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Latent-variable Models

Latent-variable models are used in many areas of NLP, speech, etc.:

I Hidden Markov Models

I Latent-variable PCFGs

I Naive Bayes for clustering

I Lexical representations: Brown clustering, Saul and Pereira,
etc.

I Alignments in statistical machine translation

I Topic modeling

I etc. etc.

The Expectation-maximization (EM) algorithm is generally used
for estimation in these models (Dempster et al., 1977)

Other relevant algorithms: cotraining, clustering methods
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Example 1: Hidden Markov Models

S1 S2 S3 S4

the dog saw him

Parameterized by π(s), t(s|s′) and o(w|s)

Spectral learning: Hsu et al. (2009)

Dynamical systems: Siddiqi et al. (2009), Boots and Gordon
(2011)

Head-automaton grammars for dep. parsing: Luque et al. (2012)
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Example 2: Latent-Variable PCFGs (Matsuzaki et al., 2005; Petrov

et al., 2006)
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Example 3: Näıve Bayes

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

I EM can be used to estimate parameters
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Example 4: Language Modelling

h

w1 w2

p(w2|w1) =
∑

h p(h|w1)× p(w2|h) (Saul and Pereira, 1997)
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Example 5: HMMs for Speech

Phoneme boundaries are hidden variables

Refinement HMMs (Stratos et al., 2013)
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Example 6: Topic Models

Latent topics attached to a document or to each word in a
document

Method of moments algorithms such as Arora et al. (2012; 2013)
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Example 7: Unsupervised Parsing

The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3

𝒙 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢(𝒙)

((DT NN) (VBD (DT NN)))

w1 w2 w3

z3

z1

w4 w5

z2

w1 w2 w3

z3z1

w4 w5

z2

Latent structure is a bracketing (Parikh et al., 2014)

Similar in flavor to tree learning algorithms (e.g. Anandkumar,
2011)

Very different in flavor from estimation algorithms
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Example 8: Word Embeddings
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homecar

house
word

talk

river

dog

agree

cat
listen

boat
carry

truck

sleep
drink

eat
push

disagree

Embed a vocabulary into d-dimensional space

Can later be used for various NLP problems downstream

Related to canonical correlation analysis (Dhillon et al., 2012)
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Spectral Methods
Basic idea: replace EM with methods based on matrix
decompositions, in particular singular value decomposition (SVD)
SVD: given matrix A with m rows, n columns, approximate as

A ≈ UΣV >

which means

Ajk ≈
d∑

h=1

σhUjhVkh

where σh are “singular values”

U and V are m× d and n× d matrices

Remarkably, can find the optimal rank-d approximation efficiently
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Similarity of SVD to Näıve Bayes

H

X Y

P (X = x, Y = y) =

d∑
h=1

p(h)p(x|h)p(y|h)

Ajk ≈
d∑

h=1

σhUjhVkh

I SVD approximation minimizes squared loss, not log-loss
I σh not interpretable as probabilities
I Ujh, Vjh may be positive or negative, not probabilities

BUT we can still do a lot with SVD (and higher-order,
tensor-based decompositions)
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Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs
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Singular Value Decomposition (SVD)

A︸︷︷︸
m×n

SVD

=

d∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
m×1

(vi)>︸︷︷︸
1×n︸ ︷︷ ︸

m×n
I d = min(m,n)

I σ1 ≥ . . . ≥ σd ≥ 0

I u1 . . . ud ∈ Rm are orthonormal:∣∣∣∣ui∣∣∣∣
2

= 1 ui · uj = 0 ∀i 6= j

I v1 . . . vd ∈ Rn are orthonormal:∣∣∣∣vi∣∣∣∣
2

= 1 vi · vj = 0 ∀i 6= j
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SVD in Matrix Form

A︸︷︷︸
m×n

SVD

= U︸︷︷︸
m×d

Σ︸︷︷︸
d×d

V >︸︷︷︸
d×n

U =

 | |
u1 . . . ud

| |

 ∈ Rm×d Σ =

σ
1 0

. . .

