
Spectracular Learning Algorithms for Natural
Language Processing

Shay Cohen

University of Edinburgh

June 10, 2014

Spectral Learning for NLP 1

Latent-variable Models

Latent-variable models are used in many areas of NLP, speech, etc.:

I Hidden Markov Models

I Latent-variable PCFGs

I Naive Bayes for clustering

I Lexical representations: Brown clustering, Saul and Pereira,
etc.

I Alignments in statistical machine translation

I Topic modeling

I etc. etc.

The Expectation-maximization (EM) algorithm is generally used
for estimation in these models (Dempster et al., 1977)

Other relevant algorithms: cotraining, clustering methods

Spectral Learning for NLP 2

Example 1: Hidden Markov Models

S1 S2 S3 S4

the dog saw him

Parameterized by π(s), t(s|s′) and o(w|s)

Spectral learning: Hsu et al. (2009)

Dynamical systems: Siddiqi et al. (2009), Boots and Gordon
(2011)

Head-automaton grammars for dep. parsing: Luque et al. (2012)

Spectral Learning for NLP 3

Example 2: Latent-Variable PCFGs (Matsuzaki et al., 2005; Petrov

et al., 2006)

S

NP

D

the

N

dog

VP

V

saw

P

him

=⇒

S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

Spectral Learning for NLP 4

Example 3: Näıve Bayes

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

I EM can be used to estimate parameters

Spectral Learning for NLP 5

Example 4: Language Modelling

h

w1 w2

p(w2|w1) =
∑

h p(h|w1)× p(w2|h) (Saul and Pereira, 1997)

Spectral Learning for NLP 6

Example 5: HMMs for Speech

Phoneme boundaries are hidden variables

Refinement HMMs (Stratos et al., 2013)

Spectral Learning for NLP 7

Example 6: Topic Models

Latent topics attached to a document or to each word in a
document

Method of moments algorithms such as Arora et al. (2012; 2013)

Spectral Learning for NLP 8

Example 7: Unsupervised Parsing

The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3

𝒙 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢(𝒙)

((DT NN) (VBD (DT NN)))

w1 w2 w3

z3

z1

w4 w5

z2

w1 w2 w3

z3z1

w4 w5

z2

Latent structure is a bracketing (Parikh et al., 2014)

Similar in flavor to tree learning algorithms (e.g. Anandkumar,
2011)

Very different in flavor from estimation algorithms

Spectral Learning for NLP 9

Example 8: Word Embeddings

-0.2 0.0 0.2 0.4

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

PC 1

P
C

 2
homecar

house
word

talk

river

dog

agree

cat
listen

boat
carry

truck

sleep
drink

eat
push

disagree

Embed a vocabulary into d-dimensional space

Can later be used for various NLP problems downstream

Related to canonical correlation analysis (Dhillon et al., 2012)

Spectral Learning for NLP 10

Spectral Methods
Basic idea: replace EM with methods based on matrix
decompositions, in particular singular value decomposition (SVD)
SVD: given matrix A with m rows, n columns, approximate as

A ≈ UΣV >

which means

Ajk ≈
d∑

h=1

σhUjhVkh

where σh are “singular values”

U and V are m× d and n× d matrices

Remarkably, can find the optimal rank-d approximation efficiently

Spectral Learning for NLP 11

Similarity of SVD to Näıve Bayes

H

X Y

P (X = x, Y = y) =

d∑
h=1

p(h)p(x|h)p(y|h)

Ajk ≈
d∑

h=1

σhUjhVkh

I SVD approximation minimizes squared loss, not log-loss
I σh not interpretable as probabilities
I Ujh, Vjh may be positive or negative, not probabilities

BUT we can still do a lot with SVD (and higher-order,
tensor-based decompositions)

Spectral Learning for NLP 12

Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs

Spectral Learning for NLP 13

Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:∣∣∣∣ui∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:∣∣∣∣vi∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j

Spectral Learning for NLP 14

Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:∣∣∣∣ui∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:∣∣∣∣vi∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j

