
Faster Dependency Parsing, More Accurate
Unsupervised Parsing

Shay Cohen
ILCC, School of Informatics

University of Edinburgh

May 11, 2022

Did Aristotle Have a Cellphone?

Leslie Valiant (2021)

Octopuses and Language

Bender and Koller (2020)

But... ”There is no data like more data”

Maybe... There is no model like a bigger model?

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

Dependency Parsing

From the Stanza parser:

• Parsers are not perfect yet!

• The Universal Dependencies
Project aims at finding a common
dependency formalism for many
languages

Why Dependency Parsing?

• It gives relations
directly between
words, no
“deep” structure
which is
sometimes
redundant

• This also makes
it a better theory
for free-word
order languages

• Flexible at
modelling
non-projectivity

Side Note: Free Word Order Languages

• In languages with free word order, phrase structure (constituency)
grammars don’t make as much sense.

• E.g., we would need both S→ NP VP and S→ VP NP, etc. Not very
informative about what’s really going on.

• In contrast, the dependency relations stay constant (in Russian,
“Sasha gave a book to the girl”):

Sasha dal devochke knigu

ROOT

NSUBJ IOBJ

DOBJ

Sasha dal knigu devochke

ROOT

NSUBJ

IOBJ

DOBJ

Graph Parsing for Dependency Parsing

• STAGE 1: Start
with a complete
graph, all edges
connected to
each other with
some weight

Graph Parsing for Dependency Parsing

• STAGE 1: Start
with a complete
graph, all edges
connected to
each other with
some weight

• STAGE 2: Run a maximum spanning tree algorithm to find the
highest scoring tree

Where is Time Spent in Parsing?

Time spent on STAGE 1 and STAGE 2:

• Calculated from the
Stanza parser

• Most time is spent
on inference

The Root of a Problem

The Universal Dependency Project (Nivre et al., 2018) documentation
states that (Zmigrod et al. 2020):

There should be just one node with the root dependency relation
in every tree [...]

https://universaldependencies.org/u/dep/root.html

We ask: Can we optimally decode a dependency tree with a
single-root constraint? (Stanojević and Cohen, 2021)

Answer: Yes. Run asymptotically in quadratic time with an empirical
low constant

https://universaldependencies.org/u/dep/root.html

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

Single-Root Dependency Parsing Algorithms

algorithm appeared in
current

implementation
worst-case

claimed
worst-case

dense graph

average-case
dense graph

claimed
worst-case

sparse graph

Gabow-Tarjan
Gabow & Tarjan (1984)
Zmigrod et al. (2020)

O(n2 log n) O(n2) O(n2) O(m log n)

Näıve
mentioned in

Zmigrod et al. (2020)
n/a O(n3) O(n3) O(mn+ n2 log n)

Preselection
code of some

parsers
(undocumented)

O(n3) O(n3) O(n2) O(mn+ n2 log n)

Reweighting this work O(n2) O(n2) O(n2) O(m+ n log n)

In the above, we might use as a subroutine an unconstrained parsing
algorithm

For example: O(n2), using our implementation of the Chu-Liu-Edmonds
algorithm (CLE) based on data structures from Tarjan (1977)

The Reweighting Algorithm

Consider the complete graph we start with our inference. If we subtract
c from all edges ROOT→ wi:

• We subtract from all trees the weight k · c where k is the number
of ROOT edges

• We do not change the weight order of trees with the same number
of ROOT edges

• We may change weight order of trees with different number of
ROOT edges

Question: Can we find c such that we make the best single-root tree
come at the top compared to all other multiple root trees?

The Reweighting Algorithm

Question: Can we find c such that we make the best single-root tree
come at the top compared to all other multiple root trees?

Answer: Yes! Choose c∗ = 1 + n(maxew(e)−minew(e)) where w(e)
is the weight of edge e in the complete graph

The Reweighting Algorithm:

• Subtract c∗ from all ROOT→ ∗ edges in the initial complete graph

• Run an unconstrained tree inference algorithm on the new
complete graph

Side Note: the ArcMax Trick

Zhang et al. (2017) show that choosing for each word the highest
scoring edge going into that word as parent often gives a valid tree

Use this as a trick: (a) check if this gives tree (this tree is optimal), if
so, don’t run any costly inference – we will go back to that!

Experiment 1A: Unconstrained Inference Speed

With trained weights (unconstrained):

• The CLE algorithm
includes an ArcMax-
like step in the begin-
ning (by design)

• Tarjan with ArcMax
catches up...

Experiment 1B: Unconstrained Inference Speed

With random weights (unconstrained):

• ArcMax-like step no
longer works, so Tar-
jan shines

Experiment 2: Single-Root Inference Speed
without ArcMax

Experiment 3: Single-Root Inference Speed with
ArcMax

• Random weights
not shown - same as
without ArcMax

Summary of Part 1

To get optimal complexity for single root, just use:

Our recommendation for optimal single-root dependency parsing
(regardless of learning): ArcMax+Reweighting+Tarjan

This Talk

Part 1:
Show how to make dependency parsers
faster

Part 2:
Show how to make unsupervised parsers
more accurate

Unsupervised Parsing

L-PCFGs, the Supervised Case

At node VP:

S

NP

D

the

N

dog

VP

V

saw

P

him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the connecting
nonterminal

p(o, t|VP) = p(o|VP)× p(t|VP)

Inside Outside Strings

• The yield of the or-
ange part is “inside
string”

• The yield of the
blue part is “outside
string”

• We will bootstrap
a classifier to pre-
dict if a node dom-
inates a pair of (in-
side,outside) strings

Co-training (Yarowsky, 1995; Blum and Mitchell,
1998)

Roughly! Repeats the following steps (given unlabeled data U and
labeled data L):

• Train a classifier with one “view” on L

• Train a classifier with another “view” on L

• Take some (confident) predictions on U from both classifiers and
add to L

Co-training works best when the two views are conditionally
independent given the label

And In Our Case...

This leads to:

• Take all sentences, and break them all possible ways into
inside/outside strings

• Get neural representations for each pair (i, o) as two “views”

• Take a subset of these L, and label them with some heuristics - the
label is whether (i, o) has a node that connects them

• Do co-training

Weak Supervision

What would be the seed dataset to start the co-training process?

• All (start, end) spans for a given sentence have label 1 (are
constituents)

• All (start, end− i) for i = 1, 2, ..., 6 have label 0

• Another simple heuristic that relies on casing

How Do We Use These Labels?

Let

• pi(e) be the confidence of the classifier for an inside of span e

• po(e) be the confidence of the classifier for an outside of span e

Then, for three different types of scores:

• score(e) = pi(e)

• score(e) = po(e)

• score(e) = pi(e) · po(e)

find the tree t∗ = argmaxt
∑

e∈t score(e)

Also referred to as span decoding

Results: Penn Treebank (English)

• Results with the inside score

Results: Penn Treebank (English)

• Results with self-training of the inside score

Results: Penn Treebank (English)

• Results with co-training for inside × outside scores

Results: Chinese Treebank

Results: Korean Treebank

Summary of Part 2

Unsupervised constituency parsing can be viewed as a co-training
problem

See the paper for more examples, score functions and error analysis!

Conclusion

• Language is manifested through symbols. Computational systems
in general are often symbolic in nature

• Its intermediate representation, however - can be continuous or
symbolic

• Symbolic: interpretable; Continuous: have a gradient

• Both have their role. Both can co-exist

Thank You!

Any questions?

Collaborators

Milos Stanojević

Nickil Maveli

‘