0 σd

 ∈ Rd×d

V =

 | |
v1 . . . vd

| |

 ∈ Rn×d
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Matrix Rank

A ∈ Rm×n

rank(A) ≤ min(m,n)

I rank(A) := number of linearly independent columns in A

1 1 2
1 2 2
1 1 2

 1 1 2
1 2 2
1 1 3


rank 2 rank 3

(full-rank)
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Matrix Rank: Alternative Definition

I rank(A) := number of positive singular values of A

1 1 2
1 2 2
1 1 2

 1 1 2
1 2 2
1 1 3



Σ =

4.53 0 0
0 0.7 0
0 0 0

 Σ =

5 0 0
0 0.98 0
0 0 0.2


rank 2 rank 3

(full-rank)

Spectral Learning for NLP 17



SVD and Low-Rank Matrix Approximation

I Suppose we want to find B∗ such that

B∗ = argmin
B: rank(B)=r

∑
jk

(Ajk −Bjk)
2

I Solution:

B∗ =
r∑
i=1

σiui(vi)>
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SVD in Practice

I Black box, e.g., in Matlab

I Input: matrix A, output: scalars σ1 . . . σd, vectors u1 . . . ud

and v1 . . . vd

I Efficient implementations

I Approximate, randomized approaches also available

I Can be used to solve a variety of optimization problems

I For instance, Canonical Correlation Analysis (CCA)
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SVD in Practice - Random Projections

For large matrices (Halko et al., 2011)
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Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs
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Simplest Model in Complexity: Naive Bayes

H

X Y

p(h, x, y) = p(h)× p(x|h)× p(y|h)

(the, dog)
(I, saw)
(ran, to)

(John, was)
...

CCA helps identify H
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Canonical Correlation Analysis (CCA)

I Data consists of paired samples: (x(i), y(i)) for i = 1 . . . n

I As in co-training, x(i) ∈ Rd and y(i) ∈ Rd′ are two “views” of
a sample point

View 1 View 2

x(1) = (1, 0, 0, 0) y(1) = (1, 0, 0, 1, 0, 1, 0)

x(2) = (0, 0, 1, 0) y(2) = (0, 1, 0, 0, 0, 0, 1)

...
...

x(100000) = (0, 1, 0, 0) y(100000) = (0, 0, 1, 0, 1, 1, 1)
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Projection Matrices

I Project samples to lower dimensional space

x ∈ Rd =⇒ x′ ∈ Rp

I If p is small, we can learn with far fewer samples!

I CCA finds projection matrices A ∈ Rd×p, B ∈ Rd′×p

I The new data points are a(i) ∈ Rp, b(i) ∈ Rp where

a(i)︸︷︷︸
p×1

= A>︸︷︷︸
p×d

x(i)︸︷︷︸
d×1

b(i)︸︷︷︸
p×1

= B>︸︷︷︸
p×d′

y(i)︸︷︷︸
d′×1
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Mechanics of CCA: Step 1

I Compute ĈXY ∈ Rd×d′ , ĈXX ∈ Rd×d, and ĈY Y ∈ Rd′×d′

[ĈXY ]jk =
1

n

n∑
i=1

(x
(i)
j − x̄j)(y

(i)
k − ȳk)

[ĈXX ]jk=
1

n

n∑
i=1

(x
(i)
j − x̄j)(x

(i)
k − x̄k)

[ĈY Y ]jk=
1

n

n∑
i=1

(y
(i)
j − ȳj)(y

(i)
k − ȳk)

where x̄ =
∑

i x
(i)/n and ȳ =

∑
i y

(i)/n
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Mechanics of CCA: Step 2

I Do SVD on Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y ∈ Rd×d′

Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y

SVD

= UΣV >

Let Up ∈ Rd×p be the top p left singular vectors. Let
Vp ∈ Rd′×p be the top p right singular vectors.
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Mechanics of CCA: Step 3

I Define projection matrices A ∈ Rd×p and B ∈ Rd′×p

A = Ĉ
−1/2
XX Up B = Ĉ

−1/2
Y Y Vp

I Use A and B to project each (x(i), y(i)) for i = 1 . . . n:

x(i) ∈ Rd =⇒ A>x(i) ∈ Rp

y(i) ∈ Rd
′

=⇒ B>y(i) ∈ Rp
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Justification of CCA: Correlation Coefficients

