A Bayesian Approach to Unsupervised Semantic Role Induction

Ivan Titov and Alexandre Klementiev

Frame Semantics

- Frame semantics and the nature of language (Fillmore, 1977)
- The Berkeley FrameNet Project (Baker et al., 1998)
- Automatic Labeling of Semantic Roles (Gildea and Jurafsky, 2002)
- Frequent task at CoNLL, SensEval/SemEval

What is a frame?

- Structures that describe particular situations, objects, or events
- Each frame contains a set of roles for participating elements

Frame: Ingestion

Michael eats a sandwhich

A sandwich is eaten by Michael

Frame: Ingestion

Michael eats a sandwhich

 $[Michael]_{Ingestor}$ eats $[a sandwich]_{Ingestible}$

A sandwich is eaten by Michael

 $[A \text{ sandwich}]_{Ingestible}$ is eaten $[by \text{ Michael}]_{Ingestor}$

A point of confusion! (And there are many!)

• FrameNet vs. PropBank

A point of confusion! (And there are many!)

• FrameNet vs. PropBank

FrameNet

<u>Frame</u>: Giving <u>Frame Elements(Roles)</u>: Donor Recipient Theme Circumstances Depictive Manner

PropBank

<u>Frame</u>: Give <u>Frame Elements(Roles)</u>: Arg0 (Typically Agent) Arg1 (Typically Patient) Arg2

.

Semantic Role Labeling

2 Stages (Frame Induction)

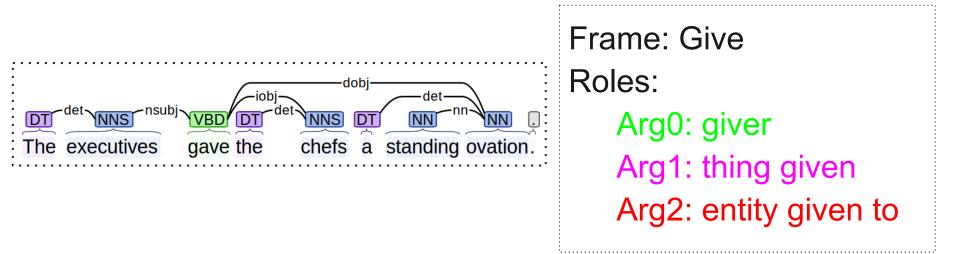
- 1. Identification of arguments (Syntax based heuristics)
- 2. Role labeling (What this paper is all about!)

Semantic Role Labeling

Inputs or how is this unsupervised?

- 1. A sentence
- 2. An automatically generated syntactic dependency graph of that sentence

The executives gave the chefs a standing ovation.



The executives gave the chefs a standing ovation.

Rel: gave

Frame: Give Roles: Arg0: giver Arg1: thing given Arg2: entity given to

 ${The executives}$ **gave** ${the chefs}$ ${a standing ovation}$

Rel: gave

Frame: Give Roles: Arg0: giver Arg1: thing given Arg2: entity given to

Rel: gave

Arg0: The executives Arg1: a standing ovation Arg2: the chefs

Frame: Give Roles: Arg0: giver Arg1: thing given Arg2: entity given to

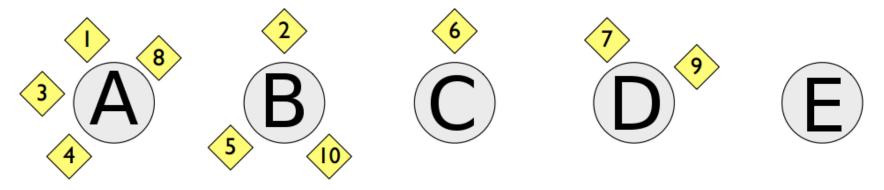
Argument Representation

• Argument Keys

- Verb Voice (ACT/PASS)
- Argument position relative to verb (LEFT/RIGHT)
- Syntactic relation to governor
- Preposition used for argument (if any)
- Argument Keys for 'Michael' in the sentences:
 - a. Michael ate a sandwich.
 - ACT:LEFT:SBJ
 - b. The sandwich was eaten by Michael.
 - PASS:RIGHT:LGS->BY

