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Abstract

Extensive lexical knowledge is necessary for
temporal analysis and planning tasks. We ad-
dress in this paper a lexical setting that al-
lows for the straightforward incorporation of
rich features and structural constraints. We ex-
plore a lexical event ordering task, namely de-
termining the likely temporal order of events
based solely on the identity of their predi-
cates and arguments. We propose an “edge-
factored” model for the task that decomposes
over the edges of the event graph. We learn
it using the structured perceptron. As lexi-
cal tasks require large amounts of text, we do
not attempt manual annotation and instead use
the textual order of events in a domain where
this order is aligned with their temporal order,
namely cooking recipes.

1 Introduction

Temporal relations between events are often im-
plicit, and inferring them relies on lexical and world
knowledge about the likely order of events. For in-
stance, to execute the instruction “fry the onion,” the
hearer should probably obtain oil beforehand, even
if not instructed so explicitly. Lexical knowledge
about the likely order of events is therefore neces-
sary for any semantic task that requires temporal rea-
soning or planning, such as classifying temporal re-
lations (Mani et al., 2006; Lapata and Lascarides,
2006; Yoshikawa et al., 2009; D’Souza and Ng,
2013; Mirza and Tonelli, 2014, inter alia), textual
entailment (Dagan et al., 2013) or temporal infor-
mation extraction (Ling and Weld, 2010). Lexical
temporal knowledge is further important for model-

ing grammatical phenomena such as tense and as-
pect (Steedman, 2002).

In this paper we address the task of lexical event
ordering, namely predicting the ordering of events
based only on the identity of the words compris-
ing their predicates and arguments. Concretely, the
task is to predict the order of an unordered set of
predicate-argument structures. Predicting the likely
order of event types is a step towards more in-
tricate planning and reasoning scenarios (see §3),
and is useful in itself for tasks such as concept-
to-text generation (Reiter et al., 2000), or in val-
idating the correctness of instruction sets. A re-
lated idea can be found in modeling sentence coher-
ence (Lapata, 2003; Barzilay and Lapata, 2008, in-
ter alia), although here we focus on lexical relations
between events, rather than coherence relations be-
tween complete sentences.

Compiling a resource of temporal tendencies be-
tween events can hardly be done manually, given the
number and wealth of phenomena that have to be
accounted for. Temporally annotated corpora, often
annotated according to TimeML principles (Puste-
jovsky et al., 2003), are a useful resource for study-
ing temporal relations. However, due to incurred
costs, annotated corpora are too small for most lexi-
cal tasks. For instance, the TimeML annotated data
used in the latest TempEval shared task contains
only 100K words or so (UzZaman et al., 2013).

Previous work that does not rely on manually
annotated data has had some success in discover-
ing temporal lexical relations between predicates
(Chklovski and Pantel, 2004; Chambers and Juraf-
sky, 2008b; Talukdar et al., 2012). However, de-
spite their appeal, these methods have mostly fo-



cused on inducing simple event types, consisting of
single words (e.g., “buy-own”) or fixed expressions,
and are hard to extend to include rich features (e.g.,
order-based and pattern-based features). Further-
more, measuring recall without annotated data is no-
toriously difficult, and evaluation is often precision-
based or extrinsic.

We take a graph-based structured prediction ap-
proach to the task, motivated by the flexibility it al-
lows in incorporating various feature sets and con-
straints. We use an edge-factored model, which de-
composes over the edges in the graph of events com-
prising the recipe (§4). We estimate the model us-
ing the structured perceptron algorithm. We com-
pare the structured perceptron approach to an ap-
proximate greedy baseline and to a locally normal-
ized model reminiscent of common approaches for
order learning, obtaining superior results (§8). The
learning algorithm is of potential use in other or-
dering tasks such as machine translation reordering
(Tromble and Eisner, 2009).

We focus on domains in which the order of events
in the text is aligned with their temporal order. By
doing so we avoid the costly and error-prone manual
annotation of temporal relations by using the textual
order of recipes to approximate their temporal or-
der.1 Specifically, we address the cooking recipes
domain, which we motivate in §2.

In summary, the contribution of this paper is
three-fold: (1) we explore the task of lexical event
ordering and means for its evaluation; (2) we present
an edge-factored model for the task, and show it can
be used to predict the order of events well (77.7%
according to standard measures for ordering evalua-
tion); (3) we present a method for extracting events
and create a dataset of ordered events using recipes
extracted from the web.

2 Related Work

Temporal semantics is receiving increasing attention
in recent years. Lexical features are in frequent use
and rely in most part on external resources which
are either manually compiled or automatically in-
duced. The line of work most closely related to
ours focuses on inducing lexical relations between

1See Cassidy et al. (2014) for a discussion of inter-annotator
agreement in TimeML-based schemes.

event types. Most work has been unsupervised, of-
ten using pattern-based approaches relying on man-
ually crafted (Chklovski and Pantel, 2004) or in-
duced patterns (Davidov et al., 2007), that corre-
late with temporal relations (e.g., temporal discourse
connectives). Talukdar et al. (2012) uses the textual
order of events in Wikipedia biographical articles
to induce lexical information. We use both textual
order and discourse connectives to define our fea-
ture set, and explore a setting which allows for the
straightforward incorporation of additional features.