I Sample correlation coefficient for a1 . . . an ∈ R and
b1 . . . bn ∈ R is

Corr({ai}ni=1, {bi}ni=1) =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2

where ā =
∑

i ai/n, b̄ =
∑

i bi/n

a

b

Correlation ≈ 1
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Simple Case: p = 1

I CCA projection matrices are vectors u1 ∈ Rd, v1 ∈ Rd′

I Project x(i) and y(i) to scalars u1 · x(i) and v1 · y(i)

I What vectors does CCA find? Answer:

u1, v1 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
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Finding the Next Projections

I After finding u1 and v1, what vectors u2 and v2 does CCA

find? Answer:

u2, v2 = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
subject to the constraints

Corr
(
{u2 · x(i)}ni=1, {u1 · x(i)}ni=1

)
= 0

Corr
(
{v2 · y(i)}ni=1, {v1 · y(i)}ni=1

)
= 0
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CCA as an Optimization Problem

I CCA finds for j = 1 . . . p (each column of A and B)

uj, vj = arg max
u,v

Corr
(
{u · x(i)}ni=1, {v · y(i)}ni=1

)
subject to the constraints

Corr
(
{uj · x(i)}ni=1, {uk · x(i)}ni=1

)
= 0

Corr
(
{vj · y(i)}ni=1, {vk · y(i)}ni=1

)
= 0

for k < j
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Guarantees for CCA

H

X Y

I Assume data is generated from a Naive Bayes model

I Latent-variable H is of dimension k, variables X and Y are of
dimension d and d′ (typically k � d and k � d′)

I Use CCA to project X and Y down to k dimensions (needs
(x, y) pairs only!)

I Theorem: the projected samples are as good as the original
samples for prediction of H
(Foster, Johnson, Kakade, Zhang, 2009)

I Because k � d and k � d′ we can learn to predict H with far
fewer labeled examples
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Guarantees for CCA (continued)

Kakade and Foster, 2007 - cotraining-style setting:

I Assume that we have a regression problem: predict some
value z given two “views” x and y

I Assumption: either view x or y is sufficient for prediction

I Use CCA to project x and y down to a low-dimensional space

I Theorem: if correlation coefficients drop off to zero quickly,
we will need far fewer samples to learn when using the
projected representation

I Very similar setting to cotraining, but no assumption of
independence between the two views
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“Variants” of CCA

Ĉ
−1/2
XX ĈXY Ĉ

−1/2
Y Y ∈ Rd×d

′

Centering leads to non-sparse CXY .

Computing C
−1/2
XX and C

−1/2
Y Y leads to large non-sparse matrices
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Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs
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A Spectral Learning Algorithm for HMMs

I Algorithm due to Hsu, Kakade and Zhang (COLT 2009; JCSS
2012)

I Algorithm relies on singular value decomposition followed by
very simple matrix operations

I Close connections to CCA

I Under assumptions on singular values arising from the model,
has PAC-learning style guarantees (contrast with EM, which
has problems with local optima)

I It is a very different algorithm from EM
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Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

p(the dog saw him︸ ︷︷ ︸
x1...x4

, 1 2 1 3︸ ︷︷ ︸
h1...h4

)

= π(1)× t(2|1)× t(1|2)× t(3|1)

×o(the|1)× o(dog|2)× o(saw|1)× o(him|3)

I Initial parameters: π(h) for each latent state h

I Transition parameters: t(h′|h) for each pair of states h′, h

I Observation parameters: o(x|h) for each state h, obs. x
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Hidden Markov Models (HMMs)

H1 H2 H3 H4

the dog saw him

Throughout this section:

I We use m to refer to the number of hidden states

I We use n to refer to the number of possible words
(observations)

I Typically, m� n (e.g., m = 20, n = 50, 000)
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HMMs: the forward algorithm

H1 H2 H3 H4

the dog saw him

p(the dog saw him) =
∑

h1,h2,h3,h4

p(the dog saw him, h1 h2 h3 h4)

