anya € N, for

to be the non-terminal on the left-hand-side of rulanyl < i < j < N, definea®® ¢ R1*™) to have

r;, andt; for i € [N] to be the s-tree with rule;
at its root. Finally, for alli € [N], define the row
vectorb’ € R(*™) to have components

¢ = P(T; = t;|H; = h, A; = a;)

for h € [m]. Then foralli € [N], f* = bi(G(@))~L,
It follows immediately that

11 _ g1
Cqy = b

(Gl =p(ry...ry) O

= 1,2,

componentsy,”” = p(z; ...x;|h,a) for h € [m].

In addition, define3®*/ € R(™*1) to have compo-
nentsB3,"”’ = p(zy...xi—1,a(h),zjt11...zy) for
h € [m]. Thenforalli € [N], a%» = ai (G4)~!

andp®ti = G*B%4J, It follows that for all(a, 7, 5),
pla,i ) = a%H (G TGO = Gt

—_— 7a7i7j 7a7i7j —
= E :ah By = E : O
h

7€T (z):(ai,j)ET

p(7)

This lemma shows a direct link between the vec- Thus the vectors®/ and 5% are linearly re-

tors f* calculated in the algorithm, and the terhjs

lated to the vector&®®7 and 3%*J, which are the

which are terms calculated by the conventional inmside and outside terms calculated by the conven-

side algorithm: eaclhf’ is a linear transformation
(throughG) of the corresponding vectof.
Proof: The proof is by induction.

tional form of the inside-outside algorithm.
The proof is by induction, and is similar to the
proof of lemma 2; for reasons of space it is omitted.

First consider the base case. For any leaf—i.e., for

anyi such thats; € P—we haveb, = q(r;|h, a;),
and it is easily verified that’ = b*(G(®)) =1,

The inductive case is as follows. For alE [V]
such that; € Z, by the definition in the algorithm,

fio= pon(?)
171G T diag (/G 5@ (G)

Assuming by induction thaf” = b?(G(*))~! and
f? =bP(Gles))~1, this simplifies to

£ = k" diag(k)Qm (G%) ! (10)

wherex” = V7", andx! = b8S". k" is a row
vector with components}, = /¢, b Thi ), =
> hem) bpt(R'|hy ;). Similarly, ! is a row vector
with components equal 6], = 3~ ,.c 11 bl Shij, =

> e Ups(R |k, ). 1t can then be verified that
x"diag(x!)Q" is a row vector with components
equal tOmZI{ﬁlq(rﬂh, a;).

Butd! = q(r;|h, a;) x (the[m] bg,t(hfyh,n)) X
(Zhle[m] bg,s(h/]h,n)) = q(ri|h, a;)K} KL, hence
x"diag(k")Q" = b’ and the inductive case follows
immediately from Eq. 10.]

Next, we give a similar lemma, which implies the
correctness of the algorithm in figure 3:

9.2 Proof of the Identity in Eq. 6

We now prove the identity in Eq. 6, used in the proof

of theorem 2. For reasons of space, we do not give

the proofs of identities 7-9: the proofs are similar.
The following identities can be verified:

P(Ri=a—bcH =h,A1=a) = gq(a—bclh,a)
E[Y;;|Hi =h,Ri=a—bd = Eﬁ;bc
E[ZyHi =hRi=a—bc = K},
E[Yy)|Hi=h,Ri=a—bc = F‘ﬁh—)bc

WhereEa—>b c_ GcTa—>b c’ Fa—)bc — Gbsa—)b c

Y3, Z andY; are independent when conditioned
on Hy, Ry (this follows from the independence as-
sumptions in the L-PCFG), hence

E[[[Ri =a = b(]]Ys;Z,Ys, | Hi = h, Ay = q
qla — b clh,a)ESY CKp b e

Hence (recall thatj! = P(H; = h|A; = a)),

a—be __
j7k7l

E[[[R1 =a—b(]]Y5;Z;Ys; | Ay =

> VB[R =a—bd|Ys; 2, Yoy | Hi=h, Ay =]

h
Z’y,‘;q(a — belh,a) B4 KR, B
h

from which Eq. 6 follows[]
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