Spectral Learning for NLP 14

Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:∣∣∣∣ui∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:∣∣∣∣vi∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j

Spectral Learning for NLP 14

Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:∣∣∣∣ui∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:∣∣∣∣vi∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j
Spectral Learning for NLP 14

SVD in Matrix Form

A︸︷︷︸
m×n

SVD

= U︸︷︷︸
m×d

Σ︸︷︷︸
d×d

V >︸︷︷︸
d×n

U =

 | |
u1 . . . ud

| |

 ∈ Rm×d Σ =

σ
1 0

. . .

0 σd

 ∈ Rd×d

V =

 | |
v1 . . . vd

| |

 ∈ Rn×d

Spectral Learning for NLP 15

Matrix Rank

A ∈ Rm×n

rank(A) ≤ min(m,n)

I rank(A) := number of linearly independent columns in A

1 1 2
1 2 2
1 1 2

 1 1 2
1 2 2
1 1 3


rank 2 rank 3

(full-rank)

Spectral Learning for NLP 16

Matrix Rank: Alternative Definition

I rank(A) := number of positive singular values of A

1 1 2
1 2 2
1 1 2

 1 1 2
1 2 2
1 1 3



Σ =

4.53 0 0
0 0.7 0
0 0 0

 Σ =

5 0 0
0 0.98 0
0 0 0.2


rank 2 rank 3

(full-rank)

Spectral Learning for NLP 17

SVD and Low-Rank Matrix Approximation

I Suppose we want to find B∗ such that

B∗ = argmin
B: rank(B)=r

∑
jk

(Ajk −Bjk)
2

I Solution:

B∗ =
r∑
i=1

σiui(vi)>

Spectral Learning for NLP 18

SVD in Practice

I Black box, e.g., in Matlab

I Input: matrix A, output: scalars σ1 . . . σd, vectors u1 . . . ud

and v1 . . . vd

I Efficient implementations

I Approximate, randomized approaches also available

I Can be used to solve a variety of optimization problems

I For instance, Canonical Correlation Analysis (CCA)

Spectral Learning for NLP 19

SVD in Practice - Random Projections

For large matrices (Halko et al., 2011)

Spectral Learning for NLP 20

Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs

Spectral Learning for NLP 21

Simplest Model in Complexity: Naive Bayes

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

CCA helps identify H

Spectral Learning for NLP 22

Canonical Correlation Analysis (CCA)

I Data consists of paired samples: (x(i), y(i)) for i = 1 . . . n

I As in co-training, x(i) ∈ Rd and y(i) ∈ Rd′ are two “views” of
a sample point

View 1 View 2

x(1) = (1, 0, 0, 0) y(1) = (1, 0, 0, 1, 0, 1, 0)

x(2) = (0, 0, 1, 0) y(2) = (0, 1, 0, 0, 0, 0, 1)

...
...

x(100000) = (0, 1, 0, 0) y(100000) = (0, 0, 1, 0, 1, 1, 1)

Spectral Learning for NLP 23

Projection Matrices

I Project samples to lower dimensional space

x ∈ Rd =⇒ x′ ∈ Rp

I If p is small, we can learn with far fewer samples!

I CCA finds projection matrices A ∈ Rd×p, B ∈ Rd′×p

I The new data points are a(i) ∈ Rp, b(i) ∈ Rp where

a(i)︸︷︷︸
p×1

= A>︸︷︷︸
p×d

x(i)︸︷︷︸
d×1

b(i)︸︷︷︸
p×1

= B>︸︷︷︸
p×d′

y(i)︸︷︷︸
d′×1

Spectral Learning for NLP 24

Projection Matrices

I Project samples to lower dimensional space

x ∈ Rd =⇒ x′ ∈ Rp

I If p is small, we can learn with far fewer samples!