The forward algorithm:

f0h = π(h) f1h =
∑
h′

t(h|h′)o(the|h′)f0h′

f2h =
∑
h′

t(h|h′)o(dog|h′)f1h′ f3h =
∑
h′

t(h|h′)o(saw|h′)f2h′

f4h =
∑
h′

t(h|h′)o(him|h′)f3h′ p(. . .) =
∑
h

f4h
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HMMs: the forward algorithm in matrix form

H1 H2 H3 H4

the dog saw him

I For each word x, define the matrix Ax ∈ Rm×m as

[Ax]h′,h = t(h′|h)o(x|h) e.g., [Athe]h′,h = t(h′|h)o(the|h)

I Define π as vector with elements πh, 1 as vector of all ones

I Then

p(the dog saw him) = 1>×Ahim×Asaw×Adog×Athe× π

Forward algorithm through matrix multiplication!
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The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

Easy to derive an estimate:

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N
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The Spectral Algorithm: definitions

H1 H2 H3 H4

the dog saw him

For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

Easy to derive an estimate, e.g.,:

[P̂3,dog,1]i,j =
Count(X3 = i,X2 = dog, X1 = j)

N
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Main Result Underlying the Spectral Algorithm
I Define the following matrix P2,1 ∈ Rn×n:

[P2,1]i,j = P(X2 = i,X1 = j)

I For each word x, define the following matrix P3,x,1 ∈ Rn×n:

[P3,x,1]i,j = P(X3 = i,X2 = x,X1 = j)

I SVD(P2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

I Definition:
Bx = U> × P3,x,1 × V︸ ︷︷ ︸

m×m

× Σ−1︸︷︷︸
m×m

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible
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Why does this matter?

I Theorem: if P2,1 is of rank m, then

Bx = GAxG
−1

where G ∈ Rm×m is invertible

I Recall p(the dog saw him) = 1>AhimAsawAdogAtheπ.

Forward algorithm through matrix multiplication!

I Now note that

Bhim ×Bsaw ×Bdog ×Bthe

= GAhimG
−1 ×GAsawG

−1 ×GAdogG
−1 ×GAtheG

−1

= GAhim ×Asaw ×Adog ×AtheG
−1

The G’s cancel!

I Follows that if we have b∞ = 1>G−1 and b0 = Gπ then

b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

= 1> ×Ahim ×Asaw ×Adog ×Athe × π
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The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47



The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47



The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47



The Spectral Learning Algorithm

1. Derive estimates

[P̂2,1]i,j =
Count(X2 = i,X1 = j)

N

For all words x,

[P̂3,x,1]i,j =
Count(X3 = i,X2 = x,X1 = j)

N

2. SVD(P̂2,1)⇒ U ∈ Rn×m,Σ ∈ Rm×m, V ∈ Rn×m

3. For all words x, define Bx = U> × P̂3,x,1 × V︸ ︷︷ ︸
m×m

× Σ−1︸︷︷︸
m×m

.

(similar definitions for b0, b∞, details omitted)

4. For a new sentence x1 . . . xn, can calculate its probability, e.g.,

p̂(the dog saw him)

= b∞ ×Bhim ×Bsaw ×Bdog ×Bthe × b
0

Spectral Learning for NLP 47



Guarantees
I Throughout the algorithm we’ve used estimates P̂2,1 and
P̂3,x,1 in place of P2,1 and P3,x,1

I If P̂2,1 = P2,1 and P̂3,x,1 = P3,x,1 then the method is exact.
But we will always have estimation errors

I A PAC-Style Theorem: Fix some length T . To have∑
x1...xT

|p(x1 . . . xT )− p̂(x1 . . . xT )|︸ ︷︷ ︸
L1 distance between p and p̂

≤ ε

with probability at least 1− δ, then number of samples
required is polynomial in

n,m, 1/ε, 1/δ, 1/σ, T

where σ is m’th largest singular value of P2,1
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Intuition behind the Theorem
I Define

||Â−A||2 =

√∑
j,k

(Âj,k −Aj,k)2

I With N samples, with probability at least 1− δ

||P̂2,1 − P2,1||2 ≤ ε

||P̂3,x,1 − P3,x,1||2 ≤ ε
where

ε =

√
1

N
log

1

δ
+

√
1

N

I Then need to carefully bound how the error ε propagates
through the SVD step, the various matrix multiplications, etc
etc. The “rate” at which ε propagates depends on T , m, n,
1/σ
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Summary