Chambers and Jurafsky (2008b; 2009) addressed
the unsupervised induction of partially ordered event
chains (or schema) in the news domain, centered
around a common protagonist. One of their evalu-
ation scenarios tackles a binary classification related
to event ordering, and seeks to distinguish ordered
sets of events from randomly permuted ones, yield-
ing an accuracy of 75%. Manshadi et al. (2008) used
language models to learn event sequences and con-
ducted a similar evaluation on weblogs with about
65% accuracy. The classification task we explore
here is considerably more complex (see §8).

The task of script knowledge induction has been
frequently addressed in recent years. Balasubrama-
nian et al. (2013) and Pichotta and Mooney (2014)
extended Chambers and Jurafsky’s model to include
events that have multiple arguments. Jans et al.
(2012) use skip-grams to capture event-event rela-
tions between not necessarily consecutive events.

Regneri et al. (2010) constructed a temporal lexi-
cal knowledge base through crowd-sourcing. Their
approach is appealing as it greatly reduces the costs
incurred by manual annotation and can potentially
be used in conjunction with lexical information ob-
tained from raw text. Modi and Titov (2014) jointly
learns the stereotypical order of events and their dis-
tributional representation, in order to capture para-
phrased instances of the same event type. Frermann
et al. (2014) models the joint task of inducing event
paraphrases and their order using a Bayesian frame-
work. All latter three works evaluated their induced
temporal ordering knowledge on a binary predic-
tion of whether a temporal relation between a pair
of (not necessarily related) events holds, and not on
the prediction of a complete permutation given an
unordered event set as in this work. Their evalua-
tion was conducted on 30 event pairs manually an-



notated through crowd-sourcing, where Modi and
Titov (2014) further included an evaluation on a
large set of pairs automatically extracted from the
Gigaword corpus.

The appeal of the cooking domain for studying
various semantic phenomena has been recognized
by several studies in NLP and AI (Tasse and Smith,
2008; Bollini et al., 2013; Cimiano et al., 2013; Reg-
neri et al., 2013; Malmaud et al., 2014). The domain
is here motivated by several considerations. First,
recipes mostly describe concrete actions, rather than
abstract relations, which are less relevant to tem-
poral ordering. Second, from a practical point of
view, many recipes are available online in computer-
readable format. Third, the restrictiveness of the
cooking domain can also be seen as an advantage, as
it can reveal major conceptual challenges raised by
the task, without introducing additional confounds.

3 Temporally Ordering Lexical Events

We formalize our task as follows. Let U be a set
of event types, namely actions or states (represented
as predicates) and objects which these actions oper-
ate on (represented as arguments to the predicates;
mostly ingredients or kitchenware). Formally, each
e ∈ U is a tuple 〈a, c1, . . . , cn〉 where a is the main
verb or predicate describing the event (such as “stir”
or “mix”) and c1, . . . , cn is a list of arguments that
the predicate takes (e.g., “salt” or “spoon”). Two
additional marked events, s and f , correspond to
“start” and “finish” events. A recipe is a sequence
of events in U , starting at s and ending at f .

Given a recipe R = 〈e1, ..., em〉, we wish to pre-
dict the order of the events just from the (multi)set
{ei}mi=1. In this work we use the textual order of
events to approximate their temporal order (see, e.g.,
Talukdar et al. (2012) for a similar assumption).
The validity of this assumption for cooking recipes
is supported in §6.

Figure 1 gives an example of a set of events ex-
tracted from our dataset for the dish “Apple Crisp
Ala [sic] Brigitte.” Lexical information places quite
a few limitations on the order of this recipe. For
instance, in most cases serving is carried out at the
end while putting the ingredients in is done prior to
baking them. However, lexical knowledge in itself
is unlikely to predict the exact ordering of the events

as given in the recipe (e.g., spreading butter might
be done before or after baking).

One of the major obstacles in tackling planning
problems in AI is the knowledge bottleneck. Lexi-
cal event ordering is therefore a step towards more
ambitious goals in planning. For instance, temporal
relations may be used to induce planning operators
(Mourão et al., 2012), which can in turn be used to
generate a plan (recipe) given a specified goal and
an initial set of ingredients.

4 Model, Inference and Learning

In this section we describe the main learning compo-
nents that compose our approach to event ordering.

4.1 Edge-Factored Model for Event Ordering
We hereby detail the linear model we use for or-
dering events. Let S = {e1, . . . , em} ⊆ U be
a set of events as mentioned in §3. Let G(S) =
(S ∪ {s, f}, E(S)) be an almost-complete directed
graph withE(S) = (S∪{s})×(S∪{f}) ⊆ U×U .
Every Hamiltonian path2 inG(S) that starts in s and
ends in f defines an ordering of the events in S.
The edge (ei, ej) in such a path denotes that ei is
the event that comes before ej .

The modeling problem is to score Hamiltonian
paths in a given directed graph G(S). Here, we use
an edge-factored model. Let φ : (U × U) → Rd be
a feature function for pairs of events, represented as
directed edges. In addition, let θ ∈ Rd be a weight
vector. We define the score of a Hamiltonian path
h = (h1, . . . , hm+1) (hi ∈ E(S)) as:

score(h|S) =

m+1∑
i=1

θ>φ(hi) (1)

Given a weight vector θ and a set of events S, in-
ference is carried out by computing the highest scor-
ing Hamiltonian path in G(S):

h∗ = arg max
h∈H(S)

score(h|S) (2)

where H(S) is the set of Hamiltonian paths inG(S)
that start with s and end with f . The path h∗ is the
best temporal ordering of the set of events S accord-
ing to the model in Eq. 1 with weight vector θ.

