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Spectral algorithms

Broadly construed:
Algorithms that make use of spectral decomposition

Recent work:
Spectral algorithms with latent-variables (statistically consistent):

• Gaussian mixtures (Vempala and Wang, 2004)
• Hidden Markov models (Hsu et al., 2009; Siddiqi et al., 2010)
• Latent-variable models (Kakade and Foster, 2007)
• Grammars (Bailly et al., 2010; Luque et al., 2012; Cohen et al., 2012;

Dhillon et al., 2012)

Prior work: mostly theoretical



This talk in a nutshell

Experiments on spectral estimation of latent-variable PCFGs

Accuracy is the same as EM, but order of magnitude more efficient

The algorithm has PAC-style guarantees
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L-PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)
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The probability of a tree
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p(tree, 1 3 1 2 2 4 1)

= π(S1)×
t(S1 → NP3 VP2|S1)×
t(NP3 → D1 N2|NP3)×
t(VP2 → V4 P1|VP2)×
q(D1 → the|D1)×
q(N2 → dog|N2)×
q(V4 → saw|V4)×
q(P1 → him|P1)

p(tree) =
∑

h1...h7

p(tree, h1 h2 h3 h4 h5 h6 h7)



The EM algorithm

Goal: estimate π, t and q from labeled data

EM is a remarkable algorithm for learning from incomplete data

It has been used for L-PCFG parsing, among other things

It has two flaws:

• Requires careful initialization
• Does not give consistent parameter estimates

More generally, it locally maximizes the objective function
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Inside and outside trees

At node VP:
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Conditionally independent given the label and the hidden state

p(o, t|VP, h) = p(o|VP, h)× p(t|VP, h)



Spectral algorithm

Design functions ψ and φ:

ψ maps any outside tree to a vector of length d′

φ maps any inside tree to a vector of length d
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Outside tree o⇒ Inside tree t⇒
ψ(o) = [0, 1, 0, 0, . . . , 0, 1] ∈ Rd′ φ(t) = [1, 0, 0, 0, . . . , 1, 0] ∈ Rd



Spectral algorithm

Project the feature vectors to m-dimensional space (m << d)
• Use singular value decomposition

The result of the projection is two functions Z and Y:
• Z maps any outside tree to a vector of length m

• Y maps any inside tree to a vector of length m
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Outside tree o⇒ Inside tree t⇒
Z(o) = [1, 0.4,−5.3, . . . , 72] ∈ Rm Y(t) = [−3, 17, 2, . . . , 3.5] ∈ Rm



Parameter estimation for binary rules

Take M samples of nodes with rule VP→ V NP.

At sample i

• o(i) = outside tree at VP

• t(i)
2 = inside tree at V

• t(i)
3 = inside tree at NP

t̂(VPh1 → Vh2 NPh3 |VPh1)

=
count(VP→V NP)

count(VP)
× 1

M

M∑
i=1

(
Zh1(o

(i))× Yh2(t
(i)
2 )× Yh3(t

(i)
3 )

)



Parameter estimation for unary rules

Take M samples of nodes with rule N→ dog.

At sample i

• o(i) = outside tree at N

q̂(Nh → dog|Nh) =
count(N→dog)

count(N)
× 1

M

M∑
i=1

Zh(o(i))



Parameter estimation for the root

Take M samples of the root S.

At sample i

• t(i) = inside tree at S

π̂(Sh) =
count(root=S)

count(root)
× 1

M

M∑
i=1

Yh(t(i))
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Results with EM (section 22 of Penn treebank)

Performance with expectation-maximization (m = 32): 88.56%

Vanilla PCFG maximum likelihood estimation performance: 68.62%

For the rest of the talk, we will focus on m = 32



Key ingredients for accurate spectral learning

Feature functions

Handling negative marginals

Scaling of features

Smoothing



Inside features used

Consider the VP node in the following tree:
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The inside features consist of:

• The pairs (VP, V) and (VP, NP)

• The rule VP → V NP

• The tree fragment (VP (V saw) NP)

• The tree fragment (VP V (NP D N))

• The pair of head part-of-speech tag with VP: (VP, V)

• The width of the subtree spanned by VP: (VP, 2)



Outside features used

Consider the D node
in the following tree:
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The outside features consist of:

• The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

• The pair (D, NP) and triplet (D, NP, VP)

• The pair of head part-of-speech tag with D: (D, N)

• The widths of the spans left and right to D: (D, 3) and (D, 1)



Accuracy (section 22 of the Penn treebank)

The accuracy out-of-the-box with these features is:

55.09%
EM’s accuracy: 88.56%



Negative marginals

Sampling error can lead to negative marginals

Signs of marginals are flipped

On certain sentences, this gives the world’s worst parser:

t∗ = arg max
t
−score(t) = arg min

t
score(t)

Taking the absolute value of the marginals fixes it

Likely to be caused by sampling error



Accuracy (section 22 of the Penn treebank)

The accuracy with absolute-value marginals is:

80.23%

EM’s accuracy: 88.56%



Scaling of features by inverse variance

Features are mostly binary. Replace φi(t) by

φi(t)×

√
1

count(i) + κ

where κ = 5

This is an approximation to replacing φ(t) by

(C)−1/2φ(t)

where C = E[φφ>]

Closely related to canonical correlation analysis (e.g. Dhillon et al.,
2011)



Accuracy (section 22 of the Penn treebank)

The accuracy with scaling is:

86.47%
EM’s accuracy: 88.56%



Smoothing

Estimates required:

Ê(VPh1 → Vh2 NPh3 |VPh1) =
1
M

M∑
i=1

(
Zh1(o

(i))× Yh2(t
(i)
2 )× Yh3(t

(i)
3 )

)

Smooth using “backed-off” estimates, e.g.:

λÊ(VPh1 → Vh2 NPh3 |VPh1) + (1− λ)F̂( VPh1 → Vh2 NPh3 |VPh1)

where

F̂(VPh1 → Vh2 NPh3 |VPh1)

=

(
1
M

M∑
i=1

(
Zh1(o

(i))× Yh2(t
(i)
2 )

))
×

(
1
M

M∑
i=1

Yh3(t
(i)
3 )

)



Accuracy (section 22 of the Penn treebank)

The accuracy with smoothing is:

88.82%

EM’s accuracy: 88.56%



Final results

Final results on the Penn treebank

section 22 section 23
EM spectral EM spectral

m = 8 86.87 85.60 — —
m = 16 88.32 87.77 — —
m = 24 88.35 88.53 — —
m = 32 88.56 88.82 87.76 88.05



Simple feature functions

Use rule above (for outside) and rule below (for inside)

Corresponds to parent annotation and sibling annotation

Accuracy:

88.07%
Accuracy of parent and sibling annotation: 82.59%

The spectral algorithm distills latent states

Avoids overfitting caused by Markovization



Training time (m = 32)

EM runs for 9 hours and 21 minutes per iteration

Spectral algorithm runs for less than 10 hours beginning to end

EM requires about 20 iterations to converge (187h12m)



Outline of this talk

Latent-variable PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006)

Spectral algorithm for L-PCFGs (Cohen et al., 2012)

Experiments

Conclusion



Conclusion

Presented spectral algorithms as a method for estimating
latent-variable models

Formal guarantees:

• Statistical consistency
• No problem of local maxima

Complexity:

• Most time is spent on aggregating statistics
• Much faster than EM (20x faster)

Future work:

• Promising direction for hybrid EM-spectral algorithm (89.85%)