I The problem solved by EM: estimate HMM parameters π(h),
t(h′|h), o(x|h) from observation sequences x1 . . . xn

I The spectral algorithm:

I Calculate estimates P̂2,1 (bigram counts) and P̂3,x,1 (trigram
counts)

I Run an SVD on P̂2,1

I Calculate parameter estimates using simple matrix operations
I Guarantee: we recover the parameters up to linear transforms

that cancel
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Outline

• Singular value decomposition

• Canonical correlation analysis

• Spectral learning of hidden Markov models

• Algorithm for latent-variable PCFGs
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Problems with spectral HMM learning algorithm

Parameters are masked by an unknown linear transformation

I Negative marginals (due to sampling error)

I Parameters cannot be easily interpreted

I Cannot improve parameters using, for example, EM

Hsu et al. suggest a way to extract probabilities, but the method is
unstable
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This part of the talk

Like the spectral algorithm, has theoretical guarantees

Estimates are actual probabilities

More efficient than EM

Can be used to initialize EM, which converges in an iteration or two
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L-PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

S

NP

D

the

N

dog

VP

V

saw

P

him

⇒ S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him
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The probability of a tree

S1

NP3

D1

the

N2

dog

VP2

V4

saw

P1

him

p(tree, 1 3 1 2 2 4 1)

= π(S1)×
t(S1 → NP3 VP2|S1)×
t(NP3 → D1 N2|NP3)×
t(VP2 → V4 P1|VP2)×
q(D1 → the|D1)×
q(N2 → dog|N2)×
q(V4 → saw|V4)×
q(P1 → him|P1)

p(tree) =
∑
h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)
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Inside and Outside Trees

At node VP:

S

NP

D

the

N

dog

VP

V

saw

P

him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)
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Designing Feature Functions

Design functions ψ and φ:

φ maps any inside tree to a binary vector of length d

ψ maps any outside tree to a binary vector of length d′

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
ψ(o) = [0, 1, 0, 0, . . . , 0, 0] ∈ Rd′ φ(t) = [1, 0, 0, 0, . . . , 0, 0] ∈ Rd

ψ and φ as multinomials p(f) for f ∈ [d] and p(g) for g ∈ [d′].
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Latent State Distributions

Think of f and g as representing a whole inside/outside tree

Say we had a way of getting:

I p(f |h,VP) for each h and f inside feature

I p(g|h,VP) for each h and g outside feature

Then we could run EM on a convex problem to find parameters.
How?
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Binary rule estimation
Take M samples of nodes with rule VP→ V NP.

At sample i

I g(i) = outside feature at VP

I f
(i)
2 = inside feature at V

I f
(i)
3 = inside feature at NP

t̂(h1, h2, h3|VP→ V NP)

= max
t̂

M∑
i=1

log
∑

h1,h2,h3

(
t̂(h1, h2, h3|VP→ V NP)×

p(g(i)|h1,VP)p(f
(i)
2 |h2,V)p(f

(i)
3 |h3,NP)

)
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Binary Rule Estimation

• Use Bayes rule to convert

t̂(h1, h2, h3|VP→ V NP)

to

t̂(VP→ V NP, h2, h3|VP, h1).

• The log-likelihood function is convex, and therefore EM
converges to global maximum

• Estimation of π and q is similar in flavor

Main question: how do we get the latent state distributions
p(h|f,VP) and p(h|g,VP)?
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Vector Representation of Inside and Outside Trees
Design functions Z and Y :

Y maps any inside feature value f ∈ [d′] to a vector of length m.

Z maps any outside feature value g ∈ [d] to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.

S

NP

D

the

N

dog

VP

VP

V

saw

P

him

Outside tree o⇒ Inside tree t⇒
Z(g) = [1, 0.4,−5.3, . . . , 72] ∈ Rm Y (f) = [−3, 17, 2, . . . , 3.5] ∈ Rm

Z and Y reduce the dimensionality of φ and ψ using CCA
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Identifying Latent State Distributions

• For each f ∈ [d], define:

v(f) =
∑d′

g=1 p(g|f,VP)Z(g) = E[Z(g)|f,VP]

• v(f) ∈ Rm is “the expected value of an outside tree
(representation) given an inside tree (feature)”

• By conditional independence:

v(f) =
m∑
h=1

p(h|f,VP)w(h)

where w(h) ∈ Rm and

w(h) =
∑d′

g=1 p(g|h,VP)Z(g) = E[Z(g)|h,VP].