I CCA finds projection matrices A ∈ Rd×p, B ∈ Rd′×p

I The new data points are a(i) ∈ Rp, b(i) ∈ Rp where

a(i)︸︷︷︸
p×1

= A>︸︷︷︸
p×d

x(i)︸︷︷︸
d×1

b(i)︸︷︷︸
p×1

= B>︸︷︷︸
p×d′

y(i)︸︷︷︸
d′×1

Spectral Learning for NLP 24

Mechanics of CCA: Step 1

I Compute ĈXY ∈ Rd×d′ , ĈXX ∈ Rd×d, and ĈY Y ∈ Rd′×d′

[ĈXY]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(y

(i)
k − ȳk)

[ĈXX]jk=
1

n

n∑
i=1

(x
(i)
j − x̄j)(x

(i)
k − x̄k)

[ĈY Y]jk=
1

n

n∑
i=1

(y
(i)
j − ȳj)(y

(i)
k − ȳk)

where x̄ =
∑

i x
(i)/n and ȳ =

∑
i y

(i)/n

Spectral Learning for NLP 25

Mechanics of CCA: Step 1

I Compute ĈXY ∈ Rd×d′ , ĈXX ∈ Rd×d, and ĈY Y ∈ Rd′×d′

[ĈXY]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(y

(i)
k − ȳk)

[ĈXX]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(x

(i)
k − x̄k)

[ĈY Y]jk=
1

n

n∑
i=1

(y
(i)
j − ȳj)(y

(i)
k − ȳk)

where x̄ =
∑

i x
(i)/n and ȳ =

∑
i y

(i)/n

Spectral Learning for NLP 26

Mechanics of CCA: Step 1

I Compute ĈXY ∈ Rd×d′ , ĈXX ∈ Rd×d, and ĈY Y ∈ Rd′×d′

[ĈXY]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(y

(i)
k − ȳk)

[ĈXX]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(x

(i)
k − x̄k)

[ĈY Y]jk =
1

n

n∑
i=1

(y
(i)
j − ȳj)(y

(i)
k − ȳk)

where x̄ =
∑

i x
(i)/n and ȳ =

∑
i y

(i)/n

Spectral Learning for NLP 27

Mechanics of CCA: Step 2

I Do SVD on Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y ∈ Rd×d′

Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y

SVD

= UΣV >

Let Up ∈ Rd×p be the top p left singular vectors. Let
Vp ∈ Rd′×p be the top p right singular vectors.

Spectral Learning for NLP 28

Mechanics of CCA: Step 3

I Define projection matrices A ∈ Rd×p and B ∈ Rd′×p

A = Ĉ
−1/2
XX Up B = Ĉ

−1/2
Y Y Vp

I Use A and B to project each (x(i), y(i)) for i = 1 . . . n:

x(i) ∈ Rd =⇒ A>x(i) ∈ Rp

y(i) ∈ Rd
′

=⇒ B>y(i) ∈ Rp

Spectral Learning for NLP 29

Justification of CCA: Correlation Coefficients

I Sample correlation coefficient for a1 . . . an ∈ R and
b1 . . . bn ∈ R is

Corr({ai}ni=1, {bi}ni=1) =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2

where ā =
∑

i ai/n, b̄ =
∑

i bi/n

a

b

Correlation ≈ 1

Spectral Learning for NLP 30

Simple Case: p = 1

I CCA projection matrices are vectors u1 ∈ Rd, v1 ∈ Rd′

I Project x(i) and y(i) to scalars u1 · x(i) and v1 · y(i)

I What vectors does CCA find? Answer:

u1, v1 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)

Spectral Learning for NLP 31

Simple Case: p = 1

I CCA projection matrices are vectors u1 ∈ Rd, v1 ∈ Rd′

I Project x(i) and y(i) to scalars u1 · x(i) and v1 · y(i)

I What vectors does CCA find? Answer:

u1, v1 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)

Spectral Learning for NLP 31

Finding the Next Projections

I After finding u1 and v1, what vectors u2 and v2 does CCA

find? Answer:

u2, v2 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
subject to the constraints