2A path in a graph that visits all nodes exactly once.



(a)
e1 = 〈butter, dish〉
e2 = 〈put, apples,water, ...

flour, cinnamon, it〉
e3 = 〈mix,with spoon, 〉
e4 = 〈spread, butter, salt, ...

over mix〉
e5 = 〈bake,F〉
e6 = 〈serve, cream, cream〉

(b) Butter a deep baking dish, put

apples, water, flour, sugar and cin-

namon in it. Mix with spoon and

spread butter and salt over the ap-

ple mix. Bake at 350 degrees F until

the apples are tender and the crust

brown, about 30 minutes. Serve

with cream or whipped cream.

(c)

(a)
e
1

= hbutter, dishi
e
2

= hput, apples,water, ...
flour, cinnamon, iti

e
3

= hmix, spoon, i
e
4

= hspread, butter, salt,mixi
e
5

= hbake,Fi
e
6

= hserve, cream, creami

(b) Butter a deep baking dish,
put apples, water, flour, sugar
and cinnamon in it. Mix with
spoon and spread butter and salt
over the apple mix. Bake at
350 degrees F until the apples
are tender and the crust brown,
about 30 minutes. Serve with
cream or whipped cream.

s

e
1

e
2

e
3

e
4

e
5

e
6

f

(c)

(a)
e1 = hmix, ✏, tarragon, vinegari
e2 = hblend, ✏,mustardi
e3 = hmix, ✏, salt, pepperi
e4 = hblend, ✏,mayonnaise, sour creami
e5 = hcover, ✏i
e6 = hchill, ✏i

(b) you mix the tarragon
and vinegar together and
blend in the mustard.
you mix in the salt and
pepper, blending well.
you blend in the mayon-
naise and then the sour
cream. you cover and
chill.

s

e1 e2

e3 e4

e5

e6

e

Figure 1: (a) Example of events describing a recipe for the dish “.” (b) The actual recipe for this dish. (c) A complete
graph over the set of events with start and end states. Each internal node in the graph is one of the events ei for
i 2 {1, . . . , 5}. The path in bold denotes the correct Hamiltonian path describing the set of actions that need to be
taken to follow the recipe.

3 Model, Inference and Learning

In this section we describe the main learning compo-
nents that compose our approach to event ordering.

3.1 Edge-Factored Model for Event Ordering

We now turn to explain the linear model we use for
ordering events in time. Let S = {v1, . . . , vm} ✓ U
be a set of events as mentioned in section 2. Let
G(S) = (S [ {s, e}, E(S)) be an almost-complete
directed graph with E(S) = (S[{s})⇥(S[{e}) ✓
(U ⇥ U). Every Hamiltonian path5 in G(S) that
starts in s and ends in e can be thought of as an or-
dering of the events in S. The edge (vi, vj) in such
a path denotes that vi is the event that comes before
vj .

The modeling problem, therefore, is to score
Hamiltonian paths in a given directed graph G(S)
such as the above. Here, we use an edge-factored
model. Let � : (U ⇥ U) ! Rd be a feature
vector for pairs of events, represented as directed
edges. In addition, let ✓ 2 Rd be a weight vec-
tor. Then, we define the score of an Hamiltonian
path h = (h1, . . . , hm+1) (where hi 2 E(S) for
i 2 {1, . . . ,m+ 1}) as:

5An Hamiltonian path in a graph is a path that visits all
nodes exactly once.

score(h|S) =
m+1X

i=1

✓>�(hi) (1)

Given a weight vector w and a set of events S, in-
ference is carried out by computing the highest scor-
ing Hamiltonian path in G(S):

h⇤ = arg max
h2H(S)

score(h|S) (2)

where H(S) is the set of Hamiltonian paths in G(S)
that start with s and end with e. h⇤ is the best tem-
poral ordering of the set of events S according to the
structured model in Equation 1 with weight vector
w.

3.2 Inference
As mentioned above, inference with the edge-
factored model we presented would have to solve the
maximization problem in Eq. 2. This corresponds
to finding an Hamiltonian path in a complete graph,
which is generally an NP-hard problem6. In the gen-
eral case there is no reasonable approximation algo-
rithm to solve the maximization algorithm, although

6The NP complete problem of finding a Hamiltonian cycle
in an undirected graph can be trivially reduced to finding the
maximal Hamiltonian cycle in a directed graph.

Figure 1: (a) Example of events describing a recipe for the dish “Apple Crisp Ala [sic] Brigitte.” For brevity, arguments
are represented as headwords and their syntactic type is omitted. (b) The actual recipe for this dish. (c) A complete
graph over the set of events with start and end states. Each internal node in the graph is one of the events ei for
i 2 {1, . . . , 6}. The path in blue bold denotes the correct Hamiltonian path describing the set of actions as ordered in
the recipe. Red edges denote edges from the start state and to the end state. The edges, in practice, are weighted.

ILP formulation yields superior performance to the
other evaluated systems (§8). ILP has been proven to
be a practical and flexible tool in various structured
prediction tasks in NLP (Roth and tau Yih, 2007;
Talukdar et al., 2012; Scaria et al., 2013). Our ILP
formulation is given in Appendix A.