• w(h) is “the expected value of an outside tree
(representation) given a latent state”
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Pivot Assumption
Reminder: v(f) =

∑m
h=1 p(h|f,VP)w(h)

• If we know w(h), we can find latent state distributions:

I Given an inside tree (feature f) and a node such as VP,
compute v(f)

I Solve

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)w(h)||2

Assumption: For each latent state there is f ∈ [d] a “pivot
feature value” s.t.

p(h|f,VP) = 1

.

Result of this: v(f) = w(h) for any pivot feature f
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Identifying Latent State Distributions

• m pivot features {f1, . . . , fm} such that v(fh) = w(h)
Then, for all f ∈ [d]

v(f) =

m∑
h=1

p(h|f,VP)v(fh)

• Therefore, we can identify p(h|f,VP) for all f by solving:

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)v(fh)||2
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Identifying Pivot Features

• v(f) are observable quantities, can be calculated from data

• Arora et al. (2012) showed how to find the pivot features

• Basic idea: find the corners of the convex hull spanned by the d
features
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Identifying Latent State Distributions

Algorithm: • Identify m pivot features f1, . . . , fm by finding
vertices of ConvexHull(v1, . . . , vd) (Arora et al., 2012)
• Solve for each f ∈ [d]:

arg min
p(h|f,VP)

||v(f)−
m∑
h=1

p(h|f,VP)v(fh)||2

Output:

I Latent state distributions p(h|f,VP) for any f ∈ [d]

Can analogously get:

I Latent state distributions p(h|g,VP) for any g ∈ [d′]

• We managed to extract latent state probabilities from observed
data only!
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Experiments - Language Modeling

• Saul and Pereira (1997):

p(w2|w1) =
∑
h

p(w2|h)p(h|w1).

h

w1 w2

This model is a specific case of L-PCFG

• Experimented with bi-gram modeling for two corpora: Brown
corpus and Gigaword corpus
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Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715
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Results: perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

pivot+EM
iterations

310
1

327
1

357
279
19

292
12

281

• Initialize EM with pivot algorithm output

• EM converges in much fewer iterations

• Still consistent - called “two-step estimation” (Lehmann and
Casella, 1998)
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Results with EM (section 22 of Penn treebank)

Performance with expectation-maximization (m = 32): 88.56%

Vanilla binarized PCFG maximum likelihood estimation
performance: 68.62%

Performance with spectral algorithm (Cohen et al., 2013): 88.82%
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Inside features used
Consider the VP node in the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The inside features consist of:

I The pairs (VP, V) and (VP, NP)

I The rule VP → V NP

I The tree fragment (VP (V saw) NP)

I The tree fragment (VP V (NP D N))

I The pair of head part-of-speech tag with VP: (VP, V)
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Outside features used
Consider the D node in
the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The outside features consist of:

I The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

I The pair (D, NP) and triplet (D, NP, VP)

I The pair of head part-of-speech tag with D: (D, N)
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Results

sec. 22 sec. 23
m 8 16 24 32

EM
iterations

86.69
40

88.32
30

88.35
30

88.56
20

87.76

Spectral
(Cohen et al., 2013)

85.60 87.77 88.53 88.82 88.05

Pivot 83.56 86.00 86.87 86.40 85.83

Pivot+EM
iterations

86.83
2

88.14
6

88.64
2

88.55
2

88.03

Again, EM converges in very few iterations
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Conclusion

Formal guarantees:

I Statistical consistency

I No problem of local maxima

Advantages over traditional spectral methods:

I No negative probabilities

I More intuitive to understand
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Things we did not talk about

Theses algorithms can be kernelized (e.g. Song et al., 2010)

Many other algorithms similar in flavor (see reading list)

I Rely on some decomposition of observable quantities to get a
handle on the parameters
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