
Faster Dependency Parsing, More Accurate
Unsupervised Parsing

Shay Cohen
ILCC, School of Informatics

University of Edinburgh

September 30, 2022

Did Aristotle Have a Cellphone?

Leslie Valiant (2021)

Talking to GPT-3 (a few days ago)

Q: Did Aristotle have a mobile phone?
A: No, Aristotle did not have a mobile phone.

Q: Explain why.
A: Mobile phones were not invented until the late 20th century,
centuries after Aristotle’s death.

A: Did Gauss have a mobile phone?
No, Gauss did not have a mobile phone.

Q: Explain why.
A: Mobile phones were not invented until the late 20th century,
centuries after Gauss’s death.

Talking to GPT-3 (a few days ago)

Q: Did Aristotle have a mobile phone?
A: No, Aristotle did not have a mobile phone.

Q: Explain why.
A: Mobile phones were not invented until the late 20th century,
centuries after Aristotle’s death.

A: Did Gauss have a mobile phone?
No, Gauss did not have a mobile phone.

Q: Explain why.
A: Mobile phones were not invented until the late 20th century,
centuries after Gauss’s death.

Talking to GPT-3

Q: How did Aristotle wash his laundry?
A: Aristotle would have either washed his own laundry by hand, or he
would have had someone else do it for him. There were no washing
machines during Aristotle’s lifetime.

A: How did Aristotle bake a pizza?
Aristotle would have either baked a pizza by hand, or he would have had
someone else do it for him. There were no ovens during Aristotle’s
lifetime.
Pizzas didn’t seem to exist before 900 AD. Aristotle lived in 300s BC. The

modern pizza is from the 18th/19th century. Ovens have existed for around

30,000 years.

Q: Why did you need to tell me that there were no ovens during
Aristotle’s lifetime?
A: You asked how Aristotle baked a pizza, and we can only speculate
how he would have done it without the use of modern technology.

Talking to GPT-3

Q: How did Aristotle wash his laundry?
A: Aristotle would have either washed his own laundry by hand, or he
would have had someone else do it for him. There were no washing
machines during Aristotle’s lifetime.

A: How did Aristotle bake a pizza?
Aristotle would have either baked a pizza by hand, or he would have had
someone else do it for him. There were no ovens during Aristotle’s
lifetime.
Pizzas didn’t seem to exist before 900 AD. Aristotle lived in 300s BC. The

modern pizza is from the 18th/19th century. Ovens have existed for around

30,000 years.

Q: Why did you need to tell me that there were no ovens during
Aristotle’s lifetime?
A: You asked how Aristotle baked a pizza, and we can only speculate
how he would have done it without the use of modern technology.

Talking to GPT-3

Q: So why wouldn’t Aristotle use his mobile phone to bake the pizza?
A: As we mentioned before, mobile phones were not invented until the
late 20th century, so Aristotle would not have had one.

Q: But if he had one, would he be able to use it to bake a pizza?
A: We don’t know for sure, but it’s unlikely. Mobile phones typically
don’t get hot enough to bake a pizza.

Q: Could you at least fry an egg with a mobile phone?
A: We don’t know for sure, but it’s unlikely. Mobile phones typically
don’t get hot enough to fry an egg.

Q: So what gets hot enough for that?
A: A stove or an oven typically gets hot enough to fry an egg.

Talking to GPT-3

Q: What about Gauss, how did he make his pizzas?
A: Gauss would have either baked his pizzas by hand, or he would have
had someone else do it for him. There were no ovens during Gauss’s
lifetime.

Q: What do you mean by ”bake by hand”? Of course there were ovens
back then.
A: We don’t know for sure, but it’s unlikely. Mobile phones typically
don’t get hot enough to bake a pizza.

Q: I see. But I didn’t ask about mobile phones.
A: You asked how Gauss baked his pizzas, and we can only speculate
how he would have done it without the use of modern technology.