We experiment with an additional greedy infer-
ence algorithm, similar to the one described by La-
pata (2003) for sentence ordering. The algorithm it-
eratively selects an outgoing edge (starting from the
node s) that has the largest weight to a node that has
not been visited so far, until all vertices are covered,
at which point the path terminates by travelling to f .
4.3 Learning
The learning problem takes as input a dataset con-
sisting of unordered sets of events, paired with a tar-
get ordering. We consider two types of learning al-
gorithms for the edge-factored model in the previous
section. The first learns in a global training setting
using the averaged structured perceptron (Collins,
2002), with the decoding algorithm being either the
one based on ILP (henceforth, GLOBAL-PRC), or
the greedy one (GREEDY-PRC).

The second learning algorithm we try is based
on factored training. This algorithm maximizes the
likelihood of a conditional log-linear model p:

p(e2|e1, ✓, S) =
exp

�
✓>�(e1, e2)

�

Z(✓, S, e1)

Z(✓, S, e1) =
X

e : (e1,e)2E(S)

exp
�
✓>�(e1, e)

�

where e
1

, e
2

2 S [ {s, f}. This is a locally normal-
ized log-linear model that gives the probability of
transitioning to node e

2

from node e
1

. Maximizing
the score in Eq. 1 has an interpretation of finding the
highest scoring path according to an edge-factored
Markovian model, such that:

p(h|✓, S) =
m+1Y

i=2

p(ei|ei�1, ✓, S),

where h = (h
1

, . . . , h
m+1

) is a Hamiltonian path
with h

i

= (e
i�1

, e
i

) being a directed edge in
the path. Initial experimentation suggested that
greedy inference (henceforth, GREEDY-LOGLIN)
works better in practice than the ILP formulation
for the locally-normalized model. We therefore do
not report results on global inference with this log-
linear model. GREEDY-LOGLIN closely resembles
the learning model of Lapata (2003), except that it is
a discriminative log-linear model, rather of a gener-
ative Markovian model.
5 The Feature Set
Table 1 presents all the complete set of features used
for defining the feature function �. We consider
three sets of features: Lexical encodes the writ-
ten forms of the event pair predicates and objects;

Figure 1: (a) The sequence of events representing the recipe for the dish “Apple Crisp Ala [sic] Brigitte.” (b) The actual recipe
for this dish. (c) A complete graph over the set of events with start and finish states. Each internal node in the graph is one of the
events ei for i ∈ {1, . . . , 6}. The path in blue bold denotes the correct Hamiltonian path describing the set of actions as ordered in
the recipe. Red edges denote edges from the start state and to the end state. The edges, in practice, are weighted.

4.2 Inference

As mentioned above, inference with the edge-
factored model requires solving the maximization
problem in Eq. 2. This corresponds to finding a
Hamiltonian path in a complete graph, which is gen-
erally an NP-hard problem. Reasonable approxima-
tions for this problem are also NP-hard. Still tech-
niques are developed for specialized cases, due to
the problem’s importance in discrete optimization.

Despite its theoretical NP-hardness, this maxi-
mization problem can be represented as an Integer
Linear Program (ILP), and then solved using generic
techniques for ILP optimization. Due to the rela-
tively short length of recipes (13.8 events on average
in our corpus), the problem can be effectively solved
in most cases.

The proposed algorithmic setting is appealing for
its flexibility. The linear score formulation allows
us to use rich features, while using ILP allows to
easily incorporate structural constraints. Indeed, ILP
has been proven valuable in various NLP tasks (Roth
and Yih, 2007; Talukdar et al., 2012; Scaria et al.,
2013). See Appendix A for our ILP formulation.

As a baseline, we experiment with an additional
greedy inference algorithm, similar to the one de-
scribed by Lapata (2003) for sentence ordering. The
algorithm iteratively selects an outgoing edge (start-
ing from the node s) that has the largest weight to
a node that has not been visited so far, until all ver-
tices are covered, at which point the path terminates
by traveling to f .

4.3 Learning
The learning problem takes as input a dataset con-
sisting of unordered sets of events, paired with a tar-
get ordering. We consider two types of learning al-
gorithms for the edge-factored model in the previous
section. The first learns in a global training setting
using the averaged structured perceptron (Collins,
2002), with the decoding algorithm being either the
one based on ILP (henceforth, GLOBAL-PRC), or
the greedy one (GREEDY-PRC). Given a training in-
stance S and its correct label hc, the structured per-
ceptron calls the inference procedure as a subroutine
and updates the weight vector θ according to the dif-
ference between the value of the feature function on
the predicted path (

∑
h∗ φ(hi)) and on the correct

path (
∑

hc φ(hi)).
The second learning algorithm we try is based

on factored training. This algorithm maximizes the
likelihood of a conditional log-linear model p:

p(e2|e1, θ, S) =
exp

(
θ>φ(e1, e2)

)
Z(θ, S, e1)

Z(θ, S, e1) =
∑

e : (e1,e)∈E(S)

exp
(
θ>φ(e1, e)

)
where e1, e2 ∈ S ∪ {s, f}. This is a locally normal-
ized log-linear model that gives the probability of
transitioning to node e2 from node e1. Maximizing
the score in Eq. 1 has an interpretation of finding the
highest scoring path according to an edge-factored
Markovian model, such that:



p(h|θ, S) =

m+1∏
i=1

p(ei|ei−1, θ, S),

where h = (h1, . . . , hm+1) is a Hamiltonian path
with hi = (ei−1, ei) being a directed edge in
the path. Initial experimentation suggested that
greedy inference (henceforth, GREEDY-LOGLIN)
works better in practice than the ILP formulation for
the locally-normalized model. We therefore do not
report results on global inference with this log-linear
model. We suspect that greedy inference works bet-
ter with the log-linear model because it is trained
locally, while the perceptron algorithm includes a
global inference step in its training, and therefore
better matches global decoding.

