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Outline
The lifecycle of unsupervised learning:
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Outline

We give a new representation to an existing model (adaptor
grammars)

This representation leads to a new variational inference
algorithm for adaptor grammars

We do a sanity check on word segmentation, comparing to
state-of-the-art results

Our inference algorithm permits to do dependency
unsupervised parsing with adaptor grammars
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Problem 1 - PP Attachment

I saw the boy with the telescope I saw the boy with the telescope
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Problem 2 - Word Segmentation

Matthewslikeswordfighting Matthewslikeswordfighting
Matthews like sword fighting Matthews likes word fighting
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What is missing?
Context could resolve this ambiguity

But we want unsupervised learning...

Where do we get the context?

. . . . . .
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Problem 2 - Word Segmentation

Word fighting is the new hobby of computational linguists.
Mr. Matthews is a computational linguist.

Matthewslikeswordfighting Matthewslikeswordfighting
Matthews like sword fighting Matthews likes word fighting
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Dreaming Up Patterns

Context helps. Where do we get it? Adaptor grammars
(Johnson et al. 2006)

Define a distribution over trees

New samples depend on the history - “rich get richer”
dynamics

Dream up “patterns” as we go along
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Adaptor Grammars

Use the Pitman-Yor process with PCFGs as base distribution

To make it fully Bayesian, we also have a Dirichlet prior over the
PCFG rules

Originally represented using the Chinese restaurant process
(CRP)

CRP is convenient for sampling – not for variational inference
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Variational Inference in a Nutshell

“Posterior inference” requires that we find parse trees z1, ..., zn
given raw sentences x1, ..., xn

Mean-field approximation: take all hidden variables: z1, ..., zn
and parameters θ.
Find a posterior of the form q(z1, ..., zn, θ) = q(θ)

∏n
i=1 q(zi)

(makes inference tractable)

Makes independence assumptions in the posterior

That’s all! Almost. We need a manageable representation for
z1, ..., zn and θ

Shay Cohen, David Blei, Noah Smith Variational Inference for Adaptor Grammars 11/32



Sampling vs. Variational Inference

MCMC sampling variational inference
convergence guaranteed local maximum
speed slow fast
algorithm randomized objective optimization
parallelization non-trivial easy
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Stick Breaking Representation

Sticks are sampled from the GEM distribution
Everything which is a number in this slide, belongs to θ
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Stick Breaking Representation
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Stick Breaking Representation
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Stick Breaking Representation
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Stick Breaking Representation
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Stick Breaking Representation
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Truncated Stick Approximation
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Sanity Check - Word Segmentation

Task is to segment a sequence of phonemes into words
Example: yuwanttulUk&tDIs→ yu want tu lUk &t DIs

Models language acquisition in children (using the corpus from
Brent and Cartwright, 1996)

The corpus includes 9,790 utterances

Has been used before with adaptor grammars with three
grammars

Baseline: Sampling method from Johnson and Goldwater, 2009
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Word Segmentation - Grammars
Unigram Grammar Sentence

MMMMMMM

qqqqqqq

Word

qqqqqqq
MMMMMMM Word
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yu want

Sentence→Word+

Word→ Char+

“Word” is adapted (hence, if something was a Word
constituent previously, it is more likely to appear again)
There are additional grammars: collocation grammar and
syllable grammar (take into account more information
about language)
Words are segmented according to “Word” constituents
All grammars are not recursive
Used in Johnson and Goldwater (2009)

Shay Cohen, David Blei, Noah Smith Variational Inference for Adaptor Grammars 21/32



Word Segmentation - Results

grammar our paper J&G 2009
GUnigram 0.84 0.81
GColloc 0.86 0.86
GSyllable 0.83 0.89

J&G 2009 - Johnson and Goldwater (2009) – best result

Scores reported are F1 measure
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Variants

Model:
Pitman-Yor Process vs. Dirichlet Process (did not have much
effect)

Inference:
Fixed Stick vs. Dynamic Stick Expansion (fixed stick is better)

Decoding:
Minimum Bayes Risk vs. Viterbi (MBR does better)

See paper for details!
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Running Time

Running time (clock time) of the sampler and variational
inference is approximately the same (note that implementations
are different)

However, variational inference can be parallelized

Reduction in clock time by factor of 2.8 when parallelizing on 20
weaker CPUs
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Syntax and Power Law
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Recursive Grammars
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Recursive Grammars - Solution

Our finite approximation of the stick zeros all “bad” events in the
variational distribution

Equivalent to inference when assuming the model is:

p′(x , z) =
p(x , z)I(x , z /∈ bad)∑

(x ,z)/∈bad

p(x , z)

where p is the original adaptor grammar model that gives
non-zero probability to bad events and I is an 0/1 indicator
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Unsupervised Parsing Setting

Experiments on the English Penn Treebank

Stripped off punctuation and kept only part-of-speech tags

Used adaptor grammars with dependency model with valence
(Klein and Manning, 2004)

DMV has a PCFG representation (Smith, 2006)

We “adapt” the nonterminals that head noun constituents
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Unsupervised Parsing - Results

model Viterbi MBR
non-Bayesian 45.8 46.1
Dirichlet prior 45.9 46.1
with adaptor grammars 48.3 50.2

Results are attachment-accuracy - fraction of parents correctly
identified

A gain over vanilla Dirichlet, which is the prior used with
adaptor grammars on the PCFG rules

Other priors (instead of Dirichlet prior) give performance ∼60.
Can use it with adaptor grammars - future work
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Summary

We described a variational inference algorithm for adaptor
grammars

We showed it can lead to improvement in performance for
various grammars

We showed it can be faster than sampling when parallelization
is used

We applied adaptor grammars to dependency unsupervised
parsing
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Thanks! Questions?
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Sampling vs. Variational Inference
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