Corr
(
{u2 · x(i)}ni=1, {u1 · x(i)}ni=1

)
= 0

Corr
(
{v2 · y(i)}ni=1, {v1 · y(i)}ni=1

)
= 0

Spectral Learning for NLP 32

CCA as an Optimization Problem

I CCA finds for j = 1 . . . p (each column of A and B)

uj, vj = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
subject to the constraints

Corr
(
{uj · x(i)}ni=1, {uk · x(i)}ni=1

)
= 0

Corr
(
{vj · y(i)}ni=1, {vk · y(i)}ni=1

)
= 0

for k < j

Spectral Learning for NLP 33

Guarantees for CCA

H

X Y

I Assume data is generated from a Naive Bayes model

I Latent-variable H is of dimension k, variables X and Y are of
dimension d and d′ (typically k � d and k � d′)

I Use CCA to project X and Y down to k dimensions (needs
(x, y) pairs only!)

I Theorem: the projected samples are as good as the original
samples for prediction of H
(Foster, Johnson, Kakade, Zhang, 2009)

I Because k � d and k � d′ we can learn to predict H with far
fewer labeled examples

Spectral Learning for NLP 34

Guarantees for CCA (continued)

Kakade and Foster, 2007 - cotraining-style setting:

I Assume that we have a regression problem: predict some
value z given two “views” x and y

I Assumption: either view x or y is sufficient for prediction

I Use CCA to project x and y down to a low-dimensional space

I Theorem: if correlation coefficients drop off to zero quickly,
we will need far fewer samples to learn when using the
projected representation

I Very similar setting to cotraining, but no assumption of
independence between the two views

Spectral Learning for NLP 35

“Variants” of CCA

Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y ∈ Rd×d

′

Centering leads to non-sparse CXY .

Computing C
−1/2
XX and C

−1/2
Y Y leads to large non-sparse matrices

Spectral Learning for NLP 36

Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs

Spectral Learning for NLP 37

A Spectral Learning Algorithm for HMMs

I Algorithm due to Hsu, Kakade and Zhang (COLT 2009; JCSS
2012)

I Algorithm relies on singular value decomposition followed by
very simple matrix operations

I Close connections to CCA

I Under assumptions on singular values arising from the model,
has PAC-learning style guarantees (contrast with EM, which
has problems with local optima)

I It is a very different algorithm from EM

Spectral Learning for NLP 38

Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

p(the dog saw him︸ ︷︷ ︸
x1...x4

, 1 2 1 3︸ ︷︷ ︸
h1...h4

)

= π(1)× t(2|1)× t(1|2)× t(3|1)

×o(the|1)× o(dog|2)× o(saw|1)× o(him|3)

I Initial parameters: π(h) for each latent state h

I Transition parameters: t(h′|h) for each pair of states h′, h

I Observation parameters: o(x|h) for each state h, obs. x

Spectral Learning for NLP 39

Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

p(the dog saw him︸ ︷︷ ︸
x1...x4

, 1 2 1 3︸ ︷︷ ︸
h1...h4

)

= π(1)× t(2|1)× t(1|2)× t(3|1)

×o(the|1)× o(dog|2)× o(saw|1)× o(him|3)

I Initial parameters: π(h) for each latent state h

I Transition parameters: t(h′|h) for each pair of states h′, h

I Observation parameters: o(x|h) for each state h, obs. x

Spectral Learning for NLP 39

Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

p(the dog saw him︸ ︷︷ ︸
x1...x4

, 1 2 1 3︸ ︷︷ ︸
h1...h4

)

= π(1)× t(2|1)× t(1|2)× t(3|1)

×o(the|1)× o(dog|2)× o(saw|1)× o(him|3)

I Initial parameters: π(h) for each latent state h

I Transition parameters: t(h′|h) for each pair of states h′, h

I Observation parameters: o(x|h) for each state h, obs. x

Spectral Learning for NLP 39

Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

Throughout this section:

I We use m to refer to the number of hidden states

I We use n to refer to the number of possible words
(observations)

I Typically, m� n (e.g., m = 20, n = 50, 000)

Spectral Learning for NLP 40

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h)

f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′

f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′

p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h

Spectral Learning for NLP 41

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h)

e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!