GREEDY-LOGLIN closely resembles the learn-
ing model of Lapata (2003), as both are first-
order Markovian and use the same (greedy) in-
ference procedure. Lapata’s model differs from
GREEDY-LOGLIN in being a generative model,
where each event is a tuple of features, and the tran-
sition probability between events is defined as the
product of transition probabilities between feature
pairs. GREEDY-LOGLIN is discriminative, so to be
maximally comparable to the presented model.

5 The Feature Set

Table 1 presents the complete set of features. We
consider three sets of features: Lexical encodes the
written forms of the event pair predicates and ob-
jects; Brown uses Brown clusters (Brown et al.,
1992) to encode similar information, but allows gen-
eralization between distributionally similar words;
and Frequency encodes the empirical distribution of
temporally-related phenomena.

The feature definitions make use of several func-
tions. For brevity, we sometimes say that an event
e is (a, c1) if e’s predicate is a and its first argu-
ment is c1, disregarding its other arguments. Let C
be a reference corpus of recipes for collecting statis-
tics. The function B(w) gives the Brown cluster of
a word w, as determined by clustering C into 50
clusters {1, . . . , 50}. The function ORD(a, c) re-
turns the mean ordinal number of an (a, c) event in
C. The ordinal number of the event ei in a recipe
(e1, ..., em) is defined as i− m

2
.

Template Example

L
ex
ic
a
l (a1, a2) (fry, add)

(a1, c21) (fry, oil)
(a2, c11) (onions, add)
(c11, c

2
1) (onions, oil)

B
ro
w
n

(B(a1),B(a2)) (1,3)
∀(k, k′) ∈ K. (5,4) : 2
|{(c1i , c2j ) : B(c1i ) = k,B(c2j ) = k′}|
∀k ∈ K. |{c2i : B(c2i ) = k}| 12 : 1
B(a2) 5

F
re
q
u
en

cy ∀` ∈ L. log(ε+ P`[(a
2, c21)|(a1, c11)]) -2.3

∀` ∈ L. PMI`((a
1, c11), (a

2, c21)) 3.1
∀` ∈ L. PMI`((a

2, c21), (a
1, c11)) -2.0

ORD(a2, c21) 3.2

Table 1: Feature templates used for computing φ. The
templates operate on two events 〈a1, c11, . . . , c1m1

〉 and
〈a2, c21, . . . , c2m2

〉. B(w) maps a word w to its Brown clus-
ter in K = {1, . . . , 50}. ORD(e) returns the mean ordinal
value of e. Feature templates which start with ∀ stand for mul-
tiple features, one for each element in the set quantified over.
Non-numerical feature templates correspond to binary features.
E.g., (fry, add) as an instance of (a1, a2) is a binary feature in-
dicating the appearance of an event with a1 = fry on one end
of the edge and an event with a2 = add on the other end of it.
ε = 10−3 in our experiments. See text for elaboration.

We further encode the tendency of two events to
appear with temporal discourse connectives, such as
“before” or “until.” We define a linkage between
two events as a triplet (e1, e2, `) ∈ (U × U × L),
where L is the set of linkage types, defined accord-
ing to their marker’s written form. §6 details the
extraction process of linkages from recipes. We fur-
ther include a special linkage type linear based on
the order of events in the text, and consider every
pair of events e1 and e2 that follow one another in a
recipe as linked under this linkage type.

For each linkage type ` ∈ L, we define an empir-
ical probability distribution P`((a, c1), (a

′, c′1)) =
P ((a, c1), (a

′, c′1)|`), based on simple counting. The
function PMI gives the point-wise mutual informa-
tion of two events and is defined as:

PMI`((a, c), (a
′, c′)) = log

(
P`((a, c1), (a′, c′1))

P`(a, c1) · P`(a′, c′1)

)

Frequency-based features encode the empirical
estimate of the probabilities that various pairs of fea-
tures would occur one after the other or linked with a
discourse marker. They are equivalent to using prob-
abilities extracted from maximum likelihood estima-



tion according to a bigram model in the discrimi-
native learning. While some of this information is
implicitly found in the lexical features, collecting
frequency counts from a large training set is much
quicker than running costly structured optimization.
Rather the discriminative training can weigh the dif-
ferent empirical probabilities according to their dis-
criminative power. Indeed we find that these features
are important in practice and can result in high ac-
curacy even after training on a small training set.