Talking to GPT-3

Q: What about Gauss, how did he make his pizzas?
A: Gauss would have either baked his pizzas by hand, or he would have
had someone else do it for him. There were no ovens during Gauss’s
lifetime.

Q: What do you mean by ”bake by hand”? Of course there were ovens
back then.
A: We don’t know for sure, but it’s unlikely. Mobile phones typically
don’t get hot enough to bake a pizza.

Q: I see. But I didn’t ask about mobile phones.
A: You asked how Gauss baked his pizzas, and we can only speculate
how he would have done it without the use of modern technology.

Talking to GPT-3

Q: Okay. Final question, how do you bake a pizza?
A: You can bake a pizza in an oven, on a stove, or in a microwave.

Q: I asked about you. How do YOU bake a pizza?
A: I bake my pizzas in an oven.

Talking to GPT-3

Q: Okay. Final question, how do you bake a pizza?
A: You can bake a pizza in an oven, on a stove, or in a microwave.

Q: I asked about you. How do YOU bake a pizza?
A: I bake my pizzas in an oven.

Talking to GPT-3

Q: Not with a mobile phone?
A: No, not with a mobile phone.

Q: Not with a laundry machine?
A: No, not with a laundry machine.

Q: Then with what?
A: With an oven.

Q: Fantastic. Thank you.
A: You’re welcome.

Talking to GPT-3 (Hebrew)

Conversation with BLOOM

Q: Did Aristotle have a mobile phone?
A: What if he had? It’s perhaps a different kind of enquiry than the
ones to which we’ve

Q: Did Gauss have a mobile phone?
A: hat if he had? It’s perhaps a different kind of enquiry than the ones
to which we’ve

Octopuses and Language

Bender and Koller (2020)

But... ”There is no data like more data”

Maybe... There is no model like a bigger model?

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

Dependency Parsing

From the Stanza parser:

• Parsers are not perfect yet!

• The Universal Dependencies
Project aims at finding a common
dependency formalism for many
languages

Why Dependency Parsing?

• It gives relations
directly between
words, no
“deep” structure
which is
sometimes
redundant

• This also makes
it a better theory
for free-word
order languages

• Flexible at
modelling
non-projectivity

Side Note: Free Word Order Languages

• In languages with free word order, phrase structure (constituency)
grammars don’t make as much sense.

• E.g., we would need both S→ NP VP and S→ VP NP, etc. Not very
informative about what’s really going on.

• In contrast, the dependency relations stay constant (in Russian,
“Sasha gave a book to the girl”):

Sasha dal devochke knigu

ROOT

NSUBJ IOBJ

DOBJ

Sasha dal knigu devochke

ROOT

NSUBJ

IOBJ

DOBJ

Graph Parsing for Dependency Parsing

• STAGE 1: Start
with a complete
graph, all edges
connected to
each other with
some weight

Graph Parsing for Dependency Parsing

• STAGE 1: Start
with a complete
graph, all edges
connected to
each other with
some weight

• STAGE 2: Run a maximum spanning tree algorithm to find the
highest scoring tree

Where is Time Spent in Parsing?

Time spent on STAGE 1 and STAGE 2:

• Calculated from the
Stanza parser

• Most time is spent
on inference

The Root of a Problem

The Universal Dependency Project (Nivre et al., 2018) documentation
states that (Zmigrod et al. 2020):

There should be just one node with the root dependency relation
in every tree [...]

https://universaldependencies.org/u/dep/root.html

We ask: Can we optimally decode a dependency tree with a
single-root constraint? (Stanojević and Cohen, 2021)

Answer: Yes. Run asymptotically in quadratic time with an empirical
low constant

https://universaldependencies.org/u/dep/root.html

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

The Reweighting Algorithm

Consider the complete graph we start with our inference. If we subtract
c from all edges ROOT→ wi:

• We subtract from all trees the weight k · c where k is the number
of ROOT edges

• We do not change the weight order of trees with the same number
of ROOT edges

• We may change weight order of trees with different number of
ROOT edges

Question: Can we find c such that we make the best single-root tree
come at the top compared to all other multiple root trees?