CRP and DD-CRP

Chinese Restaurant Process



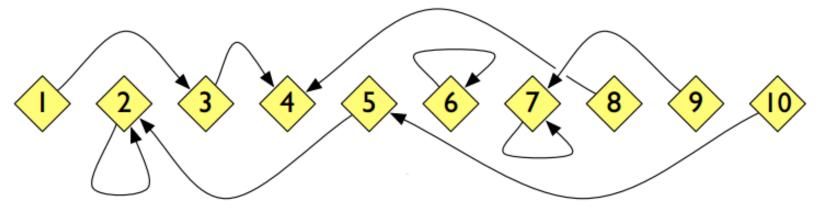
Given i-1 customers seated at K tables,

$$\mathbf{Pr}[c_i = k] = \frac{N_k}{i - 1 + \alpha} \qquad \qquad \mathbf{Pr}[c_i = K + 1] = \frac{\alpha}{i - 1 + \alpha}$$

where c_i is table assingment of customer *i* and N_k is the number of customers already seated at table *k*.

CRP and DD-CRP

Distance Dependant Chinese Restaurant Process

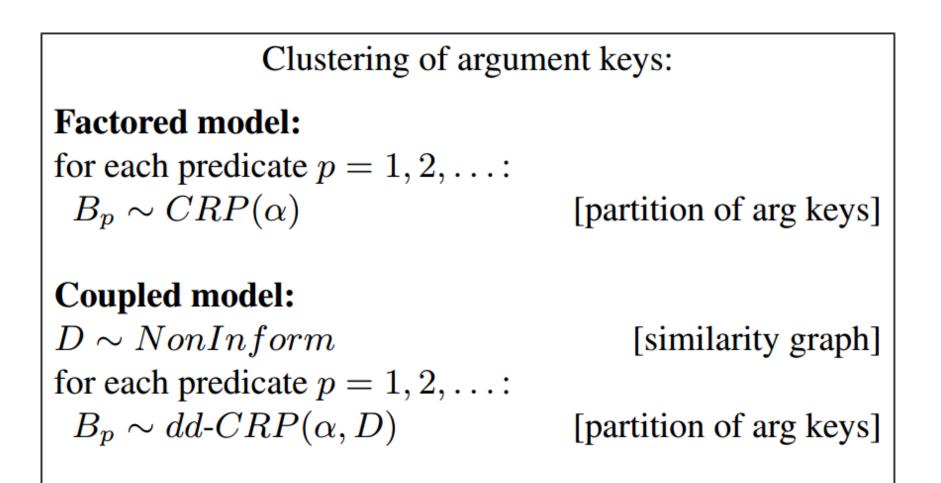


Given i - 1 customers already seated, customer i chooses a partner with probability

$$\mathbf{Pr}[c_i = j | D, \alpha] = \frac{d_{i,j}}{\sum_{j'=1}^{i} d_{i,j'}}$$

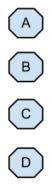
where D is the entire similarity graph, $d_{i,j}$ is the similarity between customers i and j, and $d_{i,i} = \alpha$.

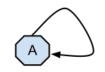
Models



• A simple greedy procedure

- Each argument key is assigned to its own cluster
- On first iteration, choose argument keys by their frequency in the corpus
- 1. Choose an argument key at random
- 2. (Factored) Assign it to the most probable cluster, including a new cluster
 (Coupled) Assign it to the most probable partner, including itself



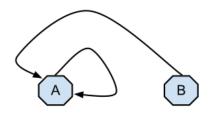


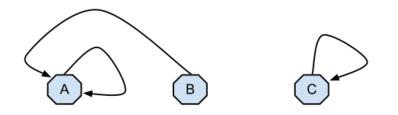
B C D

$$\mathbf{Pr}(c_B = A) > \mathbf{Pr}(c_B = B)$$

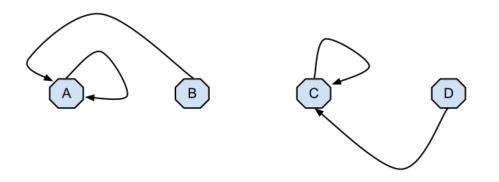
(c)