6 The Recipe Dataset

Data and Preprocessing. The data is extracted
from a recipe repository found on the web.3 The
recipes are given as free text. To extract event types
we run the Stanford CoreNLP4 pipeline of a to-
kenizer, POS tagger, a lexical constituency parser
(the englishPCFG parsing model) and extract typed
Stanford dependencies (de Marneffe and Manning,
2008). As is common with web extractions, the
recipes contain occasional spelling, grammatical
and formatting errors. The corpus consists of 139
files, 73484 recipes, 1.02M events (13.8 events per
recipe on average) and 11.05M words.5

Event Extraction. We focus on verbal events and
do not extract nominal and adjectival argument
structures, which are not as well supported by cur-
rent parsing technology. Any verb is taken to define
an event, aside from modal verbs, auxiliaries and
secondary verbs. A secondary verb (e.g., “let,” “be-
gin”) does not describe an action in its own right,
but rather modifies an event introduced by another
verb. We identify these verbs heuristically using a
list given in Dixon (2005, p. 490–491) and a few
simple rules defined over parse trees. E.g., from the
sentence “you should begin to chop the onion,” we
extract a single event with a predicate “chop.” Ar-
guments are taken to be the immediate dependents
of the predicate that have an argument dependency
type (such as direct or indirect objects) according to
the extracted Stanford dependencies. For preposi-
tional phrases, we include the preposition as part of

3
http://www.ffts.com/recipes.htm

4
http://nlp.stanford.edu/software/corenlp.shtml

5Links to the original recipes, the preprocessed recipes and
all extracted events can be found in http://homepages.
inf.ed.ac.uk/oabend/event_order.html.

the argument. Argument indices are determined by
their order in the text. The order of events is taken
to be the order of their verbs in the text.

Linkage Extraction. We focus on a subset of link-
age relations, which are relevant for temporal rela-
tions. We use Pitler and Nenkova’s (2009) explicit
discourse connectives classifier to identify temporal
discourse linkers, discarding all other discourse link-
ers. Once a discourse linker has been detected, we
heuristically extract its arguments (namely the pair
of verbs it links) according to a deterministic ex-
traction rule defined over the parse tree. We find
28 distinct connectives in our training set, where
the 5 most common linkers “until,” “then,” “before,”
“when” and “as” cover over 95% of the instances.
We extract 36756 such linkages from the corpus, 0.5
linkages per recipe on average.

Temporal and Textual Ordering. In order to
confirm that temporal and textual order of recipes
are generally in agreement, we manually exam-
ine the first 20 recipes in our development set.
One recipe was excluded as noise6, resulting in 19
recipes and 353 events. We identify the sources of
misalignment between the linear order and the tem-
poral order of the events.7 13 events (3.7%) did not
have any clear temporal orderings. These consisted
of mostly negations and modalities (e.g., “do not
overbrown!”), sub-section headings (e.g., “Prepara-
tion”) or other general statements that do not consti-
tute actions or states. For the remaining 340 events,
we compare their linear and the temporal orderings.

We estimate the frequency of sub-sequences that
contradict the temporal order and confirm that they
occur only infrequently. We find that most disagree-
ments fall into these two categories: (1) disjunctions
between several events, only one of which will actu-
ally take place (e.g., “roll Springerle pin over dough,
or press mold into top”); (2) a pair, or less com-
monly a triplet, of events are expressed in reverse
order. For instance, “place on greased and floured
cookie sheet,” where greasing and flouring should
occur before the placing action. We note that assum-
ing the alignment of the temporal and textual order

6This did not result from an extraction problem, but rather
from the recipe text itself being too noisy to interpret.

7Events are parsed manually so to avoid confounding the
results with the parser’s performance.



of recipes does not suggest that the textual order is
the only order of events that would yield the same
outcome.

We compute the Kendall’s Tau correlation, a
standard measure for information ordering (Lapata,
2006), between the temporal and linear orderings
for each recipe. In cases of several events that
happen simultaneously (including disjunctions), we
take their ordinals to be equal. For instance, for three
events where the last two happen at the same time,
we take their ordering to be (1,2,2) in our analysis.
We find that indeed temporal and textual orderings
are in very high agreement, with 6 recipes of the
19 perfectly aligned. The average Kendall’s Tau be-
tween the temporal ordering and the linear one is
0.924.

7 Experimental Setup

Evaluation. We compute the accuracy of our algo-
rithms by comparing the predicted order to the one
in which the events are written. We first compute
the number of exact matches, denoted with EXACT,
namely the percentage of recipes in which the pre-
dicted and the textual orders are the same.

For a more detailed analysis of imperfect pre-
dictions, we compute the agreement between sub-
sequences of the orderings. We borrow the notion of
a “concordant pair” from the definition of Kendall’s
Tau and generalize it to capture agreement of longer
sub-sequences. Two k-tuples of integers (x1, ..., xk)
and (y1, ..., yk) are said to “agree in order” if for ev-
ery 1 ≤ i < j ≤ k, xi < xj iff yi < yj . Given two
orderings of the same recipe O1 = (eτ(1), ..., eτ(m))
and O2 = (eσ(1), ..., eσ(m)) (where τ and σ are per-
mutations over [m] = {1, . . . ,m}) and given a se-
quence of k monotonically increasing indices t =
(i1, ..., ik), t is said to be a “concordant k-tuple” of
O1 andO2 if (τ(i1), ..., τ(ik)) and (σ(i1), ..., σ(ik))
agree in order, as defined above.

Denote the unordered recipes of the test data as
{Ri}Ni=1, where Ri = {ei1, ..., eimi

} ⊂ U for all i,
and their target orderings Σ = {σi}Ni=1, where σi is
a permutation over [mi]. Assume we wish to eval-
uate a set of predicted orderings for this test data
T = {τi}Ni=1, where again τi is a permutation over
[mi]. Denote the number of concordant k-tuples of
σi and τi as conc(σi, τi). The total number of of

monotonically increasing k-tuples of indices is
(
mi
k

)
.

