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Natural Language Processing



Main Challenge: Ambiguity

Ambiguity: Natural language utterances have many possible analyses

Need to prune out
thousands of interpre-
tations even for simple
sentences (for example:
parse trees)



Variability

Many surface forms for a single meaning:

There is a bird singing
A bird standing on a branch singing
A bird opening its mouth to sing
A black and yellow bird singing in nature
A Rufous Whistler singing
A bird with a white patch on its neck



Approach to NLP

1980s - rule based systems

1990s and onwards - data-driven (machine learning)

Challenge: The labeled data bottleneck
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Labeled Data Bottleneck

Approach to NLP since 1990s:
use labeled data. Leads to the
labeled data bottleneck – never
enough data

How to solve the labeled data bottleneck?

Ignore it Unsupervised learning Latent-variable modelling

X

Z

Y

incomplete data



Topic Modeling

(Image from Blei, 2011)



Machine Translation

• Alignment is a hidden variable in translation models

• With deep learning, this is embodied in “attention” models



Bayesian Learning

With Bayesian inference, the parameters are a “latent” variable:

p(θ, h | x) = p(θ, h, x)∫
θ

∑
h p(θ, h, x)

• Popularized latent-variable models (where structure is missing as
well)

• Has been used for problems in morphology, word segmentation,
syntax, semantics and others



This Talk in a Nutshell

How do we learn from incomplete data?

• The case of syntactic parsing

• Other uses of grammars for learning from incomplete data

• The canonical correlation principle and its uses



Why Parsing?

Do we need to work on parsing when we can build direct “transducers?”
(such as with deep learning)

Yes!

• We develop algorithms that generalize to structured prediction

• We see recent results that even with deep learning, incorporating
parse structures can help applications such as machine translation
(Bastings et al., 2017; Kim et al., 2017)

• We develop theories for syntax in language and test them
empirically

• One of the classic problems that demonstrates so well ambiguity in
natural language
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Ambiguity: Example from Abney (1996)

In a general way such speculation is epistemologically relevant,
as suggesting how organisms maturing and evolving in the
physical environment we know might conceivably end up
discoursing of abstract objects as we do

(Quine, 1960, p. 123)

• Should be interpreted: organisms might end up ...



Ambiguity Revisited
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Latent-State Syntax (Matsuzaki et al., 2005;
Prescher, 2005; Petrov et al., 2006)
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Improves the accuracy of a PCFG model from ∼ 70% to ∼ 90%.
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Generative Process

• Derivational process is similar to that of PCFG together with
contextual information

• We read the grammar off the treebank, but not the latent states



Evolution of L-PCFGs
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Evolution of L-PCFGs



Evolution of L-PCFGs



The Estimation Problem

Goal: Given a treebank, estimate rule probabilities, including for latent
states.

Traditional way: use the expectation-maximization (EM) algorithm:

• E-step - infer values for latent states using dynamic programming

• M-step - re-estimate the model parameters based on the values
inferred



Local Maxima with EM

Convex optimization Non-convex optimization

EM finds a local maximum of a non-convex objective

Especially problematic with unsupervised learning



How Problematic are Local Maxima?

For unsupervised learning, local maxima are a very serious problem:
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For deep learning, can also be a problem. For L-PCFGs, variability is
smaller

Depends on the problem and the model



Basic Intuition

At node VP:

S

NP

D

the

N

dog

VP

V

saw
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him

Outside tree o = S

NP

D

the

N

dog

VP

Inside tree t = VP

V

saw

P

him

Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)



Cross-Covariance Matrix

Create a cross-covariance matrix and apply singular value decomposition
to get the latent space:


outside tree 1 outside tree 10

inside tree 1 1 0 . . . 1
0 1 . . . 0
...

...
. . .

...
inside tree 10 1 0 . . . 1


Based on the method of moments – set up a set of equations that mix
moments and parameters and have a unique solution



Previous Work

The idea of using a co-ocurrence matrix to extract latent information is
an old idea. It has been used for:

• Learning hidden Markov models and finite state automata (Hsu et
al., 2012; Balle et al., 2013)

• Learning word embeddings (Dhillon et al., 2011)

• Learning dependency and other types of grammars (Bailly et al.,
2010; Luque et al., 2012; Dhillon et al., 2012)

• Learning document-topic structure (Anandkumar et al., 2012)

Much of this work falls under the use of canonical correlation analysis
(Hotelling, 1935)



Feature Functions

Need to define feature functions for inside and outside trees
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Inside Features Used

Consider the VP node in the following tree:
S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The inside features consist of:

• The pairs (VP, V) and (VP, NP)

• The rule VP → V NP

• The tree fragment (VP (V saw) NP)

• The tree fragment (VP V (NP D N))

• The pair of head part-of-speech tag with VP: (VP, V)

• The width of the subtree spanned by VP: (VP, 2)



Outside Features Used

Consider the D node in
the following tree:
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• The fragments NP
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• The pair (D, NP) and triplet (D, NP, VP)

• The pair of head part-of-speech tag with D: (D, N)

• The widths of the spans left and right to D: (D, 3) and (D, 1)
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Final Results on Multilingual Parsing

Narayan and Cohen (2016):

language Berkeley Spectral
Cluster SVD

Basque 74.7 81.4 80.5
French 80.4 75.6 79.1
German 78.3 76.0 78.2
Hebrew 87.0 87.2 89.0

Hungarian 85.2 88.4 89.2
Korean 78.6 78.4 80.0
Polish 86.8 91.2 91.8

Swedish 80.6 79.4 80.9

Parsing is far from being solved in the multilingual setting



What Do We Learn?

Closed-word tags essentially do lexicalization:

State Frequent words

IN (preposition)

0 of ×323
1 about ×248
2 than ×661, as ×648, because ×209
3 from ×313, at ×324
4 into ×178
5 over ×122
6 Under ×127



What Do We Learn?

