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Hidden  Markov Model
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Hidden  Markov Model
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w3 w5w4 w6

y4 y6

Learn parameters?

p(yt | yt-1)

p(wt | yt)

• model can be extended to include features
Berg-Kirkpatrick, et al, Painless unsupervised learning with features. NAACL HLT, 2010.

• supervised learning 
• unsupervised/semi-supervised (this talk)
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Maximum Likelihood estimation 
(MLE)  

• exact inference is hard 

• EM sensitive to local optima  
(depends on initialization) 

• EM expensive in large datasets 
(several inference passes)

Method of Moments estimation 
(MoM)

computationally efficient

no local optima

one pass over data
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Hidden  Markov Model

via Maximum Likelihood Estimation    

unsupervised learning

semi-supervised learning

feature HMM

MLE MoM

via Method of Moments   

HMM feature HMMHMM
MoM

?

?

?

MLE

Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees, ICML 2013

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster and Lyle Ungar, Spectral Learning of 
Latent-Variable PCFGs: Algorithms and Sample Complexity, JMLR 2014
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Learning sequence models via MoM

1. Learn HMM models via MoM

2. Solve a QP

3. Extend to feature-based model

4. Experiments

Outline

5. Experiments
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Key insight:

2. Anchor Trick:

1. Conditional Independence:          

learn a proxy for labels with anchors 

infer label by looking at context 

Method of Moments
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Firth, 1957
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Arora et al., A Practical Algorithm for Topic Modeling with Provable Guarantees, ICML 2013

verb

wt-1

yt-1 yt

wt

be

yt+1

label

anchor  
word

wt+1

p( label ≠ verb | be ) = 0

p( verb | be ) = 1

2. Anchor Trick

all instances of be  = verb
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y

More anchors per label

verb

more than 1 anchor word less biased context estimates

verb = b, be, are, is, am, have, going

begoareis amhavegoing

2. Anchor Trick
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How to find anchors? 

• small labeled corpus

• small lexicon Austin
airport
playground

am,be,is,are
go,
make,made
become

so,on,of

he,it,she

noun

verb

pron

adp

2. Anchor Trick



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Method of Moments 21

co-occurrences in data
unlabeled Method of moments

Andrew fights like Jet Li.

eat Fruit like cherry.

Ann sings like me.

Children like ice-cream.

wt

context

wt-1 wt+1 wt+2



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Method of Moments 22

Andrew fights like Jet Li.

eat Fruit like cherry.

Ann sings like me.

Children like ice-cream.

wt

context

wt-1 wt+1 wt+2

Method of moments

like

Ch
ild

re
n

ch
er

ry

ice
-cr

ea
m

fig
hts

a Je
t

me.context

w
or

d lov
e

the
re

wi
ll

Q p(context | word)



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Method of Moments 23

Let there be love.

Bill will be a ninja.

Method of moments

like

Ch
ild

re
n

ch
er

ry

ice
-cr

ea
m

fig
hts

a Je
t

me.context

w
or

d lov
e

be

the
re

wi
ll

Q p(context | word)



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Method of Moments 24

x
context

Method of moments

lab
el

contextword ? | label1. Conditional Independence
 p(label | word) p(context | word)  p(context | label)

X

labels

=

=
w

or
d

label

w
or

d

context

Q Γ

R



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Method of Moments 25

Method of moments

 p(label | word) p(context | word)  p(context | label)
X

labels

=

contextword ? | label1. Conditional Independence

2. Anchor Trick
 p(label | word) p(context | word)  p(context | anchors)

X

labels

=

= x
w

or
d

label

R

context

w
or

d

context

Q Γ
an

ch
or

s



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Outline 26

Learning sequence models via MoM

Proposed work

1. Learn HMM models via MoM

2. Solve a QP

3. Extend to feature-based model

4. Experiments

Outline

5. Experiments
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estimated from unlabeled data
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X

words

 p(label | word)

Learn parameters ?

 p(label) =

HMM Learning

γ

coefficients

Bayes’ Rule
 p(word)
 p(label)

=

Observation Matrix

 p(word | label) γ
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Bayes’ Rule
 p(word)
 p(label)

=

Observation Matrix

Learn parameters ?

 p(word | label)

HMM Learning

γ

Transition Matrix

• estimate from labeled data only
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Learning sequence models via MoM

1. Learn HMM models via MoM

2. Relax the notion of anchors

3. Solve a QP

4. Experiments

Outline

5. Experiments
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Semi-supervised Twitter POS tagging

33

12 Universal POS

200k words

Twitter dataset 

⇡

 Slav Petrov et al., A Universal Part-of-Speech Tagset, 2011
Owoputi et al., Improved part-of-speech tagging for online conversational text with word clusters. 2013 

2.7 M unlabeled tweets 
1000-100 labeled tweets 

hehe its gonna b a good day
x prt verb verb det adj noun
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Twitter POS tagging 
150 training labeled sequences

71.7

77.2
78.2

84.3

70
72
74
76
78
80
82
84
86

HMM

ta
gg

in
g 

ac
cu

ra
cy

HMM EM self-training AHMM



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Experiments 35

Twitter POS tagging 
1000 training labeled sequences
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Learning sequence models via MoM

Proposed work

1. Learn HMM models via MoM

2. Relax the notion of anchors

3. Extend to feature HMM

4. Experiments

Outline

5. Experiments
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• is upper
• is title
• is digit
• is url
• starts #
• is emoticon

T. Berg-Kirkpatrick, Painless unsupervised learning with features, ACL 2010. 
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• solve per feature dimension Φj

Log-linear model
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 E[Φ(word)]
 p(label)

=

Learn parameters ?

 E[ Φ(word) | label ] γ

γ =

mean parameters

µy = E[�(X) | Y = y]=

 E [ Φ(word) | label ] p( label )
E [ Φ(word) ]

Log-linear model
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canonical parameters

mean parameters

Algorithm
compute moments

Γ

solve maxent problem

µy = E[�(X) | Y = y]

Q

find anchors

solve QP 
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mean parameters

Algorithm
compute moments

Γ

µy = E[�(X) | Y = y]

Q

find anchors R

solve QP 

supervision 

canonical parameterssolve maxent problem ✓y



EMNLP 16    |   Semi-supervised sequence labeling with MoM  | Outline 45

Learning sequence models via MoM

1. Learn HMM models via MoM

2. Relax the notion of anchors

3. Solve a QP

4. Experiments

Outline

5. Experiments
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Twitter POS tagging 
150 training labeled sequences
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Twitter POS tagging 
1000 training labeled sequences
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Twitter POS tagging 

Tagging accuracy vs. labeled training size
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Twitter POS tagging 
1000 training sequences
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Conclusions 

• MoM algorithm for semi-supervised learning 

• flexible method                                                            
(easy to add supervision)            

• fast to train                                                                        
(only one pass over the data)                

• particularly good with little supervision

Thank you !
zmarinho@cmu.edu
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