The k-wise (micro-averaged) accuracy of T with re-
spect to Σ is:

acck(Σ,T) =

∑N
i=1 conc(σi, τi)∑N

i=1

(
mi

k

)
Any k-tuples containing the start node s or the

end node f are excluded, as their ordering is triv-
ial. Recipes of length less than k are discarded when
computing acck. A micro-averaged accuracy mea-
sure is used so as not to disproportionately weigh
short recipes. However, in order to allow com-
parison to mean Kendall’s Tau, commonly used in
works on order learning, we further report a macro-
averaged acc2 by computing acc2 for each recipe
separately, and taking the average of resulting ac-
curacy levels. Average Kendall’s Tau can now be
computed by 2acc2−1 for the macro-averaged acc2
score.

Data. We randomly partition the text into train-
ing, test and development sets, taking an 80-10-10
percent split. We do not partition the individual
files so as to avoid statistical artifacts introduced by
recipe duplications or near-duplications. The train-
ing, development and test sets contain 58038, 7667
and 7779 recipes respectively. The total number of
feature template instantiations in the training data is
8.94M.

Baselines and Algorithms. We compare three
learning algorithms. GLOBAL-PRC is the struc-
tured perceptron algorithm that uses ILP inference.
GREEDY-PRC is a structured perceptron in which in-
ference is done greedily. GREEDY-LOGLIN is the
locally normalized log-linear model with greedy in-
ference. RANDOM randomly (uniformly) selects a
permutation of the recipe’s events.

Experimental Settings. The structured percep-
tron algorithms, GLOBAL-PRC and GREEDY-PRC,
are run with a learning rate of 0.1 for 3 iterations.
To avoid exceedingly long runs, we set a time limit
in seconds β on the running time of each ILP in-
ference stage used in GLOBAL-PRC. We consider
two training scenarios: 4K, which trains on the
first 4K recipes of the training set, and 58K, which
trains on the full training data of 58K recipes. In
GLOBAL-PRC we set β to be 30 seconds for the 4K



Alg. acc2 acc3 acc4 EXACT

MI MA
4K

GLOBAL-PRC 71.2 77.7 44.7 27.9 35.1
GREEDY-PRC 60.8 68.0 30.6 15.0 20.4

GREEDY-LOGLIN 65.6 71.5 35.8 18.7 21.0

58
K GLOBAL-PRC 68.9 76.4 41.3 24.8 34.4

GREEDY-PRC 60.7 67.8 30.6 15.2 20.5
GREEDY-LOGLIN 66.3 72.4 36.6 19.4 21.3

RANDOM 50.0 51.2 16.7 4.2 0.5

Table 2: Accuracy of the different models on the test data in
percents. Columns correspond to evaluation measures, namely
accuracy of sub-sequences of lengths 2 (micro and macro aver-
ages), 3 and 4, and exact match. The upper (lower) part presents
results for a training set of 4K (58K) samples. GLOBAL-PRC is
run with β = 30 for 4K and with β = 5 for 58K. In 58K,
all models are run with the Full feature set. In 4K, follow-
ing prior experimentation on the development set, we select the
best performing feature sets (Full for GREEDY-LOGLIN and
GREEDY-PRC; Fr + Lex for GLOBAL-PRC).

scenario, and 5 seconds in the 58K scenario. The
number of threads was limited to 3. Where the time
limit is reached before an optimal solution is found,
the highest scoring Hamiltonian path found up to
that point is returned by the ILP solver. In the in-
frequent samples where no feasible solution is found
during training, the sample is skipped over, while at
test time, we perform greedy inference instead.

We define the following feature sets. Fr includes
only features of class Frequency, while Fr + Lex
includes features from both the Frequency and
Lexical categories. Full includes all feature sets.
All above feature sets take C, the reference corpus
for computing FREQUENCY features, to be the en-
tire 58K training samples in both scenarios. In the
4K scenario, we also experiment with FrLim, which
includes all features, but takes C to contain only the
4K samples of the training data.

We use the Gurobi package for ILP.8 Brown clus-
ters are extracted from the 58K samples of the train-
ing data using Liang’s implementation.9 The convex
log-likelihood function of GREEDY-LOGLIN is op-
timized using LBFGS. All features are selected and
all parameters are tuned using the development set.

8 Results

Table 2 presents the results of the three major al-
gorithms in the two main scenarios 58K and 4K.

8
http://www.gurobi.com

9
https://github.com/percyliang/brown-cluster

β Set acc2 acc3 acc4 EXACT

MI MA

30 FrLim 55.9 61.5 21.6 6.9 8.2
Fr 68.7 75.9 40.6 23.9 31.7

Fr + Le 68.9 76.2 40.7 23.8 32.1
Full 68.4 76.0 39.9 23.1 31.8

5 FrLim 55.1 60.9 20.9 6.5 8.2
Fr 65.9 74.2 36.0 19.3 30.4

Fr + Le 66.2 74.3 36.8 20.4 30.7
Full 66.3 74.5 36.9 20.4 30.4

Table 3: The performance of GLOBAL-PRC on the develop-
ment set in various settings (4K scenario). Columns correspond
to evaluation measures, namely accuracy of sub-sequences of
lengths 2 (micro and macro averages), 3 and 4, and exact match.
The upper (lower) part of the table presents results for a time
limit of β=30 (5). Fr includes the Frequency features esti-
mated on 58K recipes. Fr + Le further includes Lexical fea-
tures. Full includes all features. FrLim includes all features,
where Frequency features are estimated only on 4K recipes.