State Frequent words

DT (determiners)

0 These ×105
1 Some ×204
2 that ×190
3 both ×102
4 any ×613
5 the ×574
6 those ×247, all ×242
7 all ×105
8 another ×276, no ×211



What Do We Learn?

State Frequent words

CD (numbers)

0 8 ×132
1 million ×451, billion ×248

RB (adverb)

0 up ×175
1 as ×271
2 not ×490, n’t ×2695
3 not ×236
4 only ×159
5 well ×129



What Do We Learn?

State Frequent words

CC (conjunction)

0 But ×255
1 and ×101
2 and ×218
3 But ×196
4 or ×162
5 and ×478



What Do We Learn?

Example latent for NP:

• “James McCall , vice president , materials , at Battelle , a
technology and management-research giant based in Columbus ,
Ohio”
• “Frank Kline Jr. , partner in Lambda Funds , a Beverly Hills ,

Calif. , venture capital concern”
• “Allen Hadhazy , senior analyst at the Institute for Econometric

Research , Fort Lauderdale , Fla. , which publishes the New Issues
newsletter on IPOs”
• “a group of investment banks headed by First Boston Corp. and

co-managed by Goldman , Sachs & Co. , Merrill Lynch Capital
Markets , Morgan Stanley & Co. , and Salomon Brothers Inc”
• “Charles J. O’Connell , deputy district director in Los Angeles of

the California Department of Transportation , nicknamed Caltrans”
• “Francis J. McNeil , who , as deputy assistant secretary of state for

inter-American affairs , first ran across reports about Mr. Noriega
in 1977”



What Do We Learn?

Example latent state for NP:
”Aug. 30 , 1988”, ”Aug. 31 , 1987”, ”Dec. 31 , 1988”, ”Oct. 16 ,
1996”, ”Oct. 1 , 1999”, ”Oct. 1 , 2019”, ”Nov. 8 , 1996”, ”Oct. 15 ,
1999”, ”April 30 , 1988”, ”Nov. 8 , 1994”
Another state:

• “AMERICAN BUILDING MAINTENANCE INDUSTRIES Inc. ,
San Francisco , provider of maintenance services , annual revenue
of $ 582 million , NYSE ,”

• “DIASONICS INC. , South San Francisco , maker of magnetic
resonance imaging equipment , annual sales of $ 281 million ,
Amex ,”

• “EVEREX SYSTEMS INC. , Fremont , maker of personal
computers and peripherals , annual sales of $ 377 million , OTC ,”

• “ANTHEM ELECTRONICS INC. , San Jose , distributor of
electronic parts , annual sales of about $ 300 million , NYSE ,”



LPCFGViewer

If you are interested in further looking at such patterns for other
languages (English, French, German, Hebrew, Hungarian, Korean,
Polish, Swedish, Basque), consider visiting
http://cohort.inf.ed.ac.uk/lpcfgviewer/index.php.

http://cohort.inf.ed.ac.uk/lpcfgviewer/index.php


This Talk in a Nutshell

How do we learn from incomplete data?

• The case of syntactic parsing
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A Different Perspective

• Related to neural network models with grammars (Socher et al.,
2010; Socher et al., 2013)

• Also related to compositional distributional semantics (Baroni and
Bernardi, 2014; Grefenstette and Sadrzadeh, 2010; Coecke et al.,
2010)



Question Answering (Narayan et al., 2016)
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Discussion Forums



p0 Bob: When I play a recorded video on my camera,
it looks and sounds fine. On my computer,
it plays at a really fast rate and sounds like
Alvin and the Chipmunks!

p1 Kate: I’d find and install the machine’s latest audio
driver.

p2 Mary: The motherboard supplies the clocks for au-
dio feedback. So update the audio and
motherboard drivers.

p3 Chris: Another fine mess in audio is volume and
speaker settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hard-
ware acceleration. Turning it off worked for
me.

p5 Matt: Audio drivers are at this link. Rather than
just audio drivers, I would also just do all
drivers.
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(Louis and Cohen, 2015)
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Canonical Correlation Analysis

X

Z

Y

• Assume a “confounding” variable that explains two separate views

• Correlation between x and y gives z – the two are independent
given z

• In the case of L-PCFGs: x and y are inside and outside trees

• Where else can this principle be used?



Word Embeddings


the ? chased a ? ran

mouse 1 0 . . . 1
0 1 . . . 0
...

...
. . .

...
cat 1 0 . . . 1



• Co-occurrence matrix of words and contexts (“the cat chased”,
“the mouse chased”)

• Apply CCA on this matrix to get word embeddings (Dhillon et al.,
2011)

• Inject prior knowledge into matrix (Osborne et al., 2016)



Canonical Correlation Inference

Jenny is holding an owl.

• Requires also generation (using sampling techniques)

• The probability of text we sample is proportional to the “similarity”
of the text to the image



Example Predictions

Good predictions:

mike and jenny are camping mike is holding a bat jenny is throwing the frisbee

Bad predictions:

mike is kicking a blass jenny wants the bear the rocket is behind mike



Unsupervised Parsing

The dog, true to form, chased the cat.

dog chased

z =

(Parikh et al., 2014)

• Very challenging problem

• Sensitive to local maxima with existing techniques such as EM

• What if the tree for each pair of words in the sentence is a latent,
confounding, hierarchical variable?



Conclusion

Latent-variable grammars are useful for problems outside of syntax

• Their symbolic component is interpretable

• Their probabilistic component helps reasoning under uncertainty

• Latent variables help detect unseen patterns

I have shown you how grammars can be used for several problems, and
also how the principle behind learning latent-variable grammars can be
used for other problems.
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