The Reweighting Algorithm

Question: Can we find c such that we make the best single-root tree
come at the top compared to all other multiple root trees?

Answer: Yes! Choose c∗ = 1 + n(maxew(e)−minew(e)) where w(e)
is the weight of edge e in the complete graph

The Reweighting Algorithm:

• Subtract c∗ from all ROOT→ ∗ edges in the initial complete graph

• Run an unconstrained tree inference algorithm on the new
complete graph

Side Note: the ArcMax Trick

Zhang et al. (2017) show that choosing for each word the highest
scoring edge going into that word as parent often gives a valid tree

Use this as a trick: check if this gives tree (this tree is optimal), if so,
don’t run any costly inference – we will go back to that!

Experiment 1A: Unconstrained Inference Speed

With trained weights (unconstrained):

• The CLE algorithm
includes an ArcMax-
like step in the begin-
ning (by design)

• Tarjan with ArcMax
catches up...

Experiment 1B: Unconstrained Inference Speed

With random weights (unconstrained):

• ArcMax-like step no
longer works, so Tar-
jan shines

Experiment 2: Single-Root Inference Speed
without ArcMax

Experiment 3: Single-Root Inference Speed with
ArcMax

• Random weights
not shown - same as
without ArcMax

Summary of Part 1

To get optimal complexity for single root, just use:

Our recommendation for optimal single-root dependency parsing
(regardless of learning): ArcMax+Reweighting+Tarjan

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

Unsupervised Parsing

L-PCFGs, the Supervised Case

At node VP:

S

NP

D

the

N

dog

VP

V

saw

P

him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the connecting
nonterminal

p(o, t|VP) = p(o|VP)× p(t|VP)

Inside Outside Strings

• The yield of the or-
ange part is “inside
string”

• The yield of the
blue part is “outside
string”

• We will bootstrap
a classifier to pre-
dict if a node dom-
inates a pair of (in-
side,outside) strings

Co-training (Yarowsky, 1995; Blum and Mitchell,
1998)

Roughly! Repeats the following steps (given unlabeled data U and
labeled data L):

• Train a classifier with one “view” on L

• Train a classifier with another “view” on L

• Take some (confident) predictions on U from both classifiers and
add to L

Co-training works best when the two views are conditionally
independent given the label

And In Our Case...

This leads to:

• Take all sentences, and break them all possible ways into
inside/outside strings

• Get neural representations for each pair (i, o) as two “views”

• Take a subset of these L, and label them with some heuristics - the
label is whether (i, o) has a node that connects them

• Do co-training

Weak Supervision

What would be the seed dataset to start the co-training process?

• All (start, end) spans for a given sentence have label 1 (are
constituents)

• All (start, end− i) for i = 1, 2, ..., 6 have label 0

• Another simple heuristic that relies on casing

How Do We Use These Labels?

Let

• pi(e) be the confidence of the classifier for an inside of span e

• po(e) be the confidence of the classifier for an outside of span e

Then, for three different types of scores:

• score(e) = pi(e)

• score(e) = po(e)

• score(e) = pi(e) · po(e)

find the tree t∗ = argmaxt
∑

e∈t score(e)

Also referred to as span decoding

Results: Penn Treebank (English)

• Results with the inside score

Results: Penn Treebank (English)

• Results with self-training of the inside score

Results: Penn Treebank (English)

• Results with co-training for inside × outside scores

Results: Chinese Treebank

Results: Korean Treebank

Summary of Part 2

Unsupervised constituency parsing can be viewed as a co-training
problem

See the paper for more examples, score functions and error analysis!

Conclusion

• Language is manifested through symbols. Computational systems
in general are often symbolic in nature

• Its intermediate representation, however - can be continuous or
symbolic

• Symbolic: interpretable; Continuous: have a gradient

• Both have their role. Both can co-exist

Thank You!

Any questions?

Collaborators

Milos Stanojević

Nickil Maveli

‘