We find that the structured perceptron algorithm,
GLOBAL-PRC, obtains the best results in both cases
and under all evaluation measures. The importance
of global optimization was also stressed in other
works on event ordering (Chambers and Jurafsky,
2008a; Talukdar et al., 2012).

In order to assess the contribution of the different
components of the model of the best scoring model,
GLOBAL-PRC, we compare the performance of the
different feature sets and settings of β on the de-
velopment set in 4K (Table 3). Results reveal the
strong impact of the Frequency feature set on the
results. Using this category set alone (Fr) yields
slightly lower results than using the full feature set,
while estimating the Frequency features on a small
corpus (FrLim) lowers results dramatically. Adding
Lexical and Brown features yields a small improve-
ment over using Frequency alone.

While Table 3 demonstrates the importance of β
in the performance of GLOBAL-PRC, it also shows
that on a limited time budget, a small training set and
few features (4K, Fr) and a reasonably small β (5)
can yield competitive results. Increasing β from 5 to
30 generally improves results by 2 to 3 percent ab-
solute. The importance of β is further demonstrated
in Table 2, where performance with 4K training in-
stances and β = 30 is better than with 58K training
instances and β = 5. Preliminary experiments con-
ducted on the development data with higher values
of β of 60 and 120 suggest that further increasing β



yields no further improvement.
Previous studies evaluated their models on the re-

lated problem of distinguishing randomly permuted
and correctly ordered chains of events (§2). In this
paper we generalize this task to complete event or-
dering. In order to demonstrate the relative difficulty
of the tasks, we apply our highest scoring model
(4K, Fr + Le) to the binary task (without re-training
it). We do so by computing the percentage of cases
in which the correct ordering obtains a higher score
than an average ordering. The high resulting accu-
racy of 93%, as opposed to considerably lower accu-
racies obtained under ordering evaluation measures,
reflects the relative difficulty of the tasks.

The proposed edge-factored model can easily cap-
ture pair-wise ordering relations between events, but
is more limited in accounting for relations between
larger sets of events. A simple way of doing so is
by adding the feature

∑
e P (ei|e)P (e|ej) between

events ei and ej (in addition to the regular transi-
tion probabilities P (ei|ej)). However, preliminary
experimentation with this technique did not yield
improved performance. Future work will address
higher-order models that straightforwardly account
for such long-distance dependencies.

To qualitatively assess what generalizations are
learned by the model, we apply GLOBAL-PRC to
the development data and look at what event pairs
obtained either particularly high or particularly low
results. For each pair of predicates and their first
arguments (a1,c11), (a2,c21), we compute the average
weight of an edge connecting events of these types,
discarding pairs of frequency less than 20.

The 20 highest scoring edges contain pairs such
as (“add,” “mixing after addition”), (“beat whites,”
“fold into mixture”) and (“cover for minutes,”
“cook”), in addition to a few noisy pairs resulting
from parser errors. The 20 lowest scoring edges con-
tain event pairs that are likely to appear in the oppo-
site order. 11 of the cases include as a first argu-
ment the predicates “serve,” “cool” or “chill,” which
are likely to occur at the end of a recipe. 3 other
edges linked duplications (e.g., (“reduce heat,” “re-
duce heat”)), which are indeed unlikely to immedi-
ately follow one another. These findings suggest the
importance of detecting both lexical pairs that are
unlikely to follow one another, in addition to those
that are likely to.

9 Conclusion

We addressed the problem of lexical event ordering,
and developed an edge-factored model for tackling
it. We rely on temporally aligned texts, using a new
dataset of cooking recipes as a test case, thereby
avoiding the need for costly and error-prone man-
ual annotation. We present results of a pair-wise
accuracy of over 70% using a basic set of features,
and show the utility of the structured perceptron al-
gorithm over simpler greedy and local approaches.
The setup we explore, which uses a discriminative
model and an ILP formulation, is easy to extend both
in terms of features and in terms of more complex
formal constraints and edge dependencies, as was
done in graph-based dependency parsing (McDon-
ald et al., 2005). Future work will address the ex-
tension of the feature set and model, and the appli-
cation of this model to temporal semantics and plan-
ning tasks. We will further address the application
of semi-supervised variants of the proposed tech-
niques (e.g., self-training) to other domains, where
no sizable corpora of temporally aligned data can be
found.
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Appendix A: Maximal Hamiltonian Path

Let G(S) = (S ∪ {s, f}, E(S)) be an almost-
complete directed graph with E = E(S) = (S ∪
{s}) × (S ∪ {f}). Let cij ∈ R be weights for its
edges ((i, j) ∈ E). A Hamiltonian path between
s, f ∈ V can be found by solving the following pro-
gram, returning P = {(i, j)|xij = 1}.

max
xij∈{0,1} : (i,j)∈E

ui∈Z : i∈V

n∑
i6=j

cijxij

s.t.
n∑

i=0,i6=j

xij = 1 ∀j 6= s;

n∑
j=0,j 6=i

xij = 1 ∀i 6= e;

ui − uj + |V |xij ≤ |V | − 1 ∀(i, j) ∈ E
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