Spectral Learning for NLP 42

The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

Easy to derive an estimate:

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

Spectral Learning for NLP 43

The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

Easy to derive an estimate, e.g.,:

[P̂3,dog,1]i,j =
Count(X3 = i,X2 = dog, X1 = j)

N

Spectral Learning for NLP 44

Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

Spectral Learning for NLP 45

Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

Spectral Learning for NLP 45

Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

Spectral Learning for NLP 45

Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

Spectral Learning for NLP 45

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π

Spectral Learning for NLP 46

Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π
Spectral Learning for NLP 46

The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47

The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47

The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47

The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47

Guarantees
I Throughout the algorithm we’ve used estimates P̂2,1 and
P̂3,x,1 in place of P2,1 and P3,x,1

I If P̂2,1 = P2,1 and P̂3,x,1 = P3,x,1 then the method is exact.
But we will always have estimation errors

I A PAC-Style Theorem: Fix some length T . To have∑
x1...xT

|p(x1 . . . xT)− p̂(x1 . . . xT)|︸ ︷︷ ︸
L1 distance between p and p̂

≤ ε

with probability at least 1− δ, then number of samples
required is polynomial in

n,m, 1/ε, 1/δ, 1/σ, T

where σ is m’th largest singular value of P2,1

Spectral Learning for NLP 48

Intuition behind the Theorem
I Define

||Â−A||2 =

√∑
j,k

(Âj,k −Aj,k)2

I With N samples, with probability at least 1− δ

||P̂2,1 − P2,1||2 ≤ ε

||P̂3,x,1 − P3,x,1||2 ≤ ε
where

ε =

√
1

N
log

1

δ
+

√
1

N

I Then need to carefully bound how the error ε propagates
through the SVD step, the various matrix multiplications, etc
etc. The “rate” at which ε propagates depends on T , m, n,
1/σ

Spectral Learning for NLP 49

Summary

I The problem solved by EM: estimate HMM parameters π(h),
t(h′|h), o(x|h) from observation sequences x1 . . . xn

I The spectral algorithm:

I Calculate estimates P̂2,1 (bigram counts) and P̂3,x,1 (trigram
counts)

I Run an SVD on P̂2,1

I Calculate parameter estimates using simple matrix operations
I Guarantee: we recover the parameters up to linear transforms

that cancel

Spectral Learning for NLP 50

Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs

Spectral Learning for NLP 51

Problems with spectral HMM learning algorithm

Parameters are masked by an unknown linear transformation

I Negative marginals (due to sampling error)

I Parameters cannot be easily interpreted

I Cannot improve parameters using, for example, EM

Hsu et al. suggest a way to extract probabilities, but the method is
unstable

Spectral Learning for NLP 52

This part of the talk

Like the spectral algorithm, has theoretical guarantees

Estimates are actual probabilities

More efficient than EM

Can be used to initialize EM, which converges in an iteration or two

Spectral Learning for NLP 53

L-PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

S

NP

D

the

N

dog

VP

V

saw

P

him

⇒ S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

Spectral Learning for NLP 54

The probability of a tree

S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

p(tree, 1 3 1 2 2 4 1)

= π(S1)×
t(S1 → NP3 VP2|S1)×
t(NP3 → D1 N2|NP3)×
t(VP2 → V4 P1|VP2)×
q(D1 → the|D1)×
q(N2 → dog|N2)×
q(V4 → saw|V4)×
q(P1 → him|P1)

p(tree) =
∑
h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)

Spectral Learning for NLP 55

Inside and Outside Trees

At node VP:

S

NP

D

the

N

dog

VP

V

saw

P

him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)

Spectral Learning for NLP 56

Designing Feature Functions

Design functions ψ and φ:

φ maps any inside tree to a binary vector of length d

ψ maps any outside tree to a binary vector of length d′

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
ψ(o) = [0, 1, 0, 0, . . . , 0, 0] ∈ Rd′ φ(t) = [1, 0, 0, 0, . . . , 0, 0] ∈ Rd

ψ and φ as multinomials p(f) for f ∈ [d] and p(g) for g ∈ [d′].