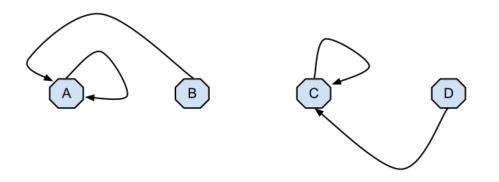
D



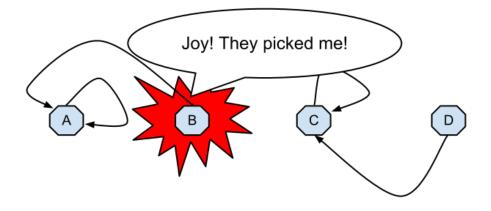


D

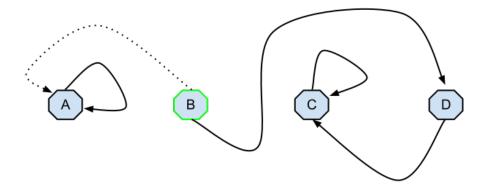




Now randomly select an argument key.



Now randomly select an argument key.



Reassign the argument key to the most probable argument key.

Models

Parameters:

for each predicate $p = 1, 2, \ldots$: for each role $r \in B_p$: $\theta_{p,r} \sim DP(\beta, H^{(A)})$ $\psi_{p,r} \sim Beta(\eta_0, \eta_1)$ [geom distr for dup roles]

[distrib of arg fillers]

Data Generation:

```
for each predicate p = 1, 2, \ldots:
 for each occurrence l of p:
  for every role r \in B_p:
   if [n \sim Unif(0, 1)] = 1: [role appears at least once]
    GenArgument(p, r)
                                          [draw one arg]
    while [n \sim \psi_{p,r}] = 1: [continue generation]
     GenArgument(p, r)
                                        [draw more args]
```

GenArgument(p, r): $k_{p,r} \sim Unif(1,\ldots,|r|)$ $x_{p,r} \sim \theta_{p,r}$

[draw arg key] [draw arg filler]

Gibbs Sampling for DD-CRP (Blei and Frazier, 2011)

Let model hyperparameters $\eta = \{D, \alpha, f, G_0\}$. $z(\mathbf{c})$ is the partition resultant from seating assignments \mathbf{c} .

$$\mathbf{Pr}(c_i^{(\text{new})}|\mathbf{c}_{-i}, \mathbf{x}, \eta) \propto \mathbf{Pr}(c_i^{(\text{new})}|D, \alpha) \mathbf{Pr}(\mathbf{x}|z(\mathbf{c}_{-i} \cup c_i^{(\text{new})}), G_0)$$

$$\mathbf{Pr}(c_i^{(\text{new})}|D,\alpha) \quad \text{prior}$$
$$\mathbf{Pr}(\mathbf{x}|z(\mathbf{c}_{-i} \cup c_i^{(\text{new})}), G_0) \quad \text{likelihood}$$

Gibbs Sampling for DD-CRP (Blei and Frazier, 2011)

Let model hyperparameters $\eta = \{D, \alpha, f, G_0\}$. $z(\mathbf{c})$ is the partition resultant from seating assignments \mathbf{c} .

$$\mathbf{Pr}(c_i^{(\text{new})}|\mathbf{c}_{-i}, \mathbf{x}, \eta) \propto \mathbf{Pr}(c_i^{(\text{new})}|D, \alpha) \mathbf{Pr}(\mathbf{x}|z(\mathbf{c}_{-i} \cup c_i^{(\text{new})}), G_0)$$

$$\mathbf{Pr}(c_i^{(\text{new})}|\mathbf{c}_{-i}, \mathbf{x}, \eta) \propto \begin{cases} \alpha & \text{if } c_i^{(\text{new})} \text{ is equal to } i \\ f(d_{ij}) & \frac{\mathbf{Pr}(\mathbf{x}_{z^k(\mathbf{c}_{-i}) \cup z^{\ell}(\mathbf{c}_{-i})}|G_0)}{\mathbf{Pr}(\mathbf{x}_{z^k(\mathbf{c}_{-i})}|G_0)\mathbf{Pr}(\mathbf{x}_{z^{\ell}(\mathbf{c}_{-i})}|G_0)} & \text{if } c_i^{(\text{new})} = j \text{ does not join two tables.} \\ \text{if } c_i^{(\text{new})} = j \text{ joins tables } k \text{ and } \ell. \end{cases}$$