Spectral Learning for NLP 57

Latent State Distributions

Think of f and g as representing a whole inside/outside tree

Say we had a way of getting:

I p(f |h,VP) for each h and f inside feature

I p(g|h,VP) for each h and g outside feature

Then we could run EM on a convex problem to find parameters.
How?

Spectral Learning for NLP 58

Binary rule estimation
Take M samples of nodes with rule VP→ V NP.

At sample i

I g(i) = outside feature at VP

I f
(i)
2 = inside feature at V

I f
(i)
3 = inside feature at NP

t̂(h1, h2, h3|VP→ V NP)

= max
t̂

M∑
i=1

log
∑

h1,h2,h3

(
t̂(h1, h2, h3|VP→ V NP)×

p(g(i)|h1,VP)p(f
(i)
2 |h2,V)p(f

(i)
3 |h3,NP)

)
Spectral Learning for NLP 59

Binary Rule Estimation

• Use Bayes rule to convert

t̂(h1, h2, h3|VP→ V NP)

to

t̂(VP→ V NP, h2, h3|VP, h1).

• The log-likelihood function is convex, and therefore EM
converges to global maximum

• Estimation of π and q is similar in flavor

Main question: how do we get the latent state distributions
p(h|f,VP) and p(h|g,VP)?

Spectral Learning for NLP 60

Vector Representation of Inside and Outside Trees
Design functions Z and Y :

Y maps any inside feature value f ∈ [d′] to a vector of length m.

Z maps any outside feature value g ∈ [d] to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
Z(g) = [1, 0.4,−5.3, . . . , 72] ∈ Rm Y (f) = [−3, 17, 2, . . . , 3.5] ∈ Rm

Z and Y reduce the dimensionality of φ and ψ using CCA

Spectral Learning for NLP 61

Identifying Latent State Distributions

• For each f ∈ [d], define:

v(f) =
∑d′

g=1 p(g|f,VP)Z(g) = E[Z(g)|f,VP]

• v(f) ∈ Rm is “the expected value of an outside tree
(representation) given an inside tree (feature)”

• By conditional independence:

v(f) =
m∑
h=1

p(h|f,VP)w(h)

where w(h) ∈ Rm and

w(h) =
∑d′

g=1 p(g|h,VP)Z(g) = E[Z(g)|h,VP].

• w(h) is “the expected value of an outside tree
(representation) given a latent state”

Spectral Learning for NLP 62

Identifying Latent State Distributions

• For each f ∈ [d], define:

v(f) =
∑d′

g=1 p(g|f,VP)Z(g) = E[Z(g)|f,VP]

• v(f) ∈ Rm is “the expected value of an outside tree
(representation) given an inside tree (feature)”

• By conditional independence:

v(f) =

m∑
h=1

p(h|f,VP)w(h)

where w(h) ∈ Rm and

w(h) =
∑d′

g=1 p(g|h,VP)Z(g) = E[Z(g)|h,VP].

• w(h) is “the expected value of an outside tree
(representation) given a latent state”

Spectral Learning for NLP 62

Pivot Assumption
Reminder: v(f) =

∑m
h=1 p(h|f,VP)w(h)

• If we know w(h), we can find latent state distributions:

I Given an inside tree (feature f) and a node such as VP,
compute v(f)

I Solve

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)w(h)||2

Assumption: For each latent state there is f ∈ [d] a “pivot
feature value” s.t.

p(h|f,VP) = 1

.

Result of this: v(f) = w(h) for any pivot feature f

Spectral Learning for NLP 63

Identifying Latent State Distributions

• m pivot features {f1, . . . , fm} such that v(fh) = w(h)
Then, for all f ∈ [d]

v(f) =

m∑
h=1

p(h|f,VP)v(fh)

• Therefore, we can identify p(h|f,VP) for all f by solving:

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)v(fh)||2

Spectral Learning for NLP 64

Identifying Pivot Features

• v(f) are observable quantities, can be calculated from data

• Arora et al. (2012) showed how to find the pivot features

• Basic idea: find the corners of the convex hull spanned by the d
features

Spectral Learning for NLP 65

Identifying Latent State Distributions

Algorithm: • Identify m pivot features f1, . . . , fm by finding
vertices of ConvexHull(v1, . . . , vd) (Arora et al., 2012)
• Solve for each f ∈ [d]:

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)v(fh)||2

Output:

I Latent state distributions p(h|f,VP) for any f ∈ [d]

Can analogously get:

I Latent state distributions p(h|g,VP) for any g ∈ [d′]

• We managed to extract latent state probabilities from observed
data only!

Spectral Learning for NLP 66

Experiments - Language Modeling

• Saul and Pereira (1997):

p(w2|w1) =
∑
h

p(w2|h)p(h|w1).

h

w1 w2

This model is a specific case of L-PCFG

• Experimented with bi-gram modeling for two corpora: Brown
corpus and Gigaword corpus

Spectral Learning for NLP 67

Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

Spectral Learning for NLP 68

Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

pivot+EM
iterations

310
1

327
1

357
279
19

292
12

281

• Initialize EM with pivot algorithm output

• EM converges in much fewer iterations

• Still consistent - called “two-step estimation” (Lehmann and
Casella, 1998)

Spectral Learning for NLP 69

Results with EM (section 22 of Penn treebank)

Performance with expectation-maximization (m = 32): 88.56%

Vanilla binarized PCFG maximum likelihood estimation
performance: 68.62%

Performance with spectral algorithm (Cohen et al., 2013): 88.82%

Spectral Learning for NLP 70

Inside features used
Consider the VP node in the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The inside features consist of:

I The pairs (VP, V) and (VP, NP)

I The rule VP → V NP

I The tree fragment (VP (V saw) NP)

I The tree fragment (VP V (NP D N))

I The pair of head part-of-speech tag with VP: (VP, V)

Spectral Learning for NLP 71

Outside features used
Consider the D node in
the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The outside features consist of:

I The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

I The pair (D, NP) and triplet (D, NP, VP)

I The pair of head part-of-speech tag with D: (D, N)

Spectral Learning for NLP 72

Results

sec. 22 sec. 23
m 8 16 24 32

EM
iterations

86.69
40

88.32
30

88.35
30

88.56
20

87.76

Spectral
(Cohen et al., 2013)

85.60 87.77 88.53 88.82 88.05

Pivot 83.56 86.00 86.87 86.40 85.83

Pivot+EM
iterations

86.83
2

88.14
6

88.64
2

88.55
2

88.03

Again, EM converges in very few iterations

Spectral Learning for NLP 73

Conclusion

Formal guarantees:

I Statistical consistency

I No problem of local maxima

Advantages over traditional spectral methods:

I No negative probabilities

I More intuitive to understand

Spectral Learning for NLP 74

Things we did not talk about

Theses algorithms can be kernelized (e.g. Song et al., 2010)

Many other algorithms similar in flavor (see reading list)

I Rely on some decomposition of observable quantities to get a
handle on the parameters

Spectral Learning for NLP 75

References I

[1] A. Anandkumar, D. Foster, D. Hsu, S. M. Kakade, and
Y. Liu. A spectral algorithm for latent dirichlet allocation.
arXiv:1204.6703, 2012.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and
M. Telgarsky. Tensor decompositions for learning
latent-variable models. arXiv:1210.7559, 2012.

[3] S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra,
D. Sontag, Y. Wu, and M. Zhu. A practical algorithm for
topic modeling with provable guarantees. arXiv preprint
arXiv:1212.4777, 2012.

[4] R. Bailly, A. Habrar, and F. Denis. A spectral approach for
probabilistic grammatical inference on trees. In Proceedings
of ALT, 2010.

Spectral Learning for NLP 76

References II

[5] B. Balle and M. Mohri. Spectral learning of general weighted
automata via constrained matrix completion. In P. Bartlett,
F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2168–2176. 2012.

[6] B. Balle, A. Quattoni, and X. Carreras. A spectral learning
algorithm for finite state transducers. In Proceedings of
ECML, 2011.

[7] Byron Boots and Geoffrey J Gordon. An online spectral
learning algorithm for partially observable nonlinear dynamical
systems. In AAAI, 2011.

[8] S. B. Cohen and M. Collins. A provably correct learning
algorithm for latent-variable PCFGs. In Proceedings of ACL,
2014.

Spectral Learning for NLP 77

References III
[9] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and

L. Ungar. Experiments with spectral learning of
latent-variable PCFGs. In Proceedings of NAACL, 2013.

[10] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and
L. Ungar. Spectral learning of latent-variable PCFGs:
Algorithms and sample complexity. Journal of Machine
Learning Research, 2014.

[11] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
estimation from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39:1–38, 1977.

[12] P. Dhillon, D. P. Foster, and L. H. Ungar. Multi-view learning
of word embeddings via CCA. In Proceedings of NIPS, 2011.

[13] P. Dhillon, J. Rodu, M. Collins, D. P. Foster, and L. H.
Ungar. Spectral dependency parsing with latent variables. In
Proceedings of EMNLP, 2012.

Spectral Learning for NLP 78

References IV

[14] D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical
correlation analysis: An overview with application to learning
methods. Neural Computation, 16(12):2639–2664, 2004.

[15] H. Hotelling. Relations between two sets of variants.
Biometrika, 28:321–377, 1936.

[16] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm
for learning hidden Markov models. In Proceedings of COLT,
2009.

[17] H. Jaeger. Observable operator models for discrete stochastic
time series. Neural Computation, 12(6), 2000.

[18] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction
to latent semantic analysis. Discourse Processes,
(25):259–284, 1998.

Spectral Learning for NLP 79

References V

[19] Percy Liang, Daniel J Hsu, and Sham M Kakade.
Identifiability and unmixing of latent parse trees. In Advances
in Neural Information Processing Systems, pages 1511–1519,
2012.

[20] F. M. Luque, A. Quattoni, B. Balle, and X. Carreras. Spectral
learning for non-deterministic dependency parsing. In
Proceedings of EACL, 2012.

[21] T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with
latent annotations. In Proceedings of ACL, 2005.

[22] A. Parikh, L. Song, and E. P. Xing. A spectral algorithm for
latent tree graphical models. In Proceedings of The 28th
International Conference on Machine Learning (ICML 2011),
2011.

Spectral Learning for NLP 80

References VI

[23] A. P. Parikh, S. B. Cohen, and E. Xing. Spectral unsupervised
parsing with additive tree metrics. In Proceedings of ACL,
2014.

[24] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning
accurate, compact, and interpretable tree annotation. In
Proceedings of COLING-ACL, 2006.

[25] L. Saul, F. Pereira, and O. Pereira. Aggregate and
mixed-order markov models for statistical language processing.
In In Proceedings of the Second Conference on Empirical
Methods in Natural Language Processing, pages 81–89, 1997.

[26] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and Alex J
Smola. Hilbert space embeddings of hidden markov models.
In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 991–998, 2010.

Spectral Learning for NLP 81

References VII

[27] A. Tropp, N. Halko, and P. G. Martinsson. Finding structure
with randomness: Stochastic algorithms for constructing
approximate matrix decompositions. In Technical Report No.
2009-05, 2009.

[28] S. Vempala and G. Wang. A spectral algorithm for learning
mixtures of distributions. Journal of Computer and System
Sciences, 68(4):841–860, 2004.

Spectral Learning for